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Getting SML Diving into SML
» Head over to smlinj.org
» Click on Downloads

» Or use your favorite package manger (Homebrew,
yum, etc.)

Using SML Interactively
» sml at the command prompt

...we'll talk later about non-interactive usage.


http://www.smlnj.org/
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Diving into SML

On the web

» Head over to smlnj.org
» Check out the “Documentation and Literature”

» Google / StackOverflow

Offline
» “Elements of ML Programming” by Jeffrey D. Ullman

» Numerous used copies online for less than $5


http://www.smlnj.org/

Basic SML Expressions

v

v

v
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constants (i.e., literals)
variable references
function application

conditional expressions
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Integers: 0, 22, 353, ...

Reals: 12.0, 3E-2, 3.14el2
Booleans: true, false

Strings: "KSU", "foo\n"
Characters: #"x", #"A", #"\n"

v

v

v

v



Exa m ple SeSSIOn Introduction to SML

Procter
from Amtoft
_ 9. from Hatcliff
o from Leavens
val it =2 int
— it + 1;
val it =3 : int Basics
— it
val it =3 : int
— 7234 4+ 2;
val it = 7232 : int
— 12.0;
val it = 12.0 : real
- 12. + 3.1
stdln:16.1 Error: syntax error found at DOT
_ "KSU":
val it = "KSU" : string
— "foo \ n'":
val it = "foo\n" : string
| #II X n.
val it = #"x" : char
— #"gh";

Error: character constant not length 1



Arithmetic Operators

Precedence: lowest to highest
> +r -
» %, /, div, mod

>
Also:
» ML is case sensitive (cf. mod)
» associativity and precedence as in other languages
> operators associate to the left

» parentheses are
» needed only to enforce evaluation order,
asinx x (y + z)
» but may be freely added to improve clarity,
asin X + (y *x z)
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String Operators

Concatenation:

— "abra" * "cadabra";

val it = "abracadabra" : string
Ilabrall A L A "Cadabra" ~ ||||;
val it = "abracadabra" : string

_ llabrall ~ (IIII ~ Ilcadabrall) Ao,

val it = "abracadabra" : string

» """ (empty string) is identity element
» ~ is associative
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Introduction to SML

Comparison Operators
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= <, > <= >= <>

Note:
> cannot use = or <> on reals

» to avoid problems with rounding
» use e.g., <= and >= for =

Basics

» < means "lexicographically precedes” for characters

and strings
IIaII < llbll.
val it = true : bool
||C|| < Ilbll.
val it = false : bool
| IIabCII < llacbll.
val it = true : bool

- "StUV" < llstull.
val it = false : bool



“Problems with Rounding”

Example
> 1.1+ 2.2 = 3.3 right?

Nope!

2476979795053773 + 2476979795053773 7& 3715469692580659
2251799813685248 1125899906842624 1125899906842624

— Possibly Wrong Blog
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https://possiblywrong.wordpress.com/2013/11/15/floating-point-equality-its-worse-than-you-think/
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not, andalso, orelse

» behave like C's !, &&, | | — not like Pascal

» not commutative, as “short-circuit” operation

— (1 < 4) orelse ((5 div 0) < 2);
val it = true : bool

— ((5 div 0) < 2) orelse (1 < 4);
**x €rror ckx



If-then-else Expressions

1

“‘bed ' '

Examples:

— if 4 < 3 then "'a’'’ else

val it = "‘bed’’ : string

— val t = true;

val t = true : bool

— val f = false;

val f = false : bool

— if t = f then (5 div 0) else 6;
val it =6 : int

— if t = true then 7 else ‘‘foo

Error: types of rules don't agree...

earlier rule(s): bool —>

this rule: bool —> string

in rule:
false =

I 1

foo
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ML has strong typing:
(strong/weak = how much)

» each value has exactly one type
» for example, 12 is int but not real

Typing

» explicit coercions therefore necessary

ML has static typing:
(static/dynamic = when)
» type-checking occurs before programs are run

» thus if x = y then 7 else "fo00" isan
error
» but it wouldn’t be in a dynamically typed language

These concepts are too often mixed up, even in the
Ullman textbook (pages 3 and 143)



Numeric Coercions

From integers to reals:

operator and operand
real

— real(11);
val it = 11.0 : real
— 50 + 11;
Error:
operator domain:
operand:

real

in expression:

5.0 + 11

— 5.0 + real (11);
= 16.0 : real

From reals to integers:

val

val

— ceil (5.4);

val

it

it

it

— floor (5.4);

=5

=6

int

int

— round (5.5);

val

— trunc(75.4

val

it

it

=6

=75

int
3

Int
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from Hatcliff
from Leavens

Between characters and integers: i e Sl

Basics
Typing
Environment

Tuples and Lists

Between strings and characters:

What about from int to string?
What about from string to character?

«Or «F»r «

it
v
it
v
it

DA



Identlfler QL“Z Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Which of the following do you think are valid SML
identifiers?:

» myVar (Yes)

» myVar_ 42 (Yes)
» myVar' (Yes)

> ++ (Yes)

» t@coc@t (No)

> %-/-< (Definitely)

Environment



|dentlfler RU |eS Introduction to SML
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SML has two classes of identifiers:
» alphanumeric (e.g., abc, abc’, A_1)
» symbolic (e.g., +, $$$, %-%)
Alphanumeric Identifiers: strings formed by

Environment

» An upper or lower case letter or the character ’
(called apostrophe or “prime”), followed by

» Zero or more additional characters from the set given
in (1) plus the digits and the character _
(underscore).

Symbolic Identifiers: strings composed of

+ -/ x<>=1@#%$%5"&"~\ | ?



Varla bles |n Pascal Introduction to SML

Procter
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Consider from Pascal: A := B + 2; from Hatcliff
) ) ) from Leavens
» B is a variable reference (contrast with A)
» a memory location is associated with A
> a stored value (e.g., 5) is associated
Wlth B Environment

Pascal, C, Java, Fortran, etc:

memory cell <loc>

1
T
Il
T

<var> — <value>

|
e

]

I

» variables bind to locations
> there is a level of indirection

> two mappings

» environment: maps variables to locations
» store: maps locations to values



Va I’ia b|eS in SM I_ Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

SML: variables bound to values

<var> =— <value>

Environment

v

variables bind directly to values

there is no indirection

v

v

a binding cannot be modified

v

there is no assignment

v

one mapping
» environment: maps variables to values
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var value

— val a = 2; f I {
val a =2 : int | a | 2 | Environment
— val b = 3; + + +
val b =3 : int | b | 3 ‘
— val ¢ = a + b; L e
val ¢ =5 : int | ¢ | 5 ‘
— val a=c¢c+ 2; i ’ {
val a =7 : int | a | 7 ‘
—val ¢ =¢c + 2; + + +
val ¢ =7 : int | ¢ | 7 ‘

+ o+ o+



Tuples

’ Tuple: fixed-size ordered collection of two or more values.

— val t = (1, "a", true);

val t = (1,"a",true) : int % string * bool
- #3(t);
val it = true : bool

— val s = (4, t);
val s = (4,(1,"a",true))

int * (int % string % bool)
— #2(#2(s));
val it = "a"
- (4);
val it
- ()
val it = () : unit
— #2 t;
val it = "a
— #4(t);
stdln:16.1—-16.6 Error:

string

4 : int

! string

Introduction to SML
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0 Introduction to SML
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’ ML lists are lists of values of the same type.

Example session:

- [1.,2,3]; :
val it = [1,2,3] : int list Ve el s
- [(1.2).(2.3).(3.4)];
val it = [(1,2),(2,3).(3,4)]
(int % int) list
_ [Ilall];
val it = ["a"] : string list
_ ["a",2];
... Error: operator and operand don't agree...
- [[1].12] . [3]];
val it = [[1].[2].[3]] : int list list
- [I:

val it = [] : 'a list



Tuples vs. Lists: What's the difference?

» Lists: (Always) same types
» Tuples: (Possibly) different types

But ok, can't tuples do it all then?

» Tuples (generally) are sequences of different kinds of
stuff, and you deal with the tuple as a coherent unit.

» A location type might be (latitude, longitude,
altitude). We don't really ever do something to each
element (like double it) because the tuple only
makes sense as a whole unit.

» Lists (generally) are sequences of the same kind of
stuff, and you deal with the items individually.

» A shopping list might be like ["Funfetti Cake Mix",
"Eggs", "Oil", "Funfetti frosting"]. When we shop,
we want to iterate over the list, and do something
with (ie, buy) each item.

— Understanding tuples vs. lists in Python, Paul Bissex
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http://news.e-scribe.com/397

Polymorphlc I_|St Operatlons Introduction to SML

Procter
H . ’ 1 from Amtoft

empty list [] : 'a 1}5’( from Ameoft
head hd : ’'a list — ’a from Leavens
tail tl : 'a list — ’a list
append @ : 'a list x 'a list — ’a list
cons :: : 'a x 'a list — 'a list
Example session:

_ val |S = [1’2’3]; Tuples and Lists

val Is = [1,2,3] : int list

— hd(Is);

val it =1 : int

_ hd([“a“,”b”,”c”]);

val it = "a" : string

— tl(tl(ls));

val it = [3] : int list

— tl(tl(ls)) @ Is;
val it = [3,1,2,3] : int list
— 30 Is;
Error: operator and operand don't agree
— 3 :: Is;
val it = [3,1,2,3] : int list



Strlngs <—> I_lst CoerC|on Introduction to SML
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Example session:

— explode("abed");

val it = [#"a" #"b" #"c" #"d"] : char list 1 andLioe
_ implode([#”f",#"o",#”o"]);

val it = "foo" : string

— implode (explode("abcd"));

val it = "abcd" : string

— explode(implode([#"f" #"o",#"0"]));

val it = [#"f" #"o",#"0"] : char list



Strlngs <—> I_lst CoerC|On Introduction to SML
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_ "abC" ~ imp'Ode([#"f",#"o",#"o"]) ~ ||bar||;
val it = "abcfoobar" : string
— ([4.5].[2] .[ord(#"c")]);
val it = ([4,5].[2].[99])
int list * int list * int list

- "abc" > ! fOO"; Tuples and Lists
val it = false : bool
— 7 :: b;
stdIn:37.1—-37.7 Error:

operator and operand don't agree [literal]
_ ["a","b",#”c","d"];
stdIn:1.1—-30.2 Error: operator and operand

don't agree [tycon mismatch]
— 20 + (if #"c" < #"C" then 5 else 10);
val it = 30 : int
- (0,0 101.01):

unit * unit * unit list * 'a list



Summary

ML is an expression-based (functional) language with
strong static typing.

Next lecture: user-defined functions
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