An Architecturally-Integrated, Systems-Based Hazard Analysis for Medical Applications

http://cis.ksu.edu/~samprocter

Sam Procter and John Hatcliff SAnToS Lab Kansas State University

Support:

This work is supported in part by the US National Science Foundation (NSF) (#1239543), the NSF US Food and Drug Administration Scholarin-Residence Program (#1355778) and the National Institutes of Health / NIBIB Quantum Program.

Health Care Involves A Variety of System Components

Outline

- Motivation
- Report
 - Annotations
 - Generation
- Language
- Impacts

PCA Interlock Scenario

- Patients are commonly given patient-controlled analgesics after surgery
- Crucial to care, but numerous issues related to safety
- Data for disabling the pump exists now (just a system invariant) -- we just need to integrate it

PCA Pump Safety Interlock

Fully leverage device data streams and the ability to control devices

Vision

Analyses and Regulatory Artifacts

Language

Model

Fundamentals

Fundamentals

- Accident Levels
- Accidents
- System Boundaries
- Hazards
- Safety Constraints
- Control Actions
- Control Structure

];

Example

- 1. An inadvertent "Pump Normally" command is sent to the pump [PatientHarmed]
- 2. Commands are sent to the pump too quickly [PCADamage]

```
InadvertentPumpNormally : constant MAP_Error_Properties::Hazard => [
    Number => 1;
    Description => "An inadvertent `Pump Normally` command is sent to the pump.";
    Accident => PulseOx_Forwarding_Error_Properties::PatientHarmed;
```

Fundamentals

Fundamentals

- Accident Levels
- Accidents
- System Boundaries
- Hazards
- Safety Constraints
- Control Actions
- Control Structure

Example

- 1. App -> Pump: Pump Normally
- 2. PulseOx -> App¹: SpO₂ = 95
- 3. App -> Display: Patient = Ok

Step 1: Identifying Potentially Hazardous Control Actions

Hazardous Control Actions

Cross-product of control actions and STPA guidewords

Control Action	Providing	Not Providing	Applied too Long	Stopped too Soon	Early	Late
App -> Pump: Pump Normally	РН	Not Hazardous	PH	Not Hazardous	PH	Not Hazardous
App -> Disp: Patient Ok	BID	BID	BID	BID	BID	BID
PulseOx->App: Provide SpO ₂	Not Hazardous	PH, BID	Not Hazardous	PH, BID	Not Hazardous	PH, BID
PulseOx->App: Provide Pulse Rate	Not Hazardous	PH, BID	Not Hazardous	PH, BID	Not Hazardous	PH, BID

Step 2: Determining How Unsafe Control Actions Could Occur

Control Action: App -> Pump: Pump Normally

Providing:

- Bad Data:
 - Cause:
 - Incorrect values are gathered from one of the physiological sensors
 - Compensation:
 - Rely on multiple sensed physiological parameters to provide redundancy
- Not Providing:
 - Not hazardous

Annotating our Architectural Model

Annotating our Architectural Model

package PCA_Shutoff public					
<pre>system PCA_Shutoff_System end PCA_Shutoff_System;</pre>	How would the message be unsafe?				
<pre>system implementation PCA_Shutoff_System.imp subcomponents</pre>	• What hazard would be caused?				
<pre>pulseOx : device PulseOx_Interface::ICEpoInterfa appLogic : process PCA_Shutoff_Logic ::ICEpcaShut</pre>	What constraint would be violated?				
<pre>spo2_data : port pulse0x.Sp02 -> appLogic.Sp02; annex EMV2 {**</pre>	What should the occurrence be named?				
<pre>use types PCA_Shutoff_Errors; properties</pre>	What would cause this to occur?				
<pre>MAP_Error_Properties :Occurrence => { Kind => AppliedTooLong;</pre>	How can this occurrence be compensated for?				
<pre>Hazard => PCA_Shutoff_Error_Properties::InadvertentPumpNormally; ViolatedConstraint => PGA_Shutoff_Error_Properties::PumpWhenSafe; Title => "Network Drop";</pre>					
Cause => "Network drops out, leaving the Sp02 value por Compensation => "Physiological readings have a maximum We'll come back to these onger valid";					
<pre>impact => reference(Sp02valueHign); applies to sp02_data; **};</pre>					

end PCA_Shutoff_System.imp; end PCA_Shutoff;

Report Generation Development

- Development of component architecture using AADL / OSATE2
- Addition of Hazard Analysis Annotations
- Automatic generation of STPA-Styled Hazard Analysis Report

Example "In Progress" Report Online at: http://santoslab.org/pub/mdcf-architect/HazardAnalysis.html

Annotating our Architectural Model

Inside the AADL System Component

```
package PCA_Shutoff
public
system PCA Shutoff System
end PCA Shutoff System;
system implementation PCA_Shutoff_System.imp
subcomponents
   pulseOx : device PulseOx_Interface::ICEpoInterface.imp;
   appLogic : process PCA Shutoff Logic::ICEpcaShutoffProcess.imp;
connections
   spo2 data : port pulseOx.SpO2 -> appLogic.SpO2;
annex EMV2 {**
   use types PCA_Shutoff_Errors;
                                                 What channel will be affected?
   properties
   MAP Error Properties::Occurrence =>
                                                 What specific fault will result?
      Kind => AppliedTooLong;
      Hazard => PCA_Shutoff_Error_Properties::InadvertentPumpNormally:
      ViolatedConstraint => PCA_Shutoff_Error_Properties::PumpWhenSafe;
Title => "Network Drop";
      Cause => "Network drops out, leaving the SpO2 value potentially too high";
      Compensation => "Physiological readings have a maximum time, after which they are no longer valid";
      Impact => reference(SpO2ValueHigh);
                                                                           What can we do with our
   ] applies to spo2 data;
**};
                                                                                model + specific
                                                                                fault information?
end PCA Shutoff System.imp;
end PCA_Shutoff;
```

Annotating the Architectural Model

Specification Step 1: Propagation

Annotating the Architectural Model

OSATE Remembers A Neglected Connection

```
system implementation PCA_Shutoff_System.imp
subcomponents
    -- Physiological inputs
    pulseOx : device PulseOx_Interface::ICEpoInterface.imp;
    -- App logic
    appLogic : process PCA_Shutoff_Logic::ICEpcaShutoffProcess.imp;
    appDisplay : process PCA_Shutoff_Display::ICEpcaDisplayProcess.imp;
connections
    -- From components to logic
    spo2_logic : port pulse0x.Sp02 -> appLogic.Sp02;
    -- From components to display
    spo2_disp : port pulse0x.Sp02 -> appDisplay.Sp02;
anne A No incoming error propagation from appDisplay for outgoing propagation SpO2(SpO2ValueHigh). Check for
      Unhandled Faults.
    properties
    -- Errors between the PulseOx's SpO2 channel and the App Logic
    MAP_Error_Properties::Occurrence => [
        Kind => ValueHigh:
        Hazard => PCA_Shutoff_Error_Properties::PatientHarmed;
        ViolatedConstraint => PCA_Shutoff_Error_Properties::PumpWhenSafe;
        Title => "Wrong Values (Undetected)";
        Cause => "Incorrect values are gathered from the physiological sensors";
```

Interaction between Report and Model

Impacts

Automation

- Traditionally, analysts have to mine a system and maintain it – without tool support
- Architectural integration
 - Faults can be "bound" to specific components and ports
- Future:
 - Testing + Fault Injection
 - If a compensation is claimed, we can autogenerate a test

An Architecturally-Integrated, Systems-Based Hazard Analysis for Medical Applications

http://cis.ksu.edu/~samprocter

Sam Procter and John Hatcliff SAnToS Lab Kansas State University

Support:

This work is supported in part by the US National Science Foundation (NSF) (#1239543), the NSF US Food and Drug Administration Scholarin-Residence Program (#1355778) and the National Institutes of Health / NIBIB Quantum Program.