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Outline

A recursive function
follows the structure

of inductively-defined data.

With lists as our example, we shall study
1. inductive definitions (to specify data)
2. recursive functions (to process data)
3. frequent function templates

Inductive definition: Base element + some way of
repeatedly modifying elements to produce new ones.
Recursive function: Function that calls itself repeatedly
until it arrives at a base case.
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Specifying Types/Sets

Extensional
{n | n is a multiple of 3}

{p | p has red hair}

I defined by giving characteristics
I no info about how to generate elements

Intensional Let S be the smallest set of natural numbers
satisfying
1. 0 ∈ S ,
2. x + 3 ∈ S whenever x ∈ S .

I defined inductively
I describes how to generate elements
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Why require the smallest solution?

Let S be a set of natural numbers satisfying
1. 0 ∈ S ,
2. x + 3 ∈ S whenever x ∈ S .

Which sets satisfy this specification?
I {0,3,6,9,. . .}
I {0,1,3,4,6,7,9,10,. . .}
I . . .

By choosing the smallest solution, we
I get exactly those elements explicitly generated by the

specification
I we can give a derivation showing why each element

belongs in the set.
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Derivation of Set Elements

Let S be the smallest set of natural numbers satisfying
1. 0 ∈ S ,
2. x + 3 ∈ S whenever x ∈ S .

Example:
I 0 ∈ S (by rule 1)
I 3 ∈ S (by rule 2)
I 6 ∈ S (by rule 2)
I 9 ∈ S (by rule 2)

Non-example:
I 10

Letting set be defined as the smallest gives us
constructive information about the set.
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BNF Inductive Specifications

Integer lists:

<i n t− l i s t > : := n i l | <i n t > : : <i n t− l i s t >

Example:

1 :: 2 :: 3 :: nil ≡ [1, 2, 3]

Derivation:

nil is an <int-list> (by rule 1)
⇒ 3 :: nil is an <int-list> (by rule 2)
⇒ 2 :: 3 :: nil is an <int-list> (by rule 2)
⇒ 1 :: 2 :: 3 :: nil is an <int-list> (by rule 2)

Note:
I recursion in grammar
I each use of :: increases list length by 1
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Approximating Recursion

Grammar:

<in t− l i s t > : := n i l | <i n t > : : <i n t− l i s t >

We write a family of functions list_sum_i , with i the
length of the argument:

fun l i st_sum_0 ( l s ) = 0 ;

fun l i st_sum_1 ( l s ) =
hd ( l s ) + list_sum_0 ( t l ( l s ) ) ;

fun l i st_sum_2 ( l s ) =
hd ( l s ) + list_sum_1 ( t l ( l s ) ) ;

fun l i st_sum_3 ( l s ) =
hd ( l s ) + list_sum_2 ( t l ( l s ) ) ;

. . .
− l i st_sum_3 ( [ 1 , 2 , 3 ] ) ;
va l i t = 6 : i n t
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Putting It Together

We had

fun l i st_sum_0 ( l s ) = 0 ;

fun l i st_sum_1 ( l s ) =
hd ( l s ) + list_sum_0 ( t l ( l s ) ) ;

fun l i st_sum_2 ( l s ) =
hd ( l s ) + list_sum_1 ( t l ( l s ) ) ;

fun l i st_sum_3 ( l s ) =
hd ( l s ) + list_sum_2 ( t l ( l s ) ) ;

. . .

Recursive function:

fun l i s t_sum ( l s ) =
i f l s = n i l

then 0
e l s e hd ( l s ) + l i s t_sum ( t l ( l s ) ) ;
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Using Patterns

For the grammar

<in t− l i s t > : := n i l | <i n t > : : <i n t− l i s t >

we wrote

fun l i s t_sum ( l s ) =
i f l s = n i l

then 0
e l s e hd ( l s ) + l i s t_sum ( t l ( l s ) ) ;

but the correspondence is clearer by the ML patterns

fun l i s t_sum ( l s ) =
case l s of

n i l => 0
| ( n : : ns ) => n + l i s t_sum ( ns ) ;

or even better

fun l i s t_sum ( n i l ) = 0
| l i s t_sum (n : : ns ) = n + l i s t_sum ( ns ) ;
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Recursion Template

Data Structure directs Function Structure

Grammar:

<in t− l i s t > : := n i l | <i n t > : : <i n t− l i s t >

Template:

fun l i s t _ r e c ( n i l ) = . . . .
| l i s t _ r e c ( n : : ns ) = . . . . l i s t _ r e c ( ns ) . . . . . ;

Key points:
I for each case in BNF there is a case in function
I recursion occurs in function exactly where recursion

occurs in BNF
I we may assume function “works” for sub-structures of

the same type
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Map, Filter, and Fold

How can I. . .

Add one to each element of list?

fun l i s t _ i n c ( n i l ) = n i l
| l i s t _ i n c ( n : : ns ) = (n +1) : : l i s t _ i n c ( ns ) ;

Select those elements greater than five?

fun g t_ f i v e ( n i l ) = n i l
| g t_ f i v e ( n : : ns ) =

i f n > 5
then n : : g t_ f i v e ( ns )
e l s e g t_ f i v e ( ns ) ;

Append two lists?

fun append ( n i l , l 2 ) = l 2
| append ( n : : ns , l 2 ) = n : : append ( ns , l 2 ) ;
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Map

Adding one to each element of list:

fun l i s t _ i n c ( n i l ) = n i l
| l i s t _ i n c ( n : : ns ) = (n +1) : : l i s t _ i n c ( ns ) ;

Generalization: apply arbitrary function to each element

fun l i s t_map f n i l = n i l
| l i s t_map f ( n : : ns ) =

f ( n ) : : l i s t_map f ns ;

Type of list_map:

fn : (’a -> ’b) -> ’a list -> ’b
list

Instantiation: add one to each element

va l my_l i s t_inc = l i s t_map ( fn x => x + 1 ) ;

Instantiation: square each element

va l s q u a r e_ l i s t = l i s t_map ( fn x => x ∗ x ) ;
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Filter

Selecting only the elements greater than five:
fun g t_ f i v e ( n i l ) = n i l
| g t_ f i v e ( n : : ns ) =

i f n > 5 then n : : g t_ f i v e ( ns )
e l s e g t_ f i v e ( ns ) ;

Generalization: select using arbitrary predicate
fun l i s t _ f i l t e r p n i l = n i l
| l i s t _ f i l t e r p ( n : : ns ) =

i f p ( n ) then n : : l i s t _ f i l t e r p ns
e l s e l i s t _ f i l t e r p ns ;

Type of list_filter:
(’a -> bool) -> ’a list -> ’a list

Instantiation: select those greater than five
va l my_gt_five = l i s t _ f i l t e r ( fn n => n > 5 ) ;

Instantiation: select the even elements
va l evens = l i s t _ f i l t e r ( fn n => n mod 2 = 0 ) ;
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Foldr

“Folding” all elements up by adding them
fun l i s t_sum ( n i l ) = 0
| l i s t_sum (n : : ns ) = n + l i s t_sum ( ns ) ;

Generalization: fold in arbitrary way
fun f o l d r f e n i l = e
| f o l d r f e ( x : : x s ) = f ( x , ( f o l d r f e xs ) )

Type of foldr:

(’a * ’b -> ’b) -> ’b -> ’a list
-> ’b

Instantiation: my_minuslist
fun my_minus l i s t xs = f o l d r op− 0 xs

Instantiation: my_identity
fun my_ident i ty xs = f o l d r op : : n i l x s

Instantiation: my_append
fun my_append xs ys = f o l d r op : : y s xs
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Foldl

Recall foldr, processing input from right:

fun f o l d r f e n i l = e
| f o l d r f e ( x : : x s ) = f ( x , ( f o l d r f e xs ) )
: ( ’ a ∗ ’ b −> ’b ) −> ’b −> ’ a l i s t −> ’b

Now consider foldl, processing input from left:

fun f o l d l f e n i l = e
| f o l d l f e ( x : : x s ) = f o l d l f ( f ( x , e ) ) xs

Type of foldl:

(’a * ’b -> ’b) -> ’b -> ’a list
-> ’b

Example instantiation:

foldl op:: nil xs

which reverses a list.
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Map, Filter, and Fold Redux

In summary. . .

I Map Apply an arbitrary function to each element and
return the resulting list

I Filter Select elements from a list using an arbitrary
predicate and return the resulting list

I Fold Reduce a list to a single element using an
arbitrary function and an initial value
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List Representation of Sets

Sets may be represented as lists
+ easy to code
? with or without duplicates
- not optimal for big sets

Testing membership:

− member [ 3 , 6 , 8 ] 4 ;
va l i t = f a l s e : boo l
− member [ 3 , 6 , 8 ] 6 ;
va l i t = t r u e : boo l

Coding member:

fun member n i l x = f a l s e
| member ( y : : y s ) x =

i f x = y then t r u e
e l s e member ys x ;
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Equality Types

fun member n i l x = f a l s e
| member ( y : : y s ) x =

i f x = y then t r u e
e l s e member ys x ;

Type of member:

member = fn : ’ ’ a l i s t −> ’ ’ a −> boo l

Here double primes denotes an equality type.

− member [ fn x => x+2, fn x => x+1]
( fn x => x+1);

. . E r r o r : o p e r a t o r and operand don ’ t ag r e e
[ e q u a l i t y type r e q u i r e d ]

o p e r a t o r domain : ’ ’Z l i s t
operand : ( i n t −> i n t ) l i s t

because functions cannot be tested for equality
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Set Operations

Intersection:

fun i n t e r s e c t ( [ ] , y s ) = [ ]
| i n t e r s e c t ( x : : xs , y s ) =

i f member ys x
then x : : i n t e r s e c t ( xs , y s )
e l s e i n t e r s e c t ( xs , y s ) ;

Type of intersection:

”a list * ”a list -> ”a list

Union, with type

”a list * ”a list -> ”a list

fun un ion ( [ ] , y s ) = ys
| un ion ( x : : xs , y s ) =

i f member ys x
then un ion ( xs , y s )
e l s e x : : un ion ( xs , y s ) ;
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Removing Duplicates

fun remove_dups [ ] = [ ]
| remove_dups ( x : : x s ) =

i f member xs x
then remove_dups xs
e l s e x : : remove_dups xs ;

with type ”a list -> ”a list
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Association Lists

We often want to associate keys with values. One way to
do so is to maintain a list of pairs (key,value).

+ easy to code
- not optimal for big sets

We want to write a lookup function
Input an association list, and a key

Output the value corresponding to the key

fun l ookup ( ( y , v ) : : ds ) x =
i f x = y then v
e l s e l ookup ds x

| l ookup n i l x = ???
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Variants of Lookup

We may need to go for some rather arbitrary value that
signals unsuccessful search:

fun l ookup ( ( y , v ) : : ds ) x =
i f x = y then v
e l s e l ookup ds x

| l ookup n i l x = ~1

Type of lookup:

(”a * int) list -> ”a -> int

We thus lose some polymorphism. Instead, we may write

fun l ookup n i l x = NONE
| lookup ( ( y , v ) : : ds ) x =

i f x = y then SOME v
e l s e l ookup ds x

Type of lookup:

(”a * ’b) list -> ”a -> ’b option
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Optional Types

Optional types have. . .
I similar goals as nullable types
I but are not restricted to references.

Check out:
I This StackExchange Explanation
I Pages 111 - 113 of The Ullman textbook

http://programmers.stackexchange.com/a/271892
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