
Requirements Specification for Apps in Medical Application Platforms

Brian Larson, John Hatcliff, Sam Procter, Patrice Chalin
Kansas State University

{brl,hatcliff,samuel3,chalin}@ksu.edu

Abstract—Existing regulatory agency guidance documents
and process standards for medical devices (i.e., IEC 62304)
generally consider medical devices to be stand-alone monolithic
systems. The format and content of a system requirements
document largely follows that of conventional embedded safety-
critical systems. However, a vision is emerging of a new
paradigm of medical system based on the notion of a medical
application platform (MAP). A MAP is a safety- and security-
critical real-time computing platform for (a) integrating hetero-
geneous devices, medical IT systems, and information displays
via a communication infrastructure and (b) hosting application
programs (i.e., apps) that provide medical utility via the ability
to both acquire information from and update/control integrated
devices, IT systems, and displays. To ensure a regulatory
pathway for MAPs, it is necessary to adapt traditional devel-
opment processes and artifacts to the specific characteristics of
MAP architectures and constituent components. In this paper,
we provide an initial proposal for developing and formatting
requirements for MAP apps. For illustration, we consider an
app that implements two “smart alarms” for pulse oximetry
monitoring in a clinical context.

Keywords-requirements specification, biomedical communi-
cation, biomedical monitoring, medical information systems

I. INTRODUCTION

The evolution of networking technologies, interoperability
standards, information integration, and automated controls
technology has increased the speed of system innovation
in many fields, but the medical industry has so far not
kept pace. Elsewhere, including safety-critical infrastruc-
tures, the notion of an interoperable “system of systems” is
increasingly prevalent. Such architectures allow information
to be pulled from a variety of sources, analyzed to discover
correlations and trends, stored to enable real-time and post-
hoc assessment, mined to better inform decision making, and
leveraged to automate control of system units.

In contrast, medical devices typically have been de-
veloped as monolithic stand-alone units. No widely-used
device interoperability standards exist1 Current verification
and validation (V&V) techniques used in industry primar-
ily target single monolithic systems. Moreover, the United
States Food and Drug Administration’s (FDA) regulatory
clearance processes are designed to approve single stand-
alone devices or collections of devices that are integrated
by a single manufacturer with complete control over all

1Though, e.g., HL7 is a widely used “Health Information Technology”
standard.

components. From a systems engineering perspective, it is
well understood that the current state of practice uses non-
integrated devices and health information systems cooper-
atively according to informal manual protocols to deliver
clinical solutions. Providing the Information Technology
(IT) infrastructure to integrate devices and information sys-
tems and automatically coordinate their actions as a system
of systems using computer coded protocols would provide
opportunities to implement multi-device smart alarms and
safety interlocks, enable clinical decision support systems,
automate clinical workflows, and implement multi-device
closed loop control.

II. MEDICAL APPLICATION PLATFORMS

A vision is emerging of a new paradigm of medical system
enabled by, what we call, medical application platforms
(MAPs). A MAP is a safety- and security-critical real-
time computing platform for (a) integrating heterogeneous
devices, medical IT systems, and information displays via
a shared communication infrastructure and (b) hosting ap-
plication programs (which we will refer to simply as apps)
that provide medical utility via the ability to both acquire
information from and exert control over integrated devices,
IT systems and displays. While we will generally discuss
the concept of a MAP in a clinical context, a MAP could
also be implemented as either a portable (i.e., ambulatory),
home-based or mobile system.

The “medical utility” provided by MAP applications may
take many forms, but a common theme is that they introduce
a previously missing “system perspective” (cross-device)
into the device context associated with patient care.

There are a broad range of types of MAP application,
including:

Medical display and storage: An app may transfer and
possibly consolidate data from one or more devices to
a patient’s electronic medical record or a MAP-supported
display. This could take the form of a composite display
in a patient’s hospital room, a remote clinical display at a
nurses station, or a physician’s smart phone.

Derived / smart alarms: An app may implement “derived
alarms” to supplement the native alarm capabilities of a de-
vice. This might include implementing alarms for consumer
oriented devices that do not provide native alarms—e.g., an
app might implement upper and lower limit SpO2 alarms



for Continua compliant pulse oximeters such as the Nonin
Onyx II. Alternatively, the app may implement a so-called
“smart alarm” that provides more sophisticated analysis
and decision logic based on physiological parameters from
multiple devices, monitoring trends / history, or comparison
and correlation with data patterns from a broader population
indicating problematic physiological conditions.
Clinical decision support: An app may pull information
from devices, patient electronic medical records, drug in-
teraction databases, and previous clinical studies to support
clinician decision making, diagnoses, or guidance / sugges-
tions for treatment.
Safety interlocks: An app may control one or more devices
so as to implement system safety invariants that lock out
potentially unsafe individual device behaviors or interactions
between devices.
Workflow automation: Many clinical procedures follow
protocols or recommended steps that involve interacting with
a collection of devices. An app may be used to partially
automate workflow steps by automatically activating / deac-
tivating devices, setting device parameters based on either
a patient’s medical record or on guidelines for a particular
type of procedure.
Closed-loop control: An app may use information collected
from sensing devices and possibly a patient’s medical record
to control actuators on devices providing treatment or col-
lecting diagnostic information from patients.

III. MAP ARCHITECTURE

While there may be multiple suitable architectures for
MAPs, one architecture that is gaining traction in the regula-
tory domain is ASTM standard F2761-09 for the Integrated
Clinical Environment (ICE) [1]. ASTM F2761-09 is an
initial standard in an anticipated family of standards that
will flesh out detailed requirements and interfaces for ICE
components. ASTM F2761-09 itself is a short standard that
presents the high-level ICE architecture (corresponding to
the components in dashed lines in Figure 1) and gives a brief
description of each architecture component. Nevertheless,
the ICE architecture has become the basis for US Food
and Drug Administration (FDA) sponsored workshops and
working groups that are developing a regulatory pathway for
MAPs. Our research group has been extensively involved in
these activities, and is attempting to make a contribution
by developing an open-source MAP implementation that
conform to ICE – the Medical Device Coordination Frame-
work (MDCF)—developed jointly with researchers at the
University of Pennsylvania and reported on in previous work
[2], [3], [4]) and by developing sample artifacts and mock
regulatory submission documents for ICE components.

In the ICE architecture, the Network Controller provides
the MAP communication infrastructure to which medical
devices and other hospital information systems are attached,

Figure 1. Integrated Clinical Environment (ICE) / MDCF Architecture

the Supervisor provides an execution platform for apps. The
Network Controller provides high-assurance network com-
munication capabilities that establish virtual “information
pipes” between devices and apps running in the Supervisor.
It exposes the ICE Interfaces of attached devices to Super-
visor apps, and is agnostic to the intended use of the clinical
apps that it supports. In the MDCF implementation of ICE
(corresponding to the components in solid lines in Figure 1),
a Device Manager component of the Network Controller
maintains a registry of all medical devices that are currently
connected with the MDCF. The Device Manager implements
the server side of the MDCF device connection protocol
(medical devices implement the client side) and tracks the
connectivity of those devices (notifying the appropriate apps
if a device goes offline unexpectedly). The Device Manager
serves another important role: it validates the trustworthiness
of any connecting device by applying a key exchange proto-
col to determine if the connecting device has a valid digital
certificate to indicate that has been previously certified to
conform to its interface and has received regulatory approval.

In the MDCF, the Supervisor can be thought of as a virtual
machine that hosts Supervisor Apps. We are currently work-
ing on ensuring that it provides separation/isolation-kernel-
like [5] data partitioning (information cannot inadvertently
leak between apps, and apps cannot inadvertently interfere
with one another) and time partitioning (real-time scheduling
guarantees that the computations in one app cannot cause the
performance of another to degrade or fail). Each app declares
device types indicating the types/capabilities of devices upon



which it depends. When a clinician initiates the app launch
process, the Supervisor queries the Network Controller to
determine if a device that meets those requirements is cur-
rently on the network and associated with the patient under
consideration. If more than one device satisfies a particular
app device requirement, the operator chooses a particular
device to bind to the app. It is important to understand that
the app, as it executes, gives rise to a system that satisfies the
FDA technical/legal definition of a medical device, where the
medical device is a composite entity formed from the logic
of the app code, platform infrastructure components such
as the Supervisor and Network Controller, and any devices
and IT systems upon which the app depends. We refer to
this composite device as a platform constituted device2. In
regulatory terms, the app defines the intended use of the
platform constituted device. Stepping back, one may observe
that a MAP has a varying intended use (depending on
the particular app that is running) and may simultaneously
support multiple platform constituted devices (when more
than one app is running simultaneously).

In previous work, we have identified a number of char-
acteristics that distinguish MAPs from conventional medical
devices and from embedded systems in other domains [6].
We briefly review some of the characteristics most relevant
to the work presented in this paper.
Compositional construction, certification, and regula-
tion: Instances of the ICE components of Figure 1 may
be developed by different vendors, and will be individually
(a) certified (by an independent certification authority) to
comply with their ICE interface, and (b) subject to regulatory
approval (e.g., FDA’s 510K). Note that this is a radical
departure from the existing FDA practice of regulating only
complete systems.
Integration after deployment, at the point-of-care: In
other domains such as avionics where complex systems
are assembled from subsystems originating from different
manufacturers, there is typically a prime contractor that
serves as the system integrator and is tasked with assembling
the system. The system integrator has expert-level technical
knowledge of the system components, and is responsible for
the overall system verification/validation, safety arguments,
and certification. Integration/assembly is performed before
deployment with full knowledge of the characteristics and
behavior of the components being integrated. In contrast, for
MAP systems, there is no prime contractor who assembles
a system, and no single manufacturer delivers the system to
the customer. Instead, systems are assembled at the point of
care by clinicians attaching devices to the communication
infrastructure and launching apps that dynamically bind
to devices with which they may have never been tested.
The assembling is performed by clinicians who have no
detailed technical expertise of device components, real-

2In previous work, we have referred to this as a virtual medical device.

time application programming, nor distributed safety-critical
systems engineering.

The above characteristics alone indicate that there are
significant challenges to achieving safety and correctness.
A number of engineering principles, inspired from related
efforts in other domains such Integrated Modular Avionics
(avionics domain) and the Multiple Independent Levels of
Security (MILS) architecture (security domain), will need
to be brought to bear to ensure safety/correctness. Foremost
among these are: (a) the need for a robust architecture that
will precisely define interface and strong functional and real-
time requirements, (b) a rigorous third-party certification
regime that establishes trust between between vendors of
a particular component so that they can be confident that
other components, upon which they depend, will function
correctly, and (c) high-assurance infrastructure components
that provide common platform services and space/time-
partitioning for apps/devices and communication between
these.

Space does not permit a complete exposition of how all
safety concerns are addressed. For this paper, we focus in
on the following key point. In the absence of the traditional
role of a system integrator, (1) the app itself defines the
system integration by specifying the interface capabilities of
the devices and IT systems upon which it depends and by
defining the intended use of the platform constituted device,
(2) the platform ensures correct system integration by only
allowing the app to execute when the platform can satisfy
the execution and communication needs of the app (this is
achieved via dynamic schedulability analysis) and when the
devices attached to the network satisfy the device functional
and real-time capabilities required by the app.

IV. REQUIREMENTS ENGINEERING WITH APPS

There are a number of potential sources to appeal to when
designing artifacts capturing requirements for ICE apps. Tra-
ditional Software Requirements Specification (SRS) guide-
lines such as IEEE-830 are general purpose guidelines and
fall short of the methodology and insights needed when
dealing with safety-critical systems. Our principle source of
inspiration has been the US Federal Aviation Administration
(FAA) Requirements Engineering Management Handbook
(FAA-REMH) written by Rockwell Collins engineers David
Lempia and Steven Miller [7]. FAA-REMH focuses directly
on recommended practices for requirements engineering for
safety-critical embedded systems and provides illustrations
using three systems, including a medical system–an Isolette
Thermostat for a neonatal incubator. We found it a reason-
able resource as it met two key criteria: 1) it is targeted at
safety-critical embedded systems, and 2) it was written by
experts in the field.

FAA-REMH lists eleven steps that developers should take
in order to “progress from an initial, high-level overview



of the system... to a detailed description of its behavioral...
requirements.” The steps are:

1) Develop the System Overview
2) Identify the System Boundary
3) Develop the Operational Concepts
4) Identify the Environmental Assumptions
5) Develop the Functional Architecture
6) Revise the Architecture to Meet Implementation Con-

straints
7) Identify System Modes
8) Develop the Detailed Behavior and Performance Re-

quirements
9) Define the Software Requirements

10) Allocate System Requirements to Subsystems
11) Provide Rationale

These steps were designed for requirements engineering in
monolithic systems, and in this paper we consider necessary
changes for a compositional, app-as-integrator requirements
process. The subsections below follow the structure of our
proposed format. For illustration, we consider an app that
implements two “smart alarms” for pulse oximetry (PO
Smart Alarm App) monitoring in a clinical context. We
present excerpts of the requirements document; the complete
document can be found on the MDCF website [8].

A. System Overview

FAA-REMH describes this first activity as “Develop[ment
of] an overview of the system that includes a brief synopsis,
describes all contexts in which the system will be used,
and lists the main goals, objectives, and constraints of the
system.” Our modification of this step is the addition of
a significant stipulation: that the system overview should
include a clinical background and statement of clinical need.

1) Clinical Background: The clinical background should
provide the medical and clinical background necessary for a
developer who is not a clinician to understand and interpret
the requirements. Though the inclusion of this section may
depart from the standard organization of software require-
ments specifications, it is necessary to orient app developers
who will likely not be experts in the clinical domain targeted
by the app. Note that this may not be all the information
that is provided, but domain experts should aim to provide
a concise summary of the relevant clinical context.

In the PO Smart Alarm App requirements, this con-
sists of approximately 1.5 pages describing the concept of
blood oxygenation, medical conditions that benefit from PO
monitoring, physiological causes of low oxygen saturation
(SpO2), basic technology underlying SpO2 monitoring, nor-
mal and abnormal ranges for SpO2 readings.

2) Clinical Need: This section should describe the spe-
cific clinical problems that the app is trying to address.
Ideally, this section contains references to articles in the
clinical literature that motivate the need.

Existing pulse oximiters raise an alarm when a patient’s
pulse rate moves outside of limits that are set by clinicians
on the PO device. Unfortunately, nuisance alarms (alarm
events that occur when there is no physiological condition
of concern) are common. An example is when a non-
invasive blood pressure (NIBP) cuff is used on the same arm
as a finger-based PO probe (e.g., a broken arm necessitates
attaching equipment for both devices on the healthy arm.
When the NIBP activates at regular intervals to take a
reading, the inflation of the cuff deprives the finger of
oxygenated blood, which triggers a low SpO2 alarm on
the PO. These alarms can theoretically be avoided, but
are not general enough to warrant direct support for by
manufacturers—that is, existing pulse oximeters are not
context-aware.
Utilizing context-awareness could also increase precision
of alarming by alarming in hazardous situations where a
normal on-board PO alarm would not be activated. One
possible context-aware alarm (implementable as a MAP
application) concerns a patient’s use of supplementary oxy-
gen. Since SpO2 values will be artificially high (and thus a
PO device would be less likely to alarm when potentially
harmful desaturations may be occurring with the patient)
when a patient is on supplementary oxygen, a context-aware
pulse-ox would take this into account by automatically
adjusting down the SpO2 value. A second possible app
would be one that watches for rapid drops in a patient’s
SpO2 values over time. If a patient’s blood rapidly lost
SpO2 saturation (but that saturation was still above some
safe lower threshold) an alarm could be raised. This type
of monitoring is often useful in monitoring neonates and
patients with sleep apnea.

Figure 2. PO Smart Alarm Clinical Need Summary

For the PO Smart Alarm example, we have 1.5 pages de-
scribing particular challenges of SpO2 monitoring in certain
clinical contexts. A high-level summary is given in Figure 2.

3) System Synopsis: Per FAA-REMH, this section pro-
vides a short textual synopsis of the app. The synopsis
names the system, describes its purpose, and summarizes
the system capability:

This Integrated Clinical Environment (ICE) Pulse Oximetry
Monitoring app provides Medical Device Data System
(MDDS) displays of pulse oximetry device data, trend data
for device readings, control of pulse oximeter device alarm
settings, and derived alarms.
The derived alarms enhance the functionality of conven-
tional pulse oximeters by supporting more precise alarming
for SpO2 readings when a patient is on supplementary
oxygen and by detecting rapid declines in SpO2 that do not
necessarily fall below the SpO2 lower limit alarm provided
by pulse oximeters.

This section should also include a diagram summarizing the
clinician’s view of the system. The diagram and supporting
discussion should indicate how the ICE Platform would be
configured to support (provide the run-time computational
context) for the app. The diagram would indicate devices
the app requires, and the specific sensors/actuators required
for each device. The diagram would indicate what ICE



Figure 3. ICE instantiation for PO Smart Alarm app

external interfaces (e.g., Electronic Medical Record, dosing
databases) are required. The diagram would indicate what
displays are supported by the app (e.g., the ICE Supervisor
display and any additional remote displays). The diagram
would indicate at a rough level the basic interactions with
the clinician and patient, though these will be spelled out in
greater detail in the sections that follow.

Figure 3 is the corresponding diagram for our example.
The bottom of the diagram indicates that the app requires
a PO and the two primary physiological parameters from
a PO (SpO2 and heart rate). The app receives sensor data
and alarm events for each parameter and can configure the
device alarm limit parameters. There is a single display on
the consumer console and the interactions that a clinician
has with the display and attached devices are shown as well.
In the full document, more details are provided concerning
these interactions, as well as the interactions between apps
and devices. This detailed discussion corresponds to the
FAA-REMH step of identification of the external entities
with which the system interacts and the nature of those
interactions.

4) System Goals: Per FAA-REMH, this section offers a
preliminary set of system goals that will be used to guide the
specification of requirements. Goals are informal statements
of the system stakeholders’ needs. They are not requirements
since they are not (generally) verifiable and do not provide
enough sufficiently detailed information. However, they pro-
vide important guidance on why the system is being built
and what is important to the stakeholders. E.g., see Figure 4.

B. System Operational Concepts

Operational concepts are defined by the FAA-REMH as
“scripts or scenarios describing how the system will be
used.” This step should: “[f]or all contexts in which the
system will be used, define a black-box view of how the
system will interact with its environment.” This includes

• G1–warn clinician if patients using supplementary oxygen have low
blood oxygenation

• G2–warn clinician if patient’s blood oxygenation decreases rapidly
• G3–warn if blood oxygenation measurement is unreliable
• G4–display recent blood oxygenation measurements
• G5–display recent heart rate measurements
• G6–display current heart rate
• G7–display current blood oxygenation measurement
• G8–display parameters used to determine alarms
• G9–allow entry of parameters used to determine alarms
• G10–warn clinician if device detects fast or slow heart rate, by

forwarding native alarms from the pulse oximeter device
• G11–warn clinician if device detects low SpO2 by forwarding native

alarms from the pulse oximeter device

Figure 4. PO Smart Alarm System Goals

• Related System Goals: G2
• Primary Actor: App
• Preconditions:

– device on
– sensor connected
– enough SpO2 measurements to form baseline

from which current SpO2 measurement is com-
pared

• Postcondition:
– patient’s SpO2 stabilizes
– monitoring continues

• Main Success Scenario
1) app calculates moving average of SpO2 mea-

surements
2) app compares current SpO2 measurement with

moving average
3) if current SpO2 is below moving average at least

as much as the rapid SpO2 decline limit, app
announces rapid SpO2 decline both visually and
audibly through the supervisor user interface

4) clinician responds to patient need taking
medically-necessary actions

5) patient’s SpO2 stabilizes
• Alternate Exception Scenarios

– clinician changes rapid SpO2 decline limit
– clinician detaches sensor and turns off device

Figure 5. PO Smart Alarm Exceptional Use Case

both normal and exceptional use cases.
There is no specialization to MAP apps to be done for

this step. An example of an exceptional use-cases for the PO
Smart Alarm app (there are two normal and six exceptional
use cases) is given in Figure 5.

C. App Interfaces

This section addresses the compositionality of MAP apps
by identifying the device and IT system interfaces on
which the app depends. The most important interfaces are
the device (sensor/actuator) interfaces. The device interface
requirements include a precise statement of the physiological
parameters—ideally, in terms of standard medical nomencla-
ture.

There is no direct correspondence between this section
and the FAA-REMH. However, there are many similarities
between this section and the FAA-REMH Section 2.4.1
on “Identifying Environmental Assumptions” in which the



data type, range, precision, and units of the monitored and
controlled variables are defined. The FAA-REMH notes
that “Every system makes specific assumptions about the
environment in which it will operate.” These environmental
assumptions are defined as “the assumptions about the
environment on which a system depends for correct opera-
tion.” It continues, explaining that “These can be specified
as a mathematical relationship between the controlled and
monitored variables... [which] can be as simple as [their]
types, ranges and units.”

An example of these requirements for the PO Smart Alarm
app would be the following declared dependency on the
SpO2 sensor value.

Blood Oxygenation Satura-
tion (SpO2)

Physical Interpretation

Data Type: Integer Fraction of hemoglobin
that is oxyhemoglobin
expressed as percentage

Units: Percentage
Range: 0 to 100
Period: 1 second

Note the need to capture real-time constraints (e.g., period).
In general we anticipate ICE device interfaces including
additional constraints such as temporal ordering (e.g., type
state constraints) on device commands, role-based security
access controls of data steams and command ports. In more
sophisticated apps that perform control of devices, other
contract information would specify how the device should
change its state to move to a fail-safe mode upon accidental
disconnect from the Network Controller.

D. Functional Architecture and Requirements

The FAA-REMH notes that “To be usable, a requirements
specification for a system of any size must be organized
in some manner.” To that end, it states that “To enhance
readability of the requirements and to make them robust in
the face of change, the requirements [should be] organized
into functions that are logically related with minimal depen-
dencies between functions.”

There are no significant changes between the FAA-REMH
version of this step and the one we eventually settled on.
Our notion of app development is based on a component ar-
chitecture, so the suggested functional decomposition aligns
nicely with the organization of the app into components.
Our example app has a number of components, as well as
incoming and outgoing channels (see Figure 6 for a high-
level summary of the structure).

This section also includes the detailed functional require-
ments for the app. For example, here is a fragment

When SupplOxyAlarmEnabled is true, the
SupplOxyAlarm function shall generate an unlatched
alarm when the SpO2 device parameter decreased
by SpO2LevelAdj is less than the device parameter
SpO2LowerLimit.

An important element of this section is the presentation of
requirements for the app Supervisor User Interface (SUI)

Figure 7. App SUI Mockup

display that the clinician sees on the Supervisor Clinical
Console. The intent here is that the requirements writer
provides a mock-up of the display (e.g., Figure 7)—The
mock-up shows what information must be shown, but does
not constrain the actual implementation of the display. The
various numbers/labels in the display mockup refer to an
even deeper layer of requirements. These are enumerated,
and include references to the element(s) affected. For exam-
ple:

• The SUI shall display a visual cue reflecting the
current state of both the Heart Rate Lower Limit and
the Heart Rate Upper Limit Alarm (element 6).

• The SUI shall display a visual cue reflecting the
current state of the SpO2 Lower Limit Violated Alarm
(element 12).

• The SUI shall display a visual cue reflecting the
current state of the Supplemental Oxygen-Adjusted
Low SpO2 alarm (element 15).

V. CONCLUSION

We have summarized one possible requirements document
organization for ICE apps. Our primary driving example has
been the PO Smart Alarm app. We are using the same format
to capture requirements for more challenging apps such as
the patient-controlled analgesic closed loop safety interlock
that we have previously implemented [3]. In contrast to the
PO Smart Alarm app, these other apps have significant safety
requirements.

In ongoing work on the MDCF project, we are building
the next generation of our app development environment
based on use of the Architecture Analysis and Design
Language (AADL) [9], including an Eclipse-based require-
ments tool supporting the AADL Requirements Definition
and Analysis Language (RDAL) Annex [10]3 developed by
researchers at Université de Bretagne Sud (France) and Taif
University (KSA). The Eclipse tool for RDAL provides a
number of capabilities that allow RDAL requirements to be
traced to AADL models, and we are looking forward to
exercising these capabilities in the very near future.

There are several other envisioned development artifacts
related to ICE app requirements including clinical workflow

3Adoption of RDAL as a standard is expect in late 2012 as an annex
designation to SAE AS5506B.



Figure 6. App Sub-Functions

descriptions that specify workflows that clinicians are ex-
pected to follow when interacting with ICE apps, infrastruc-
ture, and devices. These workflows could be formalized in
process description languages like Little JIL [11], which has
been used to capture non-MAP clinical workflows.

Finally, we continue to work on other artifacts such
as hazard analysis, assurance cases, and mock regulatory
submissions associated with these apps.

ACKNOWLEDGMENT

This authors thank Andrew King, FDA engineers Paul
Jones and Sandy Weininger, and NIH/NIBIB Quantum
Intranet team members Mike Robkin and Ed Ramos for
their extensive comments on the PO Smart Alarm ICE
App requirements. This work is supported in part by
the National Science Foundation under Grants #0734204,
0932289,1065887, and by the NIH/NIBIB Quantum pro-
gram.

REFERENCES

[1] ASTM F2761-2009. Medical Devices and Medical Systems
— Essential Safety Requirements for Equipment Comprising
the Patient-Centric Integrated Clinical Environment (ICE),
Part 1: General Requirements and Conceptual Model, ASTM
International, 2009.

[2] A. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren,
W. Spees, R. Jetley, P. Jones, and S. Weininger, “An open
test bed for medical device integration and coordination,” in
Proceedings of the 31st International Conference on Software
Engineering, 2009.

[3] A. King, D. Arney, I. Lee, O. Sokolsky, J. Hatcliff, and
S. Procter, “Prototyping closed loop physiologic control with
the medical device coordination framework,” in ICSE Com-
panion. ACM, 2010.

[4] “The Medical Device Coordination Framework project web-
site,” http://mdcf.santos.cis.ksu.edu, 2012.

[5] J. Rushby, “The design and verification of secure systems,” in
8th ACM Symposium on Operating Systems Principles, vol.
15(5), 1981, pp. 12–21.

[6] J. Hatcliff, A. King, I. Lee, A. Fernandez, A. McDonald,
and E. Vasserman, “Rationale and architecture principles for
medical application platforms,” in Proceedings of the 2012
International Conference on Cyberphysical Systems, 2012.

[7] D. Lempia and S. Miller, “DOT/FAA/AR-08/32. requirements
engineering management handbook,” Federal Aviation Ad-
ministration, 2009.

[8] J. Hatcliff and B. Larson, “ICE pulse oximiter smart alarm
app requirements,” http://mdcf.cis.ksu.edu, SAnToS Research
Laboratory, Kansas State University, 2012.

[9] “Architecture Analysis & Design Language,” http://www.
aadl.info, 2012.

[10] D. Blouin, E. Senn, and S. Turki, “Defining an annex lan-
guage to the architecture analysis and design language for
requirements engineering activities support,” in Model-Driven
Requirements Engineering Workshop (MoDRE), 2011, Aug.
2011, pp. 11 – 20.

[11] A. Wise, “Little-JIL 1.5 language report,” University of Mas-
sachusetts, Amherst, MA, USA, Language Report, October
2006.

http://mdcf.santos.cis.ksu.edu
http://mdcf.cis.ksu.edu
http://www.aadl.info
http://www.aadl.info

	Introduction
	Medical Application Platforms
	MAP Architecture
	Requirements Engineering with Apps
	System Overview
	Clinical Background
	Clinical Need
	System Synopsis
	System Goals

	System Operational Concepts
	App Interfaces
	Functional Architecture and Requirements

	Conclusion
	References

