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Abstract. There is a growing trend of developing software applications
that integrate and coordinate the actions of medical devices. Unfortu-
nately, these applications are being built in an ad-hoc manner with-
out proper regard for established distributed systems engineering tech-
niques. We present a tool prototype based on the OSATE2 distribution
of the Eclipse IDE that targets the development of Medical Application
Platform (MAP) apps. Our toolset provides an editing environment and
translator for app architectures, i.e., their components and connections.
The toolset generates interface definitions and glue code for the underly-
ing MAP middleware, and it supports development of the business logic
which the developer must write to complete the application within the
same Eclipse-based environment. We also present a clinical scenario as
a motivating example, trace its development through the toolset, and
evaluate our work based on the experience.

Keywords: Integrated medical systems, medical application platforms,
software architecture, AADL

1 Introduction

Medical devices, which have traditionally been built and certified in a standalone
fashion, are beginning to be integrated with one another in various ways: infor-
mation from one device is forwarded to another for display, information from
multiple devices is combined to get a more accurate representation of a patient’s
health, or a device may even monitor or interrupt routine treatments (e.g., ad-
ministration of an analgesic) via “closed-loop” execution. The architecture of
these systems has begun to attract the attention of regulatory and certification
agencies; the FDA now recognizes ASTM’s F2761 standard [4], which lays out
a functional architecture for an integrated clinical environment (ICE). Imple-
mentation of these systems is increasingly realized on some sort of real-time
middleware, leading to important realizations about commonalities and differ-
ences between them and other, more traditional, distributed systems.

Consider the following scenario which has been identified and studied in the
literature that we will use as a motivating example throughout this work [15]:
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After an uneventful hysterectomy, a patient was given a patient-controlled
analgesia (PCA) pump to deliver morphine. However, too much of the
drug was administered even after her vital signs had become depressed
and she ultimately died [5]. The pump could have been disabled and the
patient’s life saved had a simple monitoring algorithm had access to her
physiological monitors and been capable of disabling her PCA pump.

The term medical application platform (MAP) was introduced in [11], where
it was defined as a “safety- and security-critical real-time computing platform
for: (a) integrating heterogeneous devices, medical IT systems, and information
displays via a communication infrastructure, and (b) hosting application pro-
grams (i.e. apps) that provide medical utility via the ability to both acquire
information from and update/control integrated devices, IT systems, and dis-
plays.” Similar to [11], we focus on MAPs in a clinical context, though envision
their potential use in “portable, home-based, mobile or distributed [systems].”

Although work has been done on application requirements [19] and the ar-
chitecture of MAPs [11,17], little attention has been paid to the architectures of
medical applications (apps) that run on a MAP. These MAP apps are essentially
new medical devices that are: (a) specified by an application developer, (b) in-
stantiated at the point of care, and (c) coordinated by the MAP itself. Most of
the previously built applications on these prototype platforms were designed in
an ad-hoc manner with the goal of demonstrating certain functionality concepts.

What is needed is to move from this ad-hoc approach to something that
can enable systematic engineering and reuse. Such an approach would enable
true component-based development, which could utilize network-aware devices
as services on top of a real-time, publish-subscribe middleware. These compo-
nents (and their supporting artifacts) could be composed by an application at
runtime to define the medical system’s behavior, though this would require care-
ful reasoning about the architecture of the application.

While this sort of careful reasoning about MAP apps (also referred to as
virtual medical devices) has not been performed before, the architecture of other
bus-based, safety-critical systems has been given a great deal of attention. The
Architecture Analysis & Design Language (AADL) was released in November
2004 by the Society of Automotive Engineers (SAE) as aerospace standard
AS5506 [8]. Described as “a modeling language that supports early and re-
peated analyses of a system’s architecture. . . through an extendable notation,
a tool framework, and precisely defined semantics,” it enables developers to
model the architecture of the hardware and software aspects of a system as well
as their integration.1 That is, not only can processors and processes be modeled,
but so can the mapping from the latter to the former. It has found some success
in systems development in both the aerospace (e.g., the “integrate then build”
approach undertaken in the SAVI effort [10]) and automotive fields, and it has
even been applied to the development of traditional medical devices [14,21].

1 Moreover, there are language annexes which enable the specification of a system’s
behavior in AADL.
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Since MAP app development is in need of more engineering rigor and AADL
was developed to provide architectural modeling and analysis for safety-critical
systems, it seems natural to evaluate their combined use. Additionally, AADL
has an established community and has been hardened by nearly a decade of
use (see Section 3.2). However, it is not immediately clear whether a technol-
ogy aimed at the integration of hardware and software in the automotive and
aerospace industries will be applicable to the domain of MAP apps. For example,
since MAPs do not expose the raw hardware of their platform — rather pro-
gramming abstractions above it — it is unclear how well certain AADL features
will work when only these software abstractions are being modeled, or if they
will be necessary at all.

What is needed, then, is: (a) a subset of AADL that is useful when describing
the architecture of MAP apps, and (b) a supporting set of tools to facilitate app
development. We describe an approach and prototype toolset using a publicly
available, open source MAP called the Medical Device Coordination Framework
(MDCF [2]); while being specific to MDCF, we believe our work generalizes to
other rigorously engineered MAPs.

Specifically, the main contributions of this paper are:
1. A proposed subset of the full AADL (selected components and port-based

communication) that is useful for describing a MAP app’s architecture.
2. A proposal for a set of properties necessary for describing the real-time

(RT) and quality-of-service (QoS) properties of MAP apps. This set includes
some of AADL’s built-in properties, and it also utilizes AADL’s property
description mechanism to specify new properties.

3. An implementation of a translator that takes as input the relevant properties
and app component structure (as identified in 1 and 2) and produces as
output an application context for the MDCF. Specifically, the translator
produces code that automatically: (a) configures the underlying publish /
subscribe middleware of the MDCF, (b) configures the components to work
together as described in the architectural model, and (c) enforces the RT
and QoS parameters via properties described in (2).

4. A runnable app which demonstrates the expected translator output and
implements the previously discussed clinical scenario. The architecture of
the app is specified in our proposed subset of AADL and the output is
runnable on the MDCF.
The remainder of this paper is organized as follows. Section 2 outlines our

overall app development vision. Section 3 provides a background on technologies
and problems relevant to this work, chiefly MAPs and AADL. Section 4 gives a
walkthrough of the supported language subset and relevant properties. Finally,
Section 5 concludes and describes future work.

2 Vision

At the center of our long-term MAP app development vision is an App Develop-
ment Environment (ADE) that is built on an industrial grade Integrated Devel-
opment Environment (IDE) which supports model-driven development of apps.
The IDE should provide access to traditional software development tools includ-
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ing editors, compilers, debuggers, and testing infrastructure. The ADE should
also have a pluggable architecture so that a variety of components for supporting
app analysis, verification, and artifact construction can be easily added to the
environment. Additionally, the envisioned ADE should enable compilation and
packaging of an app so that it can be directly deployed and executed on a MAP
such as the MDCF.

In addition to supporting traditional development, an important aspect of
our vision is that the ADE should support preparation of a variety of artifacts
required in third-party certification and regulatory approval of the app. For ex-
ample, the ADE should support the construction of requirements documents
with capabilities enabling requirements to be traced to both individual features
and formal specifications in the app model and implementation. The ADE should
support preparation of hazard and risk analysis artifacts (which should also be
traceable to models/code). We envision a variety of forms of verification such
as (a) app to device interface compatibility checking, (b) component implemen-
tation to component contract conformance verification, (c) model checking of
real-time aspects of concurrent interactions, (d) error and hazard modeling us-
ing the EMV2 annex to AADL [18], and (e) proof environments that support
full-functional correctness proofs for an app. The ADE should also support con-
struction of rigorous styles of argumentation, such as assurance cases (again,
with traceability links to other artifacts).

The ADE should also support preparation of third-party certification and
regulatory submission documents (e.g., the FDA 510(k)), as well as the packag-
ing of artifacts into digitally-signed archives that would be shipped to relevant
entities. These organizations would be able to use the same framework to browse
the submitted artifacts and re-run tests / verification tools. The work presented
in this paper represents the first step towards achieving this vision.

3 Background

Our work on this topic was guided by our experiences with the state of medical
application platforms (primarily the MDCF), interest in AADL, previous work
with safety-critical software engineering and the associated regulatory oversight,
and requirements engineering for MAP apps [19].

3.1 Medical Application Platforms

The concept of MAPs predates the term; one notable publication is the ASTM
standard F2761, which introduces one possible MAP architecture, referred to as
the Integrated Clinical Environment (ICE) [4]. A logical view of an app running
on the ICE architecture is given in Figure 1. The ICE manager, which consists
of a supervisor and network controller, provides a configurable execution context
upon which apps can run and is supported by a real-time middleware that can
guarantee various timing and QoS properties. Devices connected to an ICE sys-
tem can be used (or controlled) by the apps running on the manager, and various
services (e.g., logging and display functionality) are provided transparently to
the app. There are a number of implementations of the ICE architecture includ-
ing the MDCF [16] as well as commercial offerings like Dräger’s BICEPS [23].
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MAP Applications: MAP applications, as distributed systems, are built using
the traditional “components and connections” style of systems engineering. Any
development environment for apps, then, should have a number of core features
that are important to component-based development:

– Support for well-defined interfaces: The components of distributed systems
should be self-contained, with the exception of the inputs and outputs they
expose over well-defined interfaces. This enables a library of commonly used
components to be made available to the developer.

– Support for common patterns of communication: Not only are the compo-
nents of such a system often reusable, but so are the styles of communication
between the components. Adhering to common patterns will also result in a
more straightforward software verification process.

– Support for real-time and quality-of-service configuration: In a real-time,
safety-critical distributed system, correctness requires not only the right in-
formation, but also getting it at the right time. Safety arguments can be
difficult to make without the ability to set expected timings in an app’s con-
figuration (e.g., a task’s worst-case execution time) and have a guarantee of
the enforcement of those timings from the underlying middleware.

The translator and example artifact portions of this work target the MDCF
because it supports a rigorous notion of component specification. Since the MID-
dleware Assurance Substrate (MIDAS) [3] is one of the middleware frameworks
supported by the MDCF, our translator supports setting a range of timing prop-
erties attached to both connections (e.g., a port’s latency) and components (e.g.,
a task’s worst-case execution time). As previously noted, though, the work de-
scribed here is not deeply tied to the MDCF but could be targeted to any MAP
implementation that supports similarly rigorous notions of component definition,
configuration, and communication.

We believe the core concepts common to definitions of app architectures are:

– Layout: A high-level schema that defines how various components connect
to one another and collectively form the app.

– Medical Device: Individual medical devices which will either be controlled
by software components, or produce physiological information that will be
consumed by software components.

– Software Component: Software pieces that typically (though not exclusively)
consume physiological information and produce clinically meaningful output:
information for a display, smart alarms, or commands to medical devices.

– Channel: Routes through a network over which components (i.e., both med-
ical devices and software) can communicate.

Taken together, the core features and concepts enable reusability by ensuring
that components communicate over interfaces in common, pattern-based ways
with strict timing constraints. A component is capable of interoperating in any
other system where it “fits.” That is, its interface exposes the required ports,
utilizes the same communication patterns, and has compatible timing require-
ments.
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AADL Con-
struct

MAP
Concept

Mapping Explanation

Components
System Layout This equivalence is not a large stretch, as systems “[repre-

sent] a composite that can include. . . components” [7]

Device Device This is essentially a direct equivalence.

Process Software
Compo-
nent

AADL processes “[represent] a protected address space that
[prevent] other components from accessing anything in-
side.” [7] Tasks are local to the class they’re created in,
allowing them to share state, but stopping them from di-
rectly manipulating tasks or state outside their own class.

Thread Task Tasks (which extend java.lang.runnable) represent
some unit of work to be done either periodically or upon
arrival of a message on a designated port.

Connections
System port
connection

Channel Channels enable communication between components, us-
ing a messaging service.

Process port
connection

Task Trig-
ger

The only currently supported process-level port types are
data and event data. Message arrival on an event
data port triggers an associated task, while data ports
simply update a predictably-named field.

Process impl.-
level port con-
nection

Task-Port
Communi-
cation

A port connection from a process to a thread translates to
a task’s use of data arriving via that port.

Table 1. AADL syntax elements and their MAP app mappings

3.2 Architecture Analysis & Design Language

SAE’s AADL is a standardized, model-based engineering language that was de-
veloped for safety-critical system engineering. Therefore, it has a number of
features that make it particularly well suited to our needs:

– Hierarchical refinement: AADL supports the notion of first defining an el-
ement and then further refining it into a decomposition of several sub-
components. This will not only keep the modelling elements more clean and
readable, but will also allow app creators to work in a top-down style of
development. They will be able to first think about what components make
up the system and how those components would be linked together, define
those components, and finally reason about how those individual components
would themselves be comprised.

– Distinction between types and implementations: AADL allows a developer to
first define a component and then give it one or more implementations, simi-
lar to the object-oriented programming practice of first defining an interface
and then creating one or more implementations of that interface. This keeps
app models cleaner and enables code re-use.

– Extensible property system: AADL allows developers to create properties,
specify their type, and restrict which constructs they can be attached to.
We have used this feature to, for example, associate various physiological
parameters with their IEEE11073 nomenclature “tag” [12].
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Fig. 1. The PCA Interlock App’s information flows. The devices used in the app excerpt
discussed in this section have bolded borders.

– Textual and graphical representations: AADL has a defined textual and
graphical syntax, and there is tool support for converting between the two
representations.

– Strong tool support: AADL is supported by a wide range of both open source
(e.g., OSATE2 [22]) and commercial (e.g., STOOD [6]) tools. We have used
OSATE2 as the basis for our toolset, and have found a number of its features
quite useful (e.g., element name auto-completion, type-checking, etc.).
In general, AADL models are composed of components and their connec-

tions. AADL includes a number of software modeling entities (e.g., thread, pro-
cess, data, etc.), hardware entities (e.g., processor, memory, device, etc.), and
composite entities (e.g., system and abstract). AADL also includes connections
between components of various types such as ports, data accesses, bus accesses,
etc. Of these, our translator uses only a small subset: the system, device, pro-
cess and thread entities, as well as port communication. Elements outside of
this subset are either not needed for app construction (e.g., the flows entity)
or may be added later (e.g., the subprogram entity). The mapping from these
constructs to the MAP constructs identified in Section 3.1 is listed in Table 1; a
full explanation of how our subset is used to define an app is given in the next
section.

4 Language Walkthrough

In this section, we describe the process of creating a MAP app with our prototype
toolset using the motivating example of the PCA Interlock app initially described
in Section 1. This app consumes various physiological parameters to determine
the health of the patient and disables the flow of an analgesic when there are in-
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appLogic : process 
PCA_Interlock_Logic::ICEpcaInterlockProcess.imp; 
appDisplay : process 
PCA_Interlock_Display::ICEpcaDisplayProcess.imp; 
pcaPump : device 
PCAPump_Interface::ICEpcaInterface.imp; 
connections 
-- From components to logic 
spo2_logic : port pulseOx.SpO2 -> appLogic.SpO2; 
pulserate_logic : port pulseOx.PulseRate -> 
appLogic.PulseRate; 
respiratoryrate_logic : port 
respiratoryMonitor.RespiratoryRate -> 
appLogic.RespiratoryRate;    

package PCA_Interlock 
public 
with PulseOx_Interface, RespiratoryMonitor_Interface, 
PCAPump_Interface, PCA_Interlock_Logic, 
PCA_Interlock_Properties, PCA_Interlock_Display; 
 system PCA_Interlock_System 
 end PCA_Interlock_System; 
 
 system implementation 
PCA_Interlock_System.imp 
 subcomponents 
  pulseOx : device 
PulseOx_Interface::ICEpoInterface.imp; 
  respiratoryMonitor : 
device 
RespiratoryMonitor_Interface::ICErrInterface.imp; 
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Fig. 2. (A) The AADL platform artifacts used by the code generation process, (B)
the generated app configuration and executable files, and (C) the fully configured and
executing platform.

dications of respiratory failure [20]. A high-level, ICE-configuration/logical view
of the app is shown in Figure 1. The diagram shows that in addition to the PCA
pump, there are four sensors: (i) a blood-oxygen saturation (SpO2) sensor, (ii) a
pulse rate sensor, (iii) a respiratory rate sensor, and (iv) an end-tidal carbon
dioxide (ETCO2) sensor. In this application, the sensors may be on the same
device: SpO2 and pulse rate information are often produced by a pulse oximeter
(e.g., the Ivy 450C [13]), and respiratory rate and ETCO2 information can come
from, e.g., a capnography machine (e.g., the Capnostream 20 [1]).

The PCA pump consumes information from the app (e.g., enable and disable
commands) while the others produce information in the form of sensor data that
is used by the app’s logic. An important part of the app (and the underlying
MAP/MDCF) is that it will use suitable physiological parameters regardless of
their source; that is, instead of building the app to work with a specific device
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1 package PCA_Interlock_Types
2 public
3 with Data_Model, IEEE11073_Nomenclature;
4 data SpO2
5 properties
6 Data_Model::Data_Representation => Integer;
7 IEEE11073_Nomenclature::OID => IEEE11073_Nomenclature::MDC_PULS_OXIM_SAT_O2;
8 Data_Model::Integer_Range => 0 .. 100;
9 end SpO2;

10 end PCA_Interlock_Types;

(a) The SpO2 datatype used in the app excerpt

1 property set PCA_Interlock_Properties is
2 with PCA_Interlock;
3 Default_Thread_Time : constant Time => 50 ms;
4 Default_Output_Rate : Time_Range => 100 ms .. 300 ms applies to (port);
5 Default_Thread_Dispatch : Supported_Dispatch_Protocols => Sporadic applies to (

thread);
6 Default_Thread_Period : Time => PCA_Interlock_Properties::Default_Thread_Time

applies to (thread);
7 Default_Thread_Deadline : Time => PCA_Interlock_Properties::Default_Thread_Time

applies to (thread);
8 Default_Thread_WCET : Time => 5 ms applies to (thread);
9 Default_Channel_Delay : Time => 100 ms applies to ({PCA_Interlock} ** port

connection);
10 end PCA_Interlock_Properties;

(b) The default properties used in the app excerpt

Fig. 3. Data types and default properties used in the app excerpt

or set of devices, it is built to work with a generic source of the required phys-
iological parameters. We hope to present the process for deriving/documenting
the requirements (e.g., [19]) that were used to create this diagram/drive the app
development process in future work.

Figure 2 gives an overview of the app architecture development, code gen-
eration, and app instantiation process. Part (A) of the figure shows the various
AADL artifacts that compose the app; note that they are labeled with the num-
ber of the subsection they are discussed in. Part (B) shows the execution and
configuration artifacts that result from code generation. It also highlights the
large number of components (signified by dashed lines) that are fully automat-
ically generated. Part (C) shows the app’s instantiation on a running MAP,
which was first sketched in Figure 1, with both the computation hosting and
communication aspects of the app having been realized in the ICE architecture.

This section presents excerpts of AADL models that specify the application
architecture which, when used with our translator, results in application code
runnable on the MDCF. Due to space constraints, we only show one physiological
parameter: SpO2, though the full app would contain all four parameters (i.e.,
SpO2, pulse rate, respiratory rate, and ETCO2). In the next section, we discuss
AADL types and default properties, followed by a top-down walkthrough of the
hierarchy of components used by our toolset.

4.1 Preliminary tasks: Types and Default Properties

Before we can describe a MAP app’s architecture, we must briefly examine
AADL’s type and property definition mechanisms (marked by a (1) in Figure 2)
and how they are used to specify various parameters in our app.
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Default Name
Type Example Explanation

Override Name
Thread Properties

Default Thread Period
Time 50 ms

Periodic tasks will be dispatched
Timing Properties::Period to run once per period.

Default Thread Deadline
Time 50 ms

A task will be scheduled such
Timing Properties::
Deadline

that it has time to complete be-
fore its deadline.

Default Thread WCET
Time 50 ms

A task’s worst case execution
Timing Properties::
Compute Execution Time

time is the most time it will take
to complete after dispatch.

Default Thread Dispatch Sporadic
Periodic

Periodic tasks are dispatched
Thread Properties::
Dispatch Protocol

or Periodic once per period, sporadic upon
message arrival.

Port Properties
Default Output Rate Time 100 ms .. Ports must specify the most
MAP Properties::
Output Rate

Range 300 ms and least frequently that they
will broadcast a message.

Port Connection Properties
Default Channel Delay

Time 100 ms
Specifies the maximum time that

MAP Properties::
Channel Delay

the message can spend on the
network.

Process Properties
N/A Logic

Display
Processes are either for logic or

MAP Properties::
Component Type

or Display display components.

Table 2. AADL property names, types, examples, and explanations

Data Types: The data type for the SpO2 parameter is shown in Figure 3a.
AADL’s property description mechanism is easily extensible, allowing us to spec-
ify customer-specific metadata. In this example, we have leveraged this capability
to attach an IEEE11073 nomenclature “tag” with our SpO2 parameter [12]. Note
that these datatypes could either be generated from or mapped down to a more
standard interface definition language (e.g., CORBA IDL [24]).

Default property values: While it is useful to be able to attach properties to
individual AADL constructs (e.g., ports, connections, threads, etc.), sometimes
a large number of constructs take the same values for certain properties. In this
case, it is useful to set app-wide defaults, as shown in Figure 3b. These properties
apply to every applicable element, unless overridden. A full listing of default and
override property names and types is shown in Table 2.

4.2 The AADL System

The top level of the app architecture is described by an AADL system, marked
by a (2) in Figure 2, which is shown textually in Figure 4. Systems have no
external features (lines 4-5), though the system implementation lists their
internals (lines 7-20). An AADL system implementation consists of a declara-
tion of sub-components (e.g., devices and processes), the connections between
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1 package PCA_Interlock
2 public
3 with SpO2Req_Interface, PCAPump_Interface, PCA_Interlock_Logic,

PCA_Interlock_Display;
4 system PCA_Interlock_System
5 end PCA_Interlock_System;
6

7 system implementation PCA_Interlock_System.imp
8 subcomponents
9 spo2Device : device SpO2Req_Interface::SpO2Interface.imp;

10 appLogic : process PCA_Interlock_Logic::ICEpcaInterlockProcess.imp;
11 appDisplay : process PCA_Interlock_Display::ICEpcaDisplayProcess.imp;
12 pcaPump : device PCAPump_Interface::ICEpcaInterface.imp;
13 connections
14 -- From components to logic
15 spo2_logic : port spo2Device.SpO2 -> appLogic.SpO2;
16 DisablePump_logic : port appLogic.DisablePump -> pcaPump.DisablePump
17 {MAP_Properties::Channel_Delay => 50 ms;};
18 -- From components to display
19 spo2_disp : port spo2Device.SpO2 -> appDisplay.SpO2;
20 DisablePump_disp : port appLogic.DisablePump -> appDisplay.DisablePump;
21 flows
22 spo2_flow : end to end flow spo2Device.spo2_flow -> spo2_logic -> appLogic.

spo2_flow -> DisablePump_logic -> pcaPump.spo2_flow;
23 end PCA_Interlock_System.imp;
24 end PCA_Interlock;

Fig. 4. The top-level app excerpt architecture via the AADL system component

them, and optionally a description of the paths (flows) data take through the
system. Note that we show only excerpts; other interactions include alarm/alert
communication and parameter setting. Flows (line 22 of Figure 4, line 10 of
Figure 5, and line 8 of Figure 6) allow a developer to trace the path that data
take through an entire system and then compute various timings about them
such as their overall latency. Previous work on AADL (e.g. [9]) has identified a
variety of different analyses that leverage flow specifications. Part of our work
is identifying to what extent existing flow analyses can apply to MAPs, that is,
we are investigating how they can be used to reason about local and end-to-end
communication latencies, secure information flow properties, and coupling/de-
pendencies between components of different criticality levels.

4.3 The AADL Process and Device

Now that the software and hardware elements — the AADL processes and de-
vices marked by a (3) in Figure 2 — have been referenced by the AADL system
implementation, a developer must specify their type and implementations.

AADL Processes: A process defines the boundaries of a software component,
and is itself potentially composed of a number of threads (Section 4.4). The
type of a process in AADL is a listing of that which is visible to components
external to the process, i.e., the ports that other components can use to com-
municate with this this component (see lines 6-8 of Figure 5). The process
implementation is, like the system implementation that was discussed in
Section 4.2, a listing of subcomponents and connections. The only valid
subcomponents (in our subset of AADL) of process implementations are threads.
Similarly, all connections are directional links between a thread and one of the
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1 package PCA_Interlock_Logic
2 public
3 with PCA_Interlock_Types, PCA_Interlock_Properties, MAP_Properties;
4 process ICEpcaInterlockProcess
5 features
6 SpO2 : in event data port PCA_Interlock_Types::SpO2;
7 DisablePump : out event data port PCA_Interlock_Types::Notification
8 {MAP_Properties::Output_Rate => 1 sec .. 5 sec;};
9 flows

10 spo2_flow: flow path SpO2 -> DisablePump;
11 properties
12 MAP_Properties::Component_Type => logic;
13 end ICEpcaInterlockProcess;
14

15 process implementation ICEpcaInterlockProcess.imp
16 subcomponents
17 UpdateSpO2Thread : thread UpdateSpO2Thread.imp;
18 DisablePumpThread : thread DisablePumpThread.imp;
19 connections
20 incoming_spo2 : port SpO2 -> UpdateSpO2Thread.SpO2;
21 outgoing_disable_pump : port DisablePumpThread.DisablePump -> DisablePump;
22 end ICEpcaInterlockProcess.imp;
23 end PCA_Interlock_Logic;

Fig. 5. An AADL process specification used in the app excerpt

1 package SpO2Req_Interface
2 public
3 with PCA_Interlock_Types;
4 device SpO2Interface
5 features
6 SpO2 : out event data port PCA_Interlock_Types::SpO2;
7 flows
8 spo2_flow : flow source SpO2;
9 end SpO2Interface;

10

11 device implementation SpO2Interface.imp
12 end SpO2Interface.imp;
13 end SpO2Req_Interface;

Fig. 6. An AADL device used in the app excerpt

process’s ports. Both logic and display components are modeled as AADL pro-
cesses, and they are distinguished from one another via the MAP Properties::
Component Type property (line 12).

AADL Devices: Apps describe the devices they need to connect to using the
AADL device construct (see Figure 6). Device components are placeholders for
actual devices that will be connected to the app when it is launched. These actual
devices will have capabilities (like ports, line 6) that match the declared AADL
device component specification. Note that the device implementation is
left empty, since the app’s device needs can be met by any device that realizes
the interface requirements.

4.4 The AADL Thread

AADL threads, marked by a (4) in Figure 2, represent semi-independent units of
functionality, and are realized in the MDCF as MIDAS tasks. They can be either:
(a) sporadic, which signifies that they are executed when a port that they are
“attached” to receives a message, or (b) periodic, where they are executed



Towards an AADL-Based Definition of App Architecture for MAPs 13

1 thread UpdateSpO2Thread
2 features
3 SpO2 : in event data port PCA_Interlock_Types::SpO2;
4 end UpdateSpO2Thread;
5

6 thread implementation UpdateSpO2Thread.imp
7 end UpdateSpO2Thread.imp;
8

9 thread DisablePumpThread
10 features
11 DisablePump : out event data port PCA_Interlock_Types::Notification;
12 properties
13 Thread_Properties::Dispatch_Protocol => Periodic;
14 Timing_Properties::Period => 50 ms;
15 Timing_Properties::Deadline => 10 ms;
16 Timing_Properties::Compute_Execution_Time => 5 ms;
17 end DisablePumpThread;
18

19 thread implementation DisablePumpThread.imp
20 end DisablePumpThread.imp;

Fig. 7. Two AADL thread interfaces used in the app excerpt

after some period of time. Typically, threads which consume information operate
sporadically (so they can act as soon as updated data arrive), and threads which
produce information operate periodically. Alternatively, ports which are marked
as data instead of event data will not trigger any thread execution, but
rather will silently update a predictably-named field. This is useful in apps where
there are a large number of physiological parameters — rather than specify
behavior to be executed each time a message arrives, the most recent data can
simply be used when needed.

Thread implementations are empty because this is the lowest level of ab-
straction supported; all work below this is considered “behavioral,” and thus
not implemented in AADL but is instead implemented within code templates
auto generated by our translator. Figure 7 shows excerpts of two thread in-
terfaces: the first consumes SpO2 information as it arrives (lines 1-4), and the
second disables the PCA pump as necessary (lines 9-17).

4.5 Concluding tasks: Code generation and Instantiation

At this point, the app’s architecture description is complete. The next step is
to generate the MAP-compatible, executable code (part B of Figure 2). Our
translator will interpret the AADL to create a model of the app, and then
render it to a target MAP implementation; currently the only implementation
supported is the MDCF. In the MDCF, Java is the language used for execution
(see Figure 8) and XML for configuration (see Figure 9).

Execution and Configuration Code: Our app contains several components
that acquire current physiological readings, others compute the conditions for
shutting off the PCA pump, while others execute the interlock protocol. Figure
8 shows a very simple example of how one acquires the current SpO2value and
stores it for other components to utilize. Note that there is a great deal of auto-
generated code (not shown here due to space constraints) that is hidden from
the user in the development process (for e.g., marshalling and un-marshalling
messages, task instantiation, and error handling).
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1 @Override
2 protected void initComponent() {
3 // TODO Fill in custom

initialization code here
4 }
5

6 @Override
7 protected void

SpO2ListenerOnMessage(
MdcfMessage msg, Integer
SpO2Data) {

8 // TODO Fill in custom listener
code here

9 }

(a) Executable “skeletons” produced by
the translator

1 @Override
2 protected void initComponent() {
3 LatestSpO2 = -1;
4 PreviousSpO2 = -1;
5 }
6

7 @Override
8 protected void

SpO2ListenerOnMessage(
MdcfMessage msg, Integer
SpO2Data) {

9 PreviousSpO2 = LatestSpO2;
10 LatestSpO2 = SpO2Data;
11 }

(b) The same “skeletons” complete with
business logic

Fig. 8. Executable code, before and after business logic implementation

Figure 9a shows an excerpt of an app configuration XML file; at app launch
the runtime system interprets this file and instantiates the software components.
An excerpt of a software component’s description is shown in Figure 9b.

When the app is launched, the executable artifacts will combine to define
the behavior of the app, and the configuration schematics will describe how
the various components communicate. Part (C) of Figure 2 shows how primary
elements of the app excerpt would look on an ICE implementation at runtime.

5 Conclusion

As outlined in Section 1, our goal for this effort was to identify “a subset of
AADL that is relevant to describing the architecture of MAP applications” and
to evaluate our proposal by attempting to construct a MAP app with our toolset
and language. We found that while AADL was originally conceived for the aero-
nautics domain, it is well-suited to the description of MAP app architectures.
That said, it is not a perfect fit — not only were there components whose seman-
tics did not line up perfectly with the target domain (e.g., processes, see Section
4.3) but there are also predeclared properties that were defined differently than
we needed. Since these properties cannot be redefined, we had to create our own
(e.g., Channel Delay). Additionally, there were port communication patterns
that were only approximable with a publish-subscribe middleware (i.e., there is
no shared memory access).

5.1 Future Work

As with any new proposal, we anticipate considerable iteration of our language
and tooling as they mature.

Language Extensions: We are interested in considering extensions to the
language to support the numerous features discussed in Section 2, as well as
those that would enhance the rigor of the architectural descriptions consumed
by our translator, such as a mechanism to specify intraprocess communication
(i.e., communication between tasks in the same Java class).
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1 <appName>PCA_Interlock_System</appName>
2 <components>
3 <VirtualComponent>
4 <name>appDisplay</name>
5 <type>ICEpcaDisplayProcess</type>
6 <role>AppPanel</role>
7 </VirtualComponent>
8 ...
9 </components>

10 <channels>
11 <Channel>
12 <chanName>$PH$</chanName>
13 <pubName>$PH$</pubName>
14 <subName>SpO2</subName>
15 <pubComp>
16 <name>$PH$</name>
17 <type>$PH$</type>
18 <role>Device</role>
19 </pubComp>
20 <subComp>
21 <name>appLogic</name>
22 <type>ICEpcaInterlockProcess</type>
23 <role>Logic</role>
24 </subComp>
25 <channelDelay>100</channelDelay>
26 </Channel>
27 ...
28 </channels>

(a) An excerpt of the app’s overall layout
configuration

1 <AppModuleSignature>
2 <type>ICEpcaProcess</type>
3 <moduleTasks>
4 <TaskSignature>
5 <type>PORT_SPORADIC</type>
6 <trigPort>SpO2In</trigPort>
7 <period>-1</period>
8 <name>UpdateSpO2Thread</name>
9 <deadline>50</deadline>

10 <wcetMs>5</wcetMs>
11 </TaskSignature>
12 ...
13 </moduleTasks>
14 <portSignatures>
15 <entry>
16 <string>SpO2In</string>
17 <PortSignature>
18 <name>SpO2In</name>
19 <direction>SUB</direction>
20 <minPeriod>100</minPeriod>
21 <maxPeriod>300</maxPeriod>
22 <type>Integer</type>
23 </PortSignature>
24 </entry>
25 ...
26 </portSignatures>
27 </AppModuleSignature>

(b) An excerpt of the logic module’s
configuration

Fig. 9. Configuration schemata for the app and its logic component

Work with Collaborators: We also continue to interact with our research
partners at the Center for Integration of Medicine and Innovative Technology,
Underwriter’s Laboratory (including on the proposed UL 2800 standard for
safety in medical device interoperability), and the US Food and Drug adminis-
tration to validate our approach and develop guidelines for safety and regulatory
reviews.
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