Getting and Using SML Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Getting SML Diving into SML
» Head over to smlinj.org
» Click on Downloads

» Or use your favorite package manger (Homebrew,
yum, etc.)

Using SML Interactively
» sml at the command prompt

...we'll talk later about non-interactive usage.

http://www.smlnj.org/

S M I_ Resou rces Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Diving into SML

On the web

» Head over to smlnj.org
» Check out the “Documentation and Literature”

» Google / StackOverflow

Offline
» “Elements of ML Programming” by Jeffrey D. Ullman

» Numerous used copies online for less than $5

http://www.smlnj.org/

Basic SML Expressions

v

v

v

v

constants (i.e., literals)
variable references
function application

conditional expressions

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Basics

Introduction to SML
Constants
Procter
from Amtoft
from Hatcliff
from Leavens

Basics

v

Integers: 0, 22, 353, ...

Reals: 12.0, 3E-2, 3.14el2
Booleans: true, false

Strings: "KSU", "foo\n"
Characters: #"x", #"A", #"\n"

v

v

v

v

Exa m ple SeSSIOn Introduction to SML

Procter
from Amtoft
_ 9. from Hatcliff
o from Leavens
val it =2 int
— it + 1;
val it =3 : int Basics
— it
val it =3 : int
— 7234 4+ 2;
val it = 7232 : int
— 12.0;
val it = 12.0 : real
- 12. + 3.1
stdln:16.1 Error: syntax error found at DOT
_ "KSU":
val it = "KSU" : string
— "foo \ n'":
val it = "foo\n" : string
| #II X n.
val it = #"x" : char
— #"gh";

Error: character constant not length 1

Arithmetic Operators

Precedence: lowest to highest
> +r -
» %, /, div, mod

>
Also:
» ML is case sensitive (cf. mod)
» associativity and precedence as in other languages
> operators associate to the left

» parentheses are
» needed only to enforce evaluation order,
asinx x (y + z)
» but may be freely added to improve clarity,
asin X + (y *x z)

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Basics

String Operators

Concatenation:

— "abra" * "cadabra";

val it = "abracadabra" : string
Ilabrall A L A "Cadabra" ~ ||||;
val it = "abracadabra" : string

_ llabrall ~ (IIII ~ Ilcadabrall) Ao,

val it = "abracadabra" : string

» """ (empty string) is identity element
» ~ is associative

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Basics

Introduction to SML

Comparison Operators

Procter
from Amtoft
from Hatcliff
from Leavens

= <, > <= >= <>

Note:
> cannot use = or <> on reals

» to avoid problems with rounding
» use e.g., <= and >= for =

Basics

» < means "lexicographically precedes” for characters

and strings
IIaII < llbll.
val it = true : bool
||C|| < Ilbll.
val it = false : bool
| IIabCII < llacbll.
val it = true : bool

- "StUV" < llstull.
val it = false : bool

“Problems with Rounding”

Example
> 1.1+ 2.2 = 3.3 right?

Nope!

2476979795053773 + 2476979795053773 7& 3715469692580659
2251799813685248 1125899906842624 1125899906842624

— Possibly Wrong Blog

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Basics

https://possiblywrong.wordpress.com/2013/11/15/floating-point-equality-its-worse-than-you-think/

Boolea n Operators Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Basics

not, andalso, orelse

» behave like C's !, &&, | | — not like Pascal

» not commutative, as “short-circuit” operation

— (1 < 4) orelse ((5 div 0) < 2);
val it = true : bool

— ((5 div 0) < 2) orelse (1 < 4);
**x €rror ckx

If-then-else Expressions

1

“‘bed ' '

Examples:

— if 4 < 3 then "'a’'’ else

val it = "‘bed’’ : string

— val t = true;

val t = true : bool

— val f = false;

val f = false : bool

— if t = f then (5 div 0) else 6;
val it =6 : int

— if t = true then 7 else ‘‘foo

Error: types of rules don't agree...

earlier rule(s): bool —>

this rule: bool —> string

in rule:
false =

I 1

foo

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Basics

Typ| ng |Ssues Introduction to SML
Procter
from Amtoft
from Hatcliff
from Leavens

ML has strong typing:
(strong/weak = how much)

» each value has exactly one type
» for example, 12 is int but not real

Typing

» explicit coercions therefore necessary

ML has static typing:
(static/dynamic = when)
» type-checking occurs before programs are run

» thus if x = y then 7 else "fo00" isan
error
» but it wouldn’t be in a dynamically typed language

These concepts are too often mixed up, even in the
Ullman textbook (pages 3 and 143)

Numeric Coercions

From integers to reals:

operator and operand
real

— real(11);
val it = 11.0 : real
— 50 + 11;
Error:
operator domain:
operand:

real

in expression:

5.0 + 11

— 5.0 + real (11);
= 16.0 : real

From reals to integers:

val

val

— ceil (5.4);

val

it

it

it

— floor (5.4);

=5

=6

int

int

— round (5.5);

val

— trunc(75.4

val

it

it

=6

=75

int
3

Int

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Typing

from Hatcliff
from Leavens

Between characters and integers: i e Sl

Basics
Typing
Environment

Tuples and Lists

Between strings and characters:

What about from int to string?
What about from string to character?

«Or «F»r «

it
v
it
v
it

DA

Identlfler QL“Z Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Which of the following do you think are valid SML
identifiers?:

» myVar (Yes)

» myVar_ 42 (Yes)
» myVar' (Yes)

> ++ (Yes)

» t@coc@t (No)

> %-/-< (Definitely)

Environment

|dentlfler RU |eS Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

SML has two classes of identifiers:
» alphanumeric (e.g., abc, abc’, A_1)
» symbolic (e.g., +, $$$, %-%)
Alphanumeric Identifiers: strings formed by

Environment

» An upper or lower case letter or the character ’
(called apostrophe or “prime”), followed by

» Zero or more additional characters from the set given
in (1) plus the digits and the character _
(underscore).

Symbolic Identifiers: strings composed of

+ -/ x<>=1@#%$%5"&"~\ | ?

Varla bles |n Pascal Introduction to SML

Procter
from Amtoft

Consider from Pascal: A := B + 2; from Hatcliff
))) from Leavens
» B is a variable reference (contrast with A)
» a memory location is associated with A
> a stored value (e.g., 5) is associated
Wlth B Environment

Pascal, C, Java, Fortran, etc:

memory cell <loc>

1
T
Il
T

<var> — <value>

|
e

]

I

» variables bind to locations
> there is a level of indirection

> two mappings

» environment: maps variables to locations
» store: maps locations to values

Va I’ia b|eS in SM I_ Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

SML: variables bound to values

<var> =— <value>

Environment

v

variables bind directly to values

there is no indirection

v

v

a binding cannot be modified

v

there is no assignment

v

one mapping
» environment: maps variables to values

Top_level Env|ron ment Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

var value

— val a = 2; f I {
val a =2 : int | a | 2 | Environment
— val b = 3; + + +
val b =3 : int | b | 3 ‘
— val ¢ = a + b; L e
val ¢ =5 : int | ¢ | 5 ‘
— val a=c¢c+ 2; i ’ {
val a =7 : int | a | 7 ‘
—val ¢ =¢c + 2; + + +
val ¢ =7 : int | ¢ | 7 ‘

+ o+ o+

Tuples

’ Tuple: fixed-size ordered collection of two or more values.

— val t = (1, "a", true);

val t = (1,"a",true) : int % string * bool
- #3(t);
val it = true : bool

— val s = (4, t);
val s = (4,(1,"a",true))

int * (int % string % bool)
— #2(#2(s));
val it = "a"
- (4);
val it
- ()
val it = () : unit
— #2 t;
val it = "a
— #4(t);
stdln:16.1—-16.6 Error:

string

4 : int

! string

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Tuples and Lists

0 Introduction to SML
Lists

Procter
from Amtoft
from Hatcliff
from Leavens

’ ML lists are lists of values of the same type.

Example session:

- [1.,2,3]; :
val it = [1,2,3] : int list Ve el s
- [(1.2).(2.3).(3.4)];
val it = [(1,2),(2,3).(3,4)]
(int % int) list
_ [Ilall];
val it = ["a"] : string list
_ ["a",2];
... Error: operator and operand don't agree...
- [[1].12] . [3]];
val it = [[1].[2].[3]] : int list list
- [I:

val it = [] : 'a list

Tuples vs. Lists: What's the difference?

» Lists: (Always) same types
» Tuples: (Possibly) different types

But ok, can't tuples do it all then?

» Tuples (generally) are sequences of different kinds of
stuff, and you deal with the tuple as a coherent unit.

» A location type might be (latitude, longitude,
altitude). We don't really ever do something to each
element (like double it) because the tuple only
makes sense as a whole unit.

» Lists (generally) are sequences of the same kind of
stuff, and you deal with the items individually.

» A shopping list might be like ["Funfetti Cake Mix",
"Eggs", "Oil", "Funfetti frosting"]. When we shop,
we want to iterate over the list, and do something
with (ie, buy) each item.

— Understanding tuples vs. lists in Python, Paul Bissex

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Tuples and Lists

http://news.e-scribe.com/397

Polymorphlc I_|St Operatlons Introduction to SML

Procter
H . ’ 1 from Amtoft

empty list [] : 'a 1}5’(from Ameoft
head hd : ’'a list — ’a from Leavens
tail tl : 'a list — ’a list
append @ : 'a list x 'a list — ’a list
cons :: : 'a x 'a list — 'a list
Example session:

_ val |S = [1’2’3]; Tuples and Lists

val Is = [1,2,3] : int list

— hd(Is);

val it =1 : int

_ hd([“a“,”b”,”c”]);

val it = "a" : string

— tl(tl(ls));

val it = [3] : int list

— tl(tl(ls)) @ Is;
val it = [3,1,2,3] : int list
— 30 Is;
Error: operator and operand don't agree
— 3 :: Is;
val it = [3,1,2,3] : int list

Strlngs <—> I_lst CoerC|on Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Example session:

— explode("abed");

val it = [#"a" #"b" #"c" #"d"] : char list 1 andLioe
_ implode([#”f",#"o",#”o"]);

val it = "foo" : string

— implode (explode("abcd"));

val it = "abcd" : string

— explode(implode([#"f" #"o",#"0"]));

val it = [#"f" #"o",#"0"] : char list

Strlngs <—> I_lst CoerC|On Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

_ "abC" ~ imp'Ode([#"f",#"o",#"o"]) ~ ||bar||;
val it = "abcfoobar" : string
— ([4.5].[2] .[ord(#"c")]);
val it = ([4,5].[2].[99])
int list * int list * int list

- "abc" > ! fOO"; Tuples and Lists
val it = false : bool
— 7 :: b;
stdIn:37.1—-37.7 Error:

operator and operand don't agree [literal]
_ ["a","b",#”c","d"];
stdIn:1.1—-30.2 Error: operator and operand

don't agree [tycon mismatch]
— 20 + (if #"c" < #"C" then 5 else 10);
val it = 30 : int
- (0,0 101.01):

unit * unit * unit list * 'a list

Summary

ML is an expression-based (functional) language with
strong static typing.

Next lecture: user-defined functions

Introduction to SML

Procter
from Amtoft
from Hatcliff
from Leavens

Tuples and Lists

	Diving into SML
	Basics
	Typing
	Environment
	Tuples and Lists

