
Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Getting and Using SML

Getting SML
I Head over to smlnj.org

I Click on Downloads

I Or use your favorite package manger (Homebrew,
yum, etc.)

Using SML Interactively
I sml at the command prompt

. . . we’ll talk later about non-interactive usage.

http://www.smlnj.org/


Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

SML Resources

On the web
I Head over to smlnj.org

I Check out the “Documentation and Literature”

I Google / StackOverflow

Offline
I “Elements of ML Programming” by Jeffrey D. Ullman

I Numerous used copies online for less than $5

http://www.smlnj.org/


Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Basic SML Expressions

I constants (i.e., literals)
I variable references
I function application
I conditional expressions



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Constants

I Integers: 0, 22, 353,...
I Reals: 12.0, 3E-2, 3.14e12
I Booleans: true, false
I Strings: "KSU", "foo\n"
I Characters: #"x", #"A", #"\n"



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Example Session

− 2 ;
v a l i t = 2 : i n t
− i t + 1 ;
v a l i t = 3 : i n t
− i t ;
v a l i t = 3 : i n t
− ~234 + 2 ;
v a l i t = ~232 : i n t
− 1 2 . 0 ;
v a l i t = 12 .0 : r e a l
− 12 . + 3 . 1 ;
s t d I n : 1 6 . 1 E r r o r : s yn tax e r r o r found at DOT
− "KSU" ;
v a l i t = "KSU" : s t r i n g
− " foo \n" ;
v a l i t = " foo \n" : s t r i n g
− #"x" ;
v a l i t = #"x" : cha r
− #"gh" ;
. . . E r r o r : c h a r a c t e r c on s t an t not l e n g t h 1



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Arithmetic Operators

Precedence: lowest to highest
I +, −
I ∗, /, div, mod
I ˜

Also:
I ML is case sensitive (cf. mod)
I associativity and precedence as in other languages
I operators associate to the left
I parentheses are

I needed only to enforce evaluation order,
as in x * (y + z)

I but may be freely added to improve clarity,
as in x + (y * z)



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

String Operators

Concatenation:

− " abra " ^ " cadabra " ;
va l i t = " ab racadab ra " : s t r i n g

− " abra " ^ "" ^ " cadabra " ^ "" ;
va l i t = " ab racadab ra " : s t r i n g

− " abra " ^ ( "" ^ " cadabra " ) ^ "" ;
va l i t = " ab racadab ra " : s t r i n g

I "" (empty string) is identity element
I ˆ is associative



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Comparison Operators

=, <, >, <=, >=, <>

Note:
I cannot use = or <> on reals

I to avoid problems with rounding
I use e.g., <= and >= for =

I < means “lexicographically precedes” for characters
and strings

− "a" < "b" ;
va l i t = t r u e : boo l
− "c" < "b" ;
va l i t = f a l s e : boo l
− "abc" < "acb" ;
va l i t = t r u e : boo l
− " s tuv " < " s tu " ;
va l i t = f a l s e : boo l



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

“Problems with Rounding”

Example
I 1.1+ 2.2 = 3.3 right?

Nope!
I 2476979795053773

2251799813685248 + 2476979795053773
1125899906842624 6=

3715469692580659
1125899906842624

– Possibly Wrong Blog

https://possiblywrong.wordpress.com/2013/11/15/floating-point-equality-its-worse-than-you-think/


Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Boolean Operators

not , anda l so , o r e l s e

I behave like C’s !, &&, || — not like Pascal
I not commutative, as “short-circuit” operation

− (1 < 4) ore l s e ( (5 d i v 0) < 2 ) ;
va l i t = t r u e : boo l
− ( (5 d i v 0) < 2) ore l s e (1 < 4 ) ;
∗∗ e r r o r ∗∗



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

If-then-else Expressions

Examples:

− i f 4 < 3 then ‘ ‘ a ’ ’ e l s e ‘ ‘ bcd ’ ’ ;
v a l i t = ‘ ‘ bcd ’ ’ : s t r i n g

− v a l t = t r u e ;
v a l t = t r u e : boo l
− v a l f = f a l s e ;
v a l f = f a l s e : boo l

− i f t = f then (5 d i v 0) e l s e 6 ;
v a l i t = 6 : i n t

− i f t = t r u e then 7 e l s e ‘ ‘ foo ’ ’ ;
. . . E r r o r : t y p e s o f r u l e s don ’ t ag r e e . . .

e a r l i e r r u l e ( s ) : boo l −> i n t
t h i s r u l e : boo l −> s t r i n g
i n r u l e :

f a l s e => ‘ ‘ foo ’ ’



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Typing Issues

ML has strong typing:
(strong/weak = how much)

I each value has exactly one type
I for example, 12 is int but not real
I explicit coercions therefore necessary

ML has static typing:
(static/dynamic = when)

I type-checking occurs before programs are run
I thus if x = y then 7 else "foo" is an

error
I but it wouldn’t be in a dynamically typed language

These concepts are too often mixed up, even in the
Ullman textbook (pages 3 and 143)



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Numeric Coercions
From integers to reals:

− r e a l ( 1 1 ) ;
v a l i t = 11 .0 : r e a l
− 5 .0 + 11 ;
. . . E r r o r : o p e r a t o r and operand mismatch

op e r a t o r domain : r e a l ∗ r e a l
operand : r e a l ∗ i n t
i n e x p r e s s i o n :

5 . 0 + 11
− 5 .0 + r e a l ( 1 1 ) ;
v a l i t = 16 .0 : r e a l

From reals to integers:
− f l o o r ( 5 . 4 ) ;
v a l i t = 5 : i n t
− c e i l ( 5 . 4 ) ;
v a l i t = 6 : i n t
− round ( 5 . 5 ) ;
v a l i t = 6 : i n t
− t r unc ( ~ 5 . 4 ) ;
v a l i t = ~5 : i n t



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Character Coercions

Between characters and integers:

− ord(#"0" ) ;
va l i t = 48 : i n t

− ch r ( 4 8 ) ;
va l i t = #"0" : cha r

Between strings and characters:

− s t r (#"a" ) ;
va l i t = "a" : s t r i n g

What about from int to string?
What about from string to character?



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Identifier Quiz

Which of the following do you think are valid SML
identifiers?:

I myVar (Yes)
I myVar_42 (Yes)
I myVar’ (Yes)
I ++ (Yes)
I t@coc@t (No)
I %-/-< (Definitely)



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Identifier Rules

SML has two classes of identifiers:
I alphanumeric (e.g., abc, abc’, A_1)
I symbolic (e.g., +, $$$, %-%)

Alphanumeric Identifiers: strings formed by
I An upper or lower case letter or the character ’

(called apostrophe or “prime”), followed by
I Zero or more additional characters from the set given

in (1) plus the digits and the character _
(underscore).

Symbolic Identifiers: strings composed of

+ - / * < > = ! @ # $ % ^ & ‘ ~ \ | ? :



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Variables in Pascal

Consider from Pascal: A := B + 2;
I B is a variable reference (contrast with A)
I a memory location is associated with A
I a stored value (e.g., 5) is associated

with B
Pascal, C, Java, Fortran, etc:

memory c e l l <loc>
+−−−−−−−−−−−−−+

<var> == | <va lue> |
+−−−−−−−−−−−−−+

I variables bind to locations

I there is a level of indirection

I two mappings
I environment: maps variables to locations
I store: maps locations to values



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Variables in SML

SML: variables bound to values

<var> == <va lue>

I variables bind directly to values
I there is no indirection
I a binding cannot be modified
I there is no assignment
I one mapping

I environment: maps variables to values



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Top-level Environment

− v a l a = 2 ;
v a l a = 2 : i n t
− v a l b = 3 ;
v a l b = 3 : i n t
− v a l c = a + b ;
v a l c = 5 : i n t
− v a l a = c + 2 ;
v a l a = 7 : i n t
− v a l c = c + 2 ;
v a l c = 7 : i n t

va r v a l u e
+−−−−−−−+−−−−−−−+
| a | 2 |
+−−−−−−−+−−−−−−−+
| b | 3 |
+−−−−−−−+−−−−−−−+
| c | 5 |
+−−−−−−−+−−−−−−−+
| a | 7 |
+−−−−−−−+−−−−−−−+
| c | 7 |
+−−−−−−−+−−−−−−−+



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Tuples

Tuple: fixed-size ordered collection of two or more values.

− v a l t = (1 , "a" , t r u e ) ;
v a l t = (1 , "a" , t r u e ) : i n t ∗ s t r i n g ∗ boo l
− #3( t ) ;
v a l i t = t r u e : boo l
− v a l s = (4 , t ) ;
v a l s = (4 , ( 1 , "a" , t r u e ) ) :

i n t ∗ ( i n t ∗ s t r i n g ∗ boo l )
− #2(#2(s ) ) ;
v a l i t = "a" : s t r i n g
− ( 4 ) ;
v a l i t = 4 : i n t
− ( ) ;
v a l i t = ( ) : u n i t
− #2 t ;
v a l i t = "a" : s t r i n g
− #4( t ) ;
s t d I n :16 .1 −16.6 E r r o r : . . .



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Lists

ML lists are lists of values of the same type.

Example session:

− [ 1 , 2 , 3 ] ;
v a l i t = [ 1 , 2 , 3 ] : i n t l i s t
− [ ( 1 , 2 ) , ( 2 , 3 ) , ( 3 , 4 ) ] ;
v a l i t = [ ( 1 , 2 ) , ( 2 , 3 ) , ( 3 , 4 ) ] :

( i n t ∗ i n t ) l i s t
− [ "a" ] ;
v a l i t = [ "a" ] : s t r i n g l i s t
− [ "a" , 2 ] ;
. . . E r r o r : o p e r a t o r and operand don ’ t ag r e e . . .
− [ [ 1 ] , [ 2 ] , [ 3 ] ] ;
v a l i t = [ [ 1 ] , [ 2 ] , [ 3 ] ] : i n t l i s t l i s t
− [ ] ;
v a l i t = [ ] : ’ a l i s t



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Tuples vs. Lists: What’s the difference?

I Lists: (Always) same types
I Tuples: (Possibly) different types

But ok, can’t tuples do it all then?

I Tuples (generally) are sequences of different kinds of
stuff, and you deal with the tuple as a coherent unit.

I A location type might be (latitude, longitude,
altitude). We don’t really ever do something to each
element (like double it) because the tuple only
makes sense as a whole unit.

I Lists (generally) are sequences of the same kind of
stuff, and you deal with the items individually.

I A shopping list might be like ["Funfetti Cake Mix",
"Eggs", "Oil", "Funfetti frosting"]. When we shop,
we want to iterate over the list, and do something
with (ie, buy) each item.

– Understanding tuples vs. lists in Python, Paul Bissex

http://news.e-scribe.com/397


Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Polymorphic List Operations
empty list [] : ’a list
head hd : ’a list → ’a
tail tl : ’a list → ’a list
append @ : ’a list * ’a list → ’a list
cons :: : ’a * ’a list → ’a list

Example session:
− v a l l s = [ 1 , 2 , 3 ] ;
v a l l s = [ 1 , 2 , 3 ] : i n t l i s t
− hd ( l s ) ;
v a l i t = 1 : i n t
− hd ( [ "a" , "b" , "c" ] ) ;
v a l i t = "a" : s t r i n g
− t l ( t l ( l s ) ) ;
v a l i t = [ 3 ] : i n t l i s t
− t l ( t l ( l s ) ) @ l s ;
v a l i t = [ 3 , 1 , 2 , 3 ] : i n t l i s t
− 3 @ l s ;
. . . E r r o r : o p e r a t o r and operand don ’ t ag r e e
− 3 : : l s ;
v a l i t = [ 3 , 1 , 2 , 3 ] : i n t l i s t



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Strings ↔ List Coercion

Example session:

− exp l ode ( "abcd" ) ;
va l i t = [#"a",#"b",#"c",#"d" ] : cha r l i s t
− imp lode ([#" f ",#"o",#"o" ] ) ;
va l i t = " foo " : s t r i n g
− imp lode ( e xp l ode ( "abcd" ) ) ;
va l i t = "abcd" : s t r i n g
− exp l ode ( imp lode ([#" f ",#"o",#"o" ] ) ) ;
va l i t = [#" f ",#"o",#"o" ] : cha r l i s t



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Strings ↔ List Coercion

− "abc" ^ imp lode ([#" f ",#"o",#"o" ] ) ^ " bar " ;
v a l i t = " abc fooba r " : s t r i n g
− ( [ 4 , 5 ] , [ 2 ] , [ ord(#"c" ) ] ) ;
v a l i t = ( [ 4 , 5 ] , [ 2 ] , [ 9 9 ] ) :

i n t l i s t ∗ i n t l i s t ∗ i n t l i s t
− "abc" > " foo " ;
v a l i t = f a l s e : boo l
− 7 : : 5 ;
s t d I n :37 .1 −37.7 E r r o r :

o p e r a t o r and operand don ’ t ag r e e [ l i t e r a l ]
− [ "a" , "b",#"c" , "d" ] ;
s t d I n :1 .1 −30 .2 E r r o r : o p e r a t o r and operand

don ’ t ag r e e [ tycon mismatch ]
− 20 + ( i f #"c" < #"C" then 5 e l s e 10 ) ;
v a l i t = 30 : i n t
− ( ( ) , ( ) , [ ( ) ] , ( [ ] ) ) ;
. . . : u n i t ∗ un i t ∗ un i t l i s t ∗ ’ a l i s t



Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

Basics

Typing

Environment

Tuples and Lists

Summary

ML is an expression-based (functional) language with
strong static typing.

Next lecture: user-defined functions


	Diving into SML
	Basics
	Typing
	Environment
	Tuples and Lists

