
Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Outline

A recursive function
follows the structure

of inductively-defined data.

With lists as our example, we shall study
1. inductive definitions (to specify data)
2. recursive functions (to process data)
3. frequent function templates

Inductive definition: Base element + some way of
repeatedly modifying elements to produce new ones.
Recursive function: Function that calls itself repeatedly
until it arrives at a base case.

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Specifying Types/Sets

Extensional
{n | n is a multiple of 3}

{p | p has red hair}

I defined by giving characteristics
I no info about how to generate elements

Intensional Let S be the smallest set of natural numbers
satisfying
1. 0 ∈ S ,
2. x + 3 ∈ S whenever x ∈ S .

I defined inductively
I describes how to generate elements

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Why require the smallest solution?

Let S be a set of natural numbers satisfying
1. 0 ∈ S ,
2. x + 3 ∈ S whenever x ∈ S .

Which sets satisfy this specification?
I {0,3,6,9,. . .}
I {0,1,3,4,6,7,9,10,. . .}
I . . .

By choosing the smallest solution, we
I get exactly those elements explicitly generated by the

specification
I we can give a derivation showing why each element

belongs in the set.

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Derivation of Set Elements

Let S be the smallest set of natural numbers satisfying
1. 0 ∈ S ,
2. x + 3 ∈ S whenever x ∈ S .

Example:
I 0 ∈ S (by rule 1)
I 3 ∈ S (by rule 2)
I 6 ∈ S (by rule 2)
I 9 ∈ S (by rule 2)

Non-example:
I 10

Letting set be defined as the smallest gives us
constructive information about the set.

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

BNF Inductive Specifications

Integer lists:

<i n t− l i s t > : := n i l | <i n t > : : <i n t− l i s t >

Example:

1 :: 2 :: 3 :: nil ≡ [1, 2, 3]

Derivation:

nil is an <int-list> (by rule 1)
⇒ 3 :: nil is an <int-list> (by rule 2)
⇒ 2 :: 3 :: nil is an <int-list> (by rule 2)
⇒ 1 :: 2 :: 3 :: nil is an <int-list> (by rule 2)

Note:
I recursion in grammar
I each use of :: increases list length by 1

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Approximating Recursion

Grammar:

<in t− l i s t > : := n i l | <i n t > : : <i n t− l i s t >

We write a family of functions list_sum_i , with i the
length of the argument:

fun l i st_sum_0 (l s) = 0 ;

fun l i st_sum_1 (l s) =
hd (l s) + list_sum_0 (t l (l s)) ;

fun l i st_sum_2 (l s) =
hd (l s) + list_sum_1 (t l (l s)) ;

fun l i st_sum_3 (l s) =
hd (l s) + list_sum_2 (t l (l s)) ;

. . .
− l i st_sum_3 ([1 , 2 , 3]) ;
va l i t = 6 : i n t

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Putting It Together

We had

fun l i st_sum_0 (l s) = 0 ;

fun l i st_sum_1 (l s) =
hd (l s) + list_sum_0 (t l (l s)) ;

fun l i st_sum_2 (l s) =
hd (l s) + list_sum_1 (t l (l s)) ;

fun l i st_sum_3 (l s) =
hd (l s) + list_sum_2 (t l (l s)) ;

. . .

Recursive function:

fun l i s t_sum (l s) =
i f l s = n i l

then 0
e l s e hd (l s) + l i s t_sum (t l (l s)) ;

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Using Patterns

For the grammar

<in t− l i s t > : := n i l | <i n t > : : <i n t− l i s t >

we wrote

fun l i s t_sum (l s) =
i f l s = n i l

then 0
e l s e hd (l s) + l i s t_sum (t l (l s)) ;

but the correspondence is clearer by the ML patterns

fun l i s t_sum (l s) =
case l s of

n i l => 0
| (n : : ns) => n + l i s t_sum (ns) ;

or even better

fun l i s t_sum (n i l) = 0
| l i s t_sum (n : : ns) = n + l i s t_sum (ns) ;

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Recursion Template

Data Structure directs Function Structure

Grammar:

<in t− l i s t > : := n i l | <i n t > : : <i n t− l i s t >

Template:

fun l i s t _ r e c (n i l) =
| l i s t _ r e c (n : : ns) = l i s t _ r e c (ns) ;

Key points:
I for each case in BNF there is a case in function
I recursion occurs in function exactly where recursion

occurs in BNF
I we may assume function “works” for sub-structures of

the same type

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Map, Filter, and Fold

How can I. . .

Add one to each element of list?

fun l i s t _ i n c (n i l) = n i l
| l i s t _ i n c (n : : ns) = (n +1) : : l i s t _ i n c (ns) ;

Select those elements greater than five?

fun g t_ f i v e (n i l) = n i l
| g t_ f i v e (n : : ns) =

i f n > 5
then n : : g t_ f i v e (ns)
e l s e g t_ f i v e (ns) ;

Append two lists?

fun append (n i l , l 2) = l 2
| append (n : : ns , l 2) = n : : append (ns , l 2) ;

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Map

Adding one to each element of list:

fun l i s t _ i n c (n i l) = n i l
| l i s t _ i n c (n : : ns) = (n +1) : : l i s t _ i n c (ns) ;

Generalization: apply arbitrary function to each element

fun l i s t_map f n i l = n i l
| l i s t_map f (n : : ns) =

f (n) : : l i s t_map f ns ;

Type of list_map:

fn : (’a -> ’b) -> ’a list -> ’b
list

Instantiation: add one to each element

va l my_l i s t_inc = l i s t_map (fn x => x + 1) ;

Instantiation: square each element

va l s q u a r e_ l i s t = l i s t_map (fn x => x ∗ x) ;

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Filter

Selecting only the elements greater than five:
fun g t_ f i v e (n i l) = n i l
| g t_ f i v e (n : : ns) =

i f n > 5 then n : : g t_ f i v e (ns)
e l s e g t_ f i v e (ns) ;

Generalization: select using arbitrary predicate
fun l i s t _ f i l t e r p n i l = n i l
| l i s t _ f i l t e r p (n : : ns) =

i f p (n) then n : : l i s t _ f i l t e r p ns
e l s e l i s t _ f i l t e r p ns ;

Type of list_filter:
(’a -> bool) -> ’a list -> ’a list

Instantiation: select those greater than five
va l my_gt_five = l i s t _ f i l t e r (fn n => n > 5) ;

Instantiation: select the even elements
va l evens = l i s t _ f i l t e r (fn n => n mod 2 = 0) ;

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Foldr

“Folding” all elements up by adding them
fun l i s t_sum (n i l) = 0
| l i s t_sum (n : : ns) = n + l i s t_sum (ns) ;

Generalization: fold in arbitrary way
fun f o l d r f e n i l = e
| f o l d r f e (x : : x s) = f (x , (f o l d r f e xs))

Type of foldr:

(’a * ’b -> ’b) -> ’b -> ’a list
-> ’b

Instantiation: my_minuslist
fun my_minus l i s t xs = f o l d r op− 0 xs

Instantiation: my_identity
fun my_ident i ty xs = f o l d r op : : n i l x s

Instantiation: my_append
fun my_append xs ys = f o l d r op : : y s xs

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Foldl

Recall foldr, processing input from right:

fun f o l d r f e n i l = e
| f o l d r f e (x : : x s) = f (x , (f o l d r f e xs))
: (’ a ∗ ’ b −> ’b) −> ’b −> ’ a l i s t −> ’b

Now consider foldl, processing input from left:

fun f o l d l f e n i l = e
| f o l d l f e (x : : x s) = f o l d l f (f (x , e)) xs

Type of foldl:

(’a * ’b -> ’b) -> ’b -> ’a list
-> ’b

Example instantiation:

foldl op:: nil xs

which reverses a list.

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Map, Filter, and Fold Redux

In summary. . .

I Map Apply an arbitrary function to each element and
return the resulting list

I Filter Select elements from a list using an arbitrary
predicate and return the resulting list

I Fold Reduce a list to a single element using an
arbitrary function and an initial value

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

List Representation of Sets

Sets may be represented as lists
+ easy to code
? with or without duplicates
- not optimal for big sets

Testing membership:

− member [3 , 6 , 8] 4 ;
va l i t = f a l s e : boo l
− member [3 , 6 , 8] 6 ;
va l i t = t r u e : boo l

Coding member:

fun member n i l x = f a l s e
| member (y : : y s) x =

i f x = y then t r u e
e l s e member ys x ;

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Equality Types

fun member n i l x = f a l s e
| member (y : : y s) x =

i f x = y then t r u e
e l s e member ys x ;

Type of member:

member = fn : ’ ’ a l i s t −> ’ ’ a −> boo l

Here double primes denotes an equality type.

− member [fn x => x+2, fn x => x+1]
(fn x => x+1);

. . E r r o r : o p e r a t o r and operand don ’ t ag r e e
[e q u a l i t y type r e q u i r e d]

o p e r a t o r domain : ’ ’Z l i s t
operand : (i n t −> i n t) l i s t

because functions cannot be tested for equality

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Set Operations

Intersection:

fun i n t e r s e c t ([] , y s) = []
| i n t e r s e c t (x : : xs , y s) =

i f member ys x
then x : : i n t e r s e c t (xs , y s)
e l s e i n t e r s e c t (xs , y s) ;

Type of intersection:

”a list * ”a list -> ”a list

Union, with type

”a list * ”a list -> ”a list

fun un ion ([] , y s) = ys
| un ion (x : : xs , y s) =

i f member ys x
then un ion (xs , y s)
e l s e x : : un ion (xs , y s) ;

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Removing Duplicates

fun remove_dups [] = []
| remove_dups (x : : x s) =

i f member xs x
then remove_dups xs
e l s e x : : remove_dups xs ;

with type ”a list -> ”a list

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Association Lists

We often want to associate keys with values. One way to
do so is to maintain a list of pairs (key,value).

+ easy to code
- not optimal for big sets

We want to write a lookup function
Input an association list, and a key

Output the value corresponding to the key

fun l ookup ((y , v) : : ds) x =
i f x = y then v
e l s e l ookup ds x

| l ookup n i l x = ???

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Variants of Lookup

We may need to go for some rather arbitrary value that
signals unsuccessful search:

fun l ookup ((y , v) : : ds) x =
i f x = y then v
e l s e l ookup ds x

| l ookup n i l x = ~1

Type of lookup:

(”a * int) list -> ”a -> int

We thus lose some polymorphism. Instead, we may write

fun l ookup n i l x = NONE
| lookup ((y , v) : : ds) x =

i f x = y then SOME v
e l s e l ookup ds x

Type of lookup:

(”a * ’b) list -> ”a -> ’b option

Functions on Lists

Procter
from Amtoft
from Hatcliff
from Leavens

Inductive Definitions
Specifications
Derivations

Recursive Functions
Patterns

Typical Templates
Map
Filter
Fold

Representing Sets
Equality Types
Assocation Lists

Option Types

Optional Types

Optional types have. . .
I similar goals as nullable types
I but are not restricted to references.

Check out:
I This StackExchange Explanation
I Pages 111 - 113 of The Ullman textbook

http://programmers.stackexchange.com/a/271892

	Inductive Definitions
	Specifications
	Derivations

	Recursive Functions
	Patterns

	Typical Templates
	Map
	Filter
	Fold

	Representing Sets
	Equality Types
	Assocation Lists

	Option Types

