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Getting and Using SML

Getting SML
I Head over to smlnj.org

I Click on Downloads

I Or use your favorite package manger (Homebrew,
yum, etc.)

Using SML Interactively
I sml at the command prompt

. . . we’ll talk later about non-interactive usage.

http://www.smlnj.org/
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SML Resources

On the web
I Head over to smlnj.org

I Check out the “Documentation and Literature”

I Google / StackOverflow

Offline
I “Elements of ML Programming” by Jeffrey D. Ullman

I Numerous used copies online for less than $5

http://www.smlnj.org/
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Basic SML Expressions

I constants (i.e., literals)
I variable references
I function application
I conditional expressions
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Constants

I Integers: 0, 22, 353,...
I Reals: 12.0, 3E-2, 3.14e12
I Booleans: true, false
I Strings: "KSU", "foo\n"
I Characters: #"x", #"A", #"\n"
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Example Session

− 2 ;
v a l i t = 2 : i n t
− i t + 1 ;
v a l i t = 3 : i n t
− i t ;
v a l i t = 3 : i n t
− ~234 + 2 ;
v a l i t = ~232 : i n t
− 1 2 . 0 ;
v a l i t = 12 .0 : r e a l
− 12 . + 3 . 1 ;
s t d I n : 1 6 . 1 E r r o r : s yn tax e r r o r found at DOT
− "KSU" ;
v a l i t = "KSU" : s t r i n g
− " foo \n" ;
v a l i t = " foo \n" : s t r i n g
− #"x" ;
v a l i t = #"x" : cha r
− #"gh" ;
. . . E r r o r : c h a r a c t e r c on s t an t not l e n g t h 1
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Arithmetic Operators

Precedence: lowest to highest
I +, −
I ∗, /, div, mod
I ˜

Also:
I ML is case sensitive (cf. mod)
I associativity and precedence as in other languages
I operators associate to the left
I parentheses are

I needed only to enforce evaluation order,
as in x * (y + z)

I but may be freely added to improve clarity,
as in x + (y * z)
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String Operators

Concatenation:

− " abra " ^ " cadabra " ;
va l i t = " ab racadab ra " : s t r i n g

− " abra " ^ "" ^ " cadabra " ^ "" ;
va l i t = " ab racadab ra " : s t r i n g

− " abra " ^ ( "" ^ " cadabra " ) ^ "" ;
va l i t = " ab racadab ra " : s t r i n g

I "" (empty string) is identity element
I ˆ is associative
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Comparison Operators

=, <, >, <=, >=, <>

Note:
I cannot use = or <> on reals

I to avoid problems with rounding
I use e.g., <= and >= for =

I < means “lexicographically precedes” for characters
and strings

− "a" < "b" ;
va l i t = t r u e : boo l
− "c" < "b" ;
va l i t = f a l s e : boo l
− "abc" < "acb" ;
va l i t = t r u e : boo l
− " s tuv " < " s tu " ;
va l i t = f a l s e : boo l
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“Problems with Rounding”

Example
I 1.1+ 2.2 = 3.3 right?

Nope!
I 2476979795053773

2251799813685248 + 2476979795053773
1125899906842624 6=

3715469692580659
1125899906842624

– Possibly Wrong Blog

https://possiblywrong.wordpress.com/2013/11/15/floating-point-equality-its-worse-than-you-think/
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Boolean Operators

not , anda l so , o r e l s e

I behave like C’s !, &&, || — not like Pascal
I not commutative, as “short-circuit” operation

− (1 < 4) ore l s e ( (5 d i v 0) < 2 ) ;
va l i t = t r u e : boo l
− ( (5 d i v 0) < 2) ore l s e (1 < 4 ) ;
∗∗ e r r o r ∗∗
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If-then-else Expressions

Examples:

− i f 4 < 3 then ‘ ‘ a ’ ’ e l s e ‘ ‘ bcd ’ ’ ;
v a l i t = ‘ ‘ bcd ’ ’ : s t r i n g

− v a l t = t r u e ;
v a l t = t r u e : boo l
− v a l f = f a l s e ;
v a l f = f a l s e : boo l

− i f t = f then (5 d i v 0) e l s e 6 ;
v a l i t = 6 : i n t

− i f t = t r u e then 7 e l s e ‘ ‘ foo ’ ’ ;
. . . E r r o r : t y p e s o f r u l e s don ’ t ag r e e . . .

e a r l i e r r u l e ( s ) : boo l −> i n t
t h i s r u l e : boo l −> s t r i n g
i n r u l e :

f a l s e => ‘ ‘ foo ’ ’
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Typing Issues

ML has strong typing:
(strong/weak = how much)

I each value has exactly one type
I for example, 12 is int but not real
I explicit coercions therefore necessary

ML has static typing:
(static/dynamic = when)

I type-checking occurs before programs are run
I thus if x = y then 7 else "foo" is an

error
I but it wouldn’t be in a dynamically typed language

These concepts are too often mixed up, even in the
Ullman textbook (pages 3 and 143)
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Numeric Coercions
From integers to reals:

− r e a l ( 1 1 ) ;
v a l i t = 11 .0 : r e a l
− 5 .0 + 11 ;
. . . E r r o r : o p e r a t o r and operand mismatch

op e r a t o r domain : r e a l ∗ r e a l
operand : r e a l ∗ i n t
i n e x p r e s s i o n :

5 . 0 + 11
− 5 .0 + r e a l ( 1 1 ) ;
v a l i t = 16 .0 : r e a l

From reals to integers:
− f l o o r ( 5 . 4 ) ;
v a l i t = 5 : i n t
− c e i l ( 5 . 4 ) ;
v a l i t = 6 : i n t
− round ( 5 . 5 ) ;
v a l i t = 6 : i n t
− t r unc ( ~ 5 . 4 ) ;
v a l i t = ~5 : i n t
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Character Coercions

Between characters and integers:

− ord(#"0" ) ;
va l i t = 48 : i n t

− ch r ( 4 8 ) ;
va l i t = #"0" : cha r

Between strings and characters:

− s t r (#"a" ) ;
va l i t = "a" : s t r i n g

What about from int to string?
What about from string to character?
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Identifier Quiz

Which of the following do you think are valid SML
identifiers?:

I myVar (Yes)
I myVar_42 (Yes)
I myVar’ (Yes)
I ++ (Yes)
I t@coc@t (No)
I %-/-< (Definitely)
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Identifier Rules

SML has two classes of identifiers:
I alphanumeric (e.g., abc, abc’, A_1)
I symbolic (e.g., +, $$$, %-%)

Alphanumeric Identifiers: strings formed by
I An upper or lower case letter or the character ’

(called apostrophe or “prime”), followed by
I Zero or more additional characters from the set given

in (1) plus the digits and the character _
(underscore).

Symbolic Identifiers: strings composed of

+ - / * < > = ! @ # $ % ^ & ‘ ~ \ | ? :
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Variables in Pascal

Consider from Pascal: A := B + 2;
I B is a variable reference (contrast with A)
I a memory location is associated with A
I a stored value (e.g., 5) is associated

with B
Pascal, C, Java, Fortran, etc:

memory c e l l <loc>
+−−−−−−−−−−−−−+

<var> == | <va lue> |
+−−−−−−−−−−−−−+

I variables bind to locations

I there is a level of indirection

I two mappings
I environment: maps variables to locations
I store: maps locations to values
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Variables in SML

SML: variables bound to values

<var> == <va lue>

I variables bind directly to values
I there is no indirection
I a binding cannot be modified
I there is no assignment
I one mapping

I environment: maps variables to values
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Top-level Environment

− v a l a = 2 ;
v a l a = 2 : i n t
− v a l b = 3 ;
v a l b = 3 : i n t
− v a l c = a + b ;
v a l c = 5 : i n t
− v a l a = c + 2 ;
v a l a = 7 : i n t
− v a l c = c + 2 ;
v a l c = 7 : i n t

va r v a l u e
+−−−−−−−+−−−−−−−+
| a | 2 |
+−−−−−−−+−−−−−−−+
| b | 3 |
+−−−−−−−+−−−−−−−+
| c | 5 |
+−−−−−−−+−−−−−−−+
| a | 7 |
+−−−−−−−+−−−−−−−+
| c | 7 |
+−−−−−−−+−−−−−−−+
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Tuples

Tuple: fixed-size ordered collection of two or more values.

− v a l t = (1 , "a" , t r u e ) ;
v a l t = (1 , "a" , t r u e ) : i n t ∗ s t r i n g ∗ boo l
− #3( t ) ;
v a l i t = t r u e : boo l
− v a l s = (4 , t ) ;
v a l s = (4 , ( 1 , "a" , t r u e ) ) :

i n t ∗ ( i n t ∗ s t r i n g ∗ boo l )
− #2(#2(s ) ) ;
v a l i t = "a" : s t r i n g
− ( 4 ) ;
v a l i t = 4 : i n t
− ( ) ;
v a l i t = ( ) : u n i t
− #2 t ;
v a l i t = "a" : s t r i n g
− #4( t ) ;
s t d I n :16 .1 −16.6 E r r o r : . . .
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Lists

ML lists are lists of values of the same type.

Example session:

− [ 1 , 2 , 3 ] ;
v a l i t = [ 1 , 2 , 3 ] : i n t l i s t
− [ ( 1 , 2 ) , ( 2 , 3 ) , ( 3 , 4 ) ] ;
v a l i t = [ ( 1 , 2 ) , ( 2 , 3 ) , ( 3 , 4 ) ] :

( i n t ∗ i n t ) l i s t
− [ "a" ] ;
v a l i t = [ "a" ] : s t r i n g l i s t
− [ "a" , 2 ] ;
. . . E r r o r : o p e r a t o r and operand don ’ t ag r e e . . .
− [ [ 1 ] , [ 2 ] , [ 3 ] ] ;
v a l i t = [ [ 1 ] , [ 2 ] , [ 3 ] ] : i n t l i s t l i s t
− [ ] ;
v a l i t = [ ] : ’ a l i s t
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Tuples vs. Lists: What’s the difference?

I Lists: (Always) same types
I Tuples: (Possibly) different types

But ok, can’t tuples do it all then?

I Tuples (generally) are sequences of different kinds of
stuff, and you deal with the tuple as a coherent unit.

I A location type might be (latitude, longitude,
altitude). We don’t really ever do something to each
element (like double it) because the tuple only
makes sense as a whole unit.

I Lists (generally) are sequences of the same kind of
stuff, and you deal with the items individually.

I A shopping list might be like ["Funfetti Cake Mix",
"Eggs", "Oil", "Funfetti frosting"]. When we shop,
we want to iterate over the list, and do something
with (ie, buy) each item.

– Understanding tuples vs. lists in Python, Paul Bissex

http://news.e-scribe.com/397
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Polymorphic List Operations
empty list [] : ’a list
head hd : ’a list → ’a
tail tl : ’a list → ’a list
append @ : ’a list * ’a list → ’a list
cons :: : ’a * ’a list → ’a list

Example session:
− v a l l s = [ 1 , 2 , 3 ] ;
v a l l s = [ 1 , 2 , 3 ] : i n t l i s t
− hd ( l s ) ;
v a l i t = 1 : i n t
− hd ( [ "a" , "b" , "c" ] ) ;
v a l i t = "a" : s t r i n g
− t l ( t l ( l s ) ) ;
v a l i t = [ 3 ] : i n t l i s t
− t l ( t l ( l s ) ) @ l s ;
v a l i t = [ 3 , 1 , 2 , 3 ] : i n t l i s t
− 3 @ l s ;
. . . E r r o r : o p e r a t o r and operand don ’ t ag r e e
− 3 : : l s ;
v a l i t = [ 3 , 1 , 2 , 3 ] : i n t l i s t
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Strings ↔ List Coercion

Example session:

− exp l ode ( "abcd" ) ;
va l i t = [#"a",#"b",#"c",#"d" ] : cha r l i s t
− imp lode ([#" f ",#"o",#"o" ] ) ;
va l i t = " foo " : s t r i n g
− imp lode ( e xp l ode ( "abcd" ) ) ;
va l i t = "abcd" : s t r i n g
− exp l ode ( imp lode ([#" f ",#"o",#"o" ] ) ) ;
va l i t = [#" f ",#"o",#"o" ] : cha r l i s t
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Strings ↔ List Coercion

− "abc" ^ imp lode ([#" f ",#"o",#"o" ] ) ^ " bar " ;
v a l i t = " abc fooba r " : s t r i n g
− ( [ 4 , 5 ] , [ 2 ] , [ ord(#"c" ) ] ) ;
v a l i t = ( [ 4 , 5 ] , [ 2 ] , [ 9 9 ] ) :

i n t l i s t ∗ i n t l i s t ∗ i n t l i s t
− "abc" > " foo " ;
v a l i t = f a l s e : boo l
− 7 : : 5 ;
s t d I n :37 .1 −37.7 E r r o r :

o p e r a t o r and operand don ’ t ag r e e [ l i t e r a l ]
− [ "a" , "b",#"c" , "d" ] ;
s t d I n :1 .1 −30 .2 E r r o r : o p e r a t o r and operand

don ’ t ag r e e [ tycon mismatch ]
− 20 + ( i f #"c" < #"C" then 5 e l s e 10 ) ;
v a l i t = 30 : i n t
− ( ( ) , ( ) , [ ( ) ] , ( [ ] ) ) ;
. . . : u n i t ∗ un i t ∗ un i t l i s t ∗ ’ a l i s t
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Summary

ML is an expression-based (functional) language with
strong static typing.

Next lecture: user-defined functions


	Diving into SML
	Basics
	Typing
	Environment
	Tuples and Lists

