
(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Call Trees

fun sum_l i s t n i l = 0
| sum_l i s t (x : : x s) = x + sum_l i s t xs

has a linear call-tree
sum_l i s t ([2 , 1])

|
sum_l i s t ([1])

|
sum_l i s t (n i l)

fun f i b 0 = 0
| f i b 1 = 1
| f i b n = f i b (n−1) + f i b (n−2)

has a non-linear (branching) call-tree
f i b (3)
/ \

f i b (2) f i b (1)
/ \

f i b (0) f i b (1)

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Stacking Bindings

fun r e v e r s e n i l = n i l
| r e v e r s e (x : : x s) = r e v e r s e xs @ [x]
− va l L = [1 , 2 , 3] ;
− r e v e r s e (L) ;

Environment during recursion: (see p. 67)
+−−−−−−−−−−−−−−−−−+
| | . . added i n r e v e r s e (n i l)
+−−−−−−−−−−−−−−−−−+
| xs n i l |
| x 3 | . . added i n r e v e r s e ([3])
+−−−−−−−−−−−−−−−−−+
| xs [3] |
| x 2 | . . added i n r e v e r s e ([2 , 3])
+−−−−−−−−−−−−−−−−−+
| xs [2 , 3] |
| x 1 | . . added i n r e v e r s e ([1 , 2 , 3])
+−−−−−−−−−−−−−−−−−+
| L [1 , 2 , 3] |
| . . . | . . top l e v e l env i ronment
+−−−−−−−−−−−−−−−−−+

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Running Time

fun r e v e r s e n i l = n i l
| r e v e r s e (x : : x s) = (r e v e r s e xs) @ [x]

I Consider calling reverse on a list of length n
I it makes n calls to append
I which takes time 1, 2, . . . n − 2, n − 1, n

the running time is thus quadratic.

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Performance Test

We need generator of large data:

fun from i j =
i f i > j then n i l
e l s e i : : from (i +1) j

Execute reverse L where L is the value of (from 1
n)

n running time
10,000 2 seconds
20,000 7 seconds
40,000 34 seconds
100,000 very slow

When testing sum_list, we rather want

fun ones 0 = n i l
| ones n = 1 : : ones (n−1)

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Assessment

fun r e v e r s e n i l = n i l
| r e v e r s e (x : : x s) = (r e v e r s e xs) @ [x]

Why must we call append?
I :: only allows us to add items in front of list
I reverse does non-trivial computation only when

going up the tree
We might consider doing computation when going down
the tree

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Passing Results Down In Call Tree

Recall that list reversal is special case of foldl

fun f o l d l f e n i l = e
| f o l d l f e (x : : x s) = f o l d l f (f (x , e)) xs

fun my_reverse xs = f o l d l op : : n i l x s ;

Specializing foldl wrt op:: yields

fun rev_acc e n i l = e
| rev_acc e (x : : x s) = rev_acc (x : : e) xs

fun r e v e r s e_acc xs = rev_acc n i l x s

I e holds “the results so far”
I e is flowing down the tree, informing the recursion at

the next level of something that we have
accumulated at the current level

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Performance Comparison

I Recall that reverse had quadratic running time.
I Since reverse_acc uses no append, we expect

linear running time.

When called on the value of from 1 n

n reverse reverse_acc
10,000 2 seconds instantaneous
20,000 7 seconds instantaneous

100,000 very slow instantaneous
1,000,000 infeasible 3 seconds

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Tail Recursion

fun rev_acc e n i l = e
| rev_acc e (x : : x s) = rev_acc (x : : e) xs

This function is tail recursive:
I no computation happens after the recursive call
I value of recursive call is the return value
I thus, no variables are referenced after recursive call

This kind of recursion is actually iteration in disguise!

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Iterative Reverse

fun rev_acc e n i l = e
| rev_acc e (x : : x s) = rev_acc (x : : e) xs

can be converted to “pseudo-C (renaming e to acc):

l i s t r e v e r s e (xs : l i s t) {
l i s t acc ;
acc = [] ;
whi le (xs != n i l) do {

acc = hd (xs) : : acc ;
xs = t l (xs) ;

}
return acc ;

}

I acc holds result
I xs and acc are updated each time through the loop

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Tail Recursion versus Non-Tail Recursion

(∗ v e r s i o n 1 : w i thout accumu la to r ∗)
fun r e v e r s e n i l = n i l
| r e v e r s e (x : : x s) = r e v e r s e xs @ [x]

(∗ v e r s i o n 2 : w i th accumu la to r ∗)
fun rev_acc e n i l = e
| rev_acc e (x : : x s) = rev_acc (x : : e) xs

x is used after recursion in v.1, but not in v.2
I for tail-recursive functions, we do thus not need to

stack variable bindings for the recursive calls
I parameter passing can be implemented in the

compiler by destructive updates (that is, assignment)!
Computation occurs after recursion in v.1, but not in v.2

I for tail-recursive functions, we do thus not need to
stack return addresses; a call can be implemented in
the compiler as a goto!

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Parameter “Assignment”

The tail-recursive function

fun f (y_1 , . . . , y_n) =

. . .
f (<exp−1>, . . . , <exp−n>)

...is roughly equivalent to...

. . . f (y_1 , . . . , y_n) {

whi le . . . {
. . .
. . .
y_1 = <exp−1>;
. . .
y_n = <exp−n>;
}

}

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Converting SumList to Tail Recursion

fun sum_l i s t n i l = 0
| sum_l i s t (x : : x s) = x + sum_l i s t xs

I The recursive calls are unfolded until we reach the
end of the list, from where we then move to the left
while summing the results.

fun sum_list_acc acc n i l = acc
| sum_list_acc acc (x : : x s) =

sum_list_acc (x+acc) xs

I Summation proceeds while moving left to right.
I Top-level call: sum_list_acc 0 xs

Performance comparison on the value of ones n

n sum_list sum_list_acc
4,000,000 5 seconds instantaneous
5,000,000 21 seconds instantaneous

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Tail-Recursive MultList

fun mul t_l i s t_acc acc n i l = acc
| mu l t_ l i s t_acc acc (x : : x s) =

mul t_ l i s t_acc (x∗ acc) xs

Question: what happens if we hit a 0?

fun mul t_ l i s t_acc_ex i t acc n i l = acc
| mu l t_ l i s t_acc_ex i t acc (x : : x s) =

i f x = 0 then 0 e l s e
mul t_ l i s t_acc_ex i t (x∗ acc) xs

In C, we might have
i n t mu l t_ l i s t (xs : l i s t) {

i n t acc ;
acc = 1 ;
wh i l e (xs != n i l) do {

i f (hd (xs) = 0) then
r e t u r n 0 ; /∗ e scape ∗/

e l s e
acc = hd (xs) ∗ acc ;
xs = t l (x s) ;

}
r e t u r n acc ;

}

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Making Fibonacci Tail-Recursive

fun f i b 0 = 0
| f i b 1 = 1
| f i b n = f i b (n−2) + f i b (n−1)

has a branching call-tree, and can be made tail-recursive
by using two accumulating parameters:

fun f i b_acc p rev c u r r n =
i f n = 1 then c u r r
e l s e f i b_acc c u r r (p r ev+cu r r) (n−1)

fun f i b ona c c i_ac c n =
i f n = 0 then 0 e l s e f i b_acc 0 1 n

Performance comparison

n fib fibonacci_acc
42 7 seconds instantaneous
43 11 seconds instantaneous
44 17 seconds instantaneous

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Correctness of Tail-Recursive Fibonacci

With F the fibonacci function we have

F (0) = 0; F (1) = 1; F (n) = F (n − 2) + F (n − 1)

which can be tail-recursively implemented by

fun g (n , prev , c u r r) =
i f n = 1 then c u r r
e l s e g (n−1, cu r r , p r ev+cu r r)

Correctness Lemma: for all n ≥ 1, k ≥ 0:

g(n,F (k),F (k + 1)) = F (n + k)

This can be proved by induction in n.
I the base case is n = 1 which is obvious.
I for the inductive case, n > 1,

g(n,F (k),F (k+1)) = g(n−1,F (k+1),F (k)+F (k+1)) =
g(n−1,F (k+1),F (k+2)) = F ((n−1)+(k+1)) = F (n+k)

Thus F (n) = g(n,F (0),F (1)) = g(n, 0, 1).

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Accumulators

Tail Recursion

Further Examples

Summary

Summary

I a tail-recursive function is one where the function
performs no computation after the recursive call

I a good SML compiler will detect tail-recursive
functions and implement them iteratively

I as loops
I there is no need to stack bindings or return addresses
I recursive calls become gotos
I we can think of arguments as being “assigned to”

(destructively update) formal parameters.

I this substantially reduces execution time and space
(for stack) overhead

	Run-Time Structures
	Accumulators
	Tail Recursion
	Further Examples
	Summary

