
Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

Language Paradigms

Different ways of expressing computation;
I imperative (How you program)
I functional (How you “think” about problems*)

Others:
object-oriented, logical, dataflow,
coordination, algebraic, graph-based, etc.

Note: distinction is sometimes fuzzy!

* – Mostly! Certain problems more naturally lend
themselves to certain paradigms

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

Imperative Paradigm

Example: compute mn (n ≥ 0)

r e s u l t = 1 ;
while (n > 0){

r e s u l t = r e s u l t ∗ m;
n = n − 1 ;

}

Assessment:
I computation is expressed by repeated modification of

an implicit store (i.e., components command a store
modification),

I intermediate results are held in store
I iteration (loop)-based control

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

Functional Paradigm

Example: compute mn (n ≥ 0)

fun power (m, n) =
i f (n = 0)

then 1
e l s e m ∗ power (m, n − 1) ;

Assessment:
I computation is expressed by function application and

composition
I no implicit store
I intermediate results (function outputs) are passed

directly into other functions
I recursion-based control

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

A Guide Rope

“When people talk about functional programming, they
mention a dizzying number of ’functional’ characteristics.
They mention immutable data, first class functions and tail
call optimisation. These are language features that aid
functional programming. They mention mapping, reducing,
pipelining, recursing, currying and the use of higher order
functions. These are programming techniques used to write
functional code. They mention parallelization, lazy evaluation
and determinism. These are advantageous properties of
functional programs.

Ignore all that. Functional code is characterised by one thing:
the absence of side effects. It doesn’t rely on data outside the
current function, and it doesn’t change data that exists
outside the current function. Every other ’functional’ thing
can be derived from this property. Use it as a guide rope as
you learn.”

– Mary Rose Cook, A Practical Introduction to Functional
Programming

http://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
http://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

Why Functional Programming?

I Advanced features: Many of the features of
functional languages, such as parametric
polymorphism, pattern matching, and advanced
modules are very elegant and either do not appear in
other languages like Java, C++, etc., or are much
less elegant (Java’s Generics, C++ Templates).

I Very high-level: Using SML lets us describe
language processors very succinctly (much more
concisely than any imperative language).

I Clean: Functional languages is useful for various
critical applications where programs need to be
proven correct.

I It’s not Java: At some point in your career, you will
have to learn a new language. This course prepares
you for that by asking you to learn a new, radically
different language quickly. This forces you to think
more deeply (mental pushups!).

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

Why SML?

I Well-understood foundations: This is a course
about the foundations of programming languages,
and the theory/foundations of SML have been
studied more in recent years than almost any other
language.

I Well-designed: Robin Milner, the principal designer
of SML received the Turing Award, in part, because
of his work on SML.

I There’s more! There are also several different
concurrent versions of SML, object-oriented
extensions, libraries for various applications,

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

Statements vs. Expressions

I Statement: What code does
I Expression: What code is

This closely mirrors the difference between imperative and
functional languages!

I Imperative: A language that emphasizes statements
I Functional: A language that emphasizes expressions

– Gabriel Gonzalez, Haskell For All

http://www.haskellforall.com/2013/07/statements-vs-expressions.html

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

Statements

I What code does, or
I Construct evaluated only for its effect

Examples:

i n t e l ement s [5] = {1 , 2 , 3 , 4 , 5} ;
i n t t o t a l = 5 − 5 ;

fo r (i n t i =3∗0; i < 5 ; i+=getOne ()) {
t o t a l = t o t a l + i ;

}

System . out . p r i n t l n (t o t a l) ;

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

Statements

I What code does, or
I Construct evaluated only for its effect

Examples:

i n t e l ement s [5] = {1 , 2 , 3 , 4 , 5} ;
i n t t o t a l = 5 − 5 ;

fo r (i n t i =3∗0 ; i < 5 ; i+=getOne ()){
t o t a l = t o t a l + i ;

}

System . out . p r i n t l n (t o t a l) ;

Statement-oriented/imperative languages:
I Pascal, C, C++, Ada, FORTRAN, COBOL, etc.

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

Expressions

I What code is, or
I construct evaluated to yield value

Examples:

i n t e l ement s [5] = {1 , 2 , 3 , 4 , 5} ;
i n t t o t a l = 5 − 5 ;

fo r (i n t i =3∗0; i < 5 ; i+=getOne ()) {
t o t a l = t o t a l + i ;

}

System . out . p r i n t l n (t o t a l) ;

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

Expressions

I What code is, or
I construct evaluated to yield value

Examples:

i n t e l ement s [5] = {1 , 2 , 3 , 4 , 5} ;
i n t t o t a l = 5 − 5 ;

fo r (i n t i=3∗0 ; i < 5 ; i+=getOne ()){
t o t a l = t o t a l + i ;

}

System . out . p r i n t l n (t o t a l) ;

Pure expressions: no side-effects
Expression-oriented/functional languages:

I Scheme, ML, Lisp, Haskell, Miranda, FP, etc

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Introduction

A Guide Rope

Motivation

Statements vs.
Expressions

Statements vs. Expressions

If it’s unclear. . .
I Remember the guide rope! Ask yourself, “is this

construct evaluated for its value, or its side-effect?”

As always, MSDN documentation is stellar
I Statements (C# Programming Guide)
I Expressions (C# Programming Guide)

https://msdn.microsoft.com/en-us/library/ms173143.aspx
https://msdn.microsoft.com/en-us/library/ms173144.aspx

	Introduction
	A Guide Rope
	Motivation
	Statements vs. Expressions

