Ca || Trees (Tail) Recursion

Procter
from Amtoft
fun sum _list nil from Hatcliff

=0
| sum _list (x::xs) = x + sum_list xs

Run-Time Structures

has a linear call-tree
sum _list([2,1])

|
sum _list ([1])

sum_list(nil)

fun fib 0 =0
| fib1=1
| fib n = fib(n—-1) + fib(n-2)
has a non-linear (branching) call-tree
fib (3)
/ N\
fib (2) fib (1)

/\
fib (0) fib (1)



Stacking Bindings

fun reverse nil =

| reverse (x::xs) = reverse xs @ [x]

— val L = [1,2,3];
— reverse(L);

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

Environment during recursion: (see p. 67)

\ |
| xs nil |
| ox 3 |
—
| xs  [3] |
| x 2 |
—

XS [2,3] |
| x 1 |
—
| L (1,2,3] |
| o |
—

.added in reverse(nil)

.added in reverse ([3])

.added in reverse([2,3])

.added in reverse([1,2,3])

.top level environment



Runnlng Tlme (Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures

fun reverse

nil = nil
reverse (x::xs) = (reverse xs) @ [x]
» Consider calling reverse on a list of length n

» it makes n calls to append
» which takes time 1,2, ...n—2,n—1, n

the running time is thus quadratic.



Performance Test

We need generator of large data:

fun from i j =
if i > j then nil
else i :: from (i+1) j

Execute reverse L where L is the value of (from 1

n)

n ‘ running time
10,000 | 2 seconds
20,000 | 7 seconds
40,000 | 34 seconds

100,000 | very slow

When testing sum_11ist, we rather want

fun ones 0 = nil
| ones n =1 :: ones (n-1)

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Run-Time Structures



Assessment
fun reverse nil = nil
| reverse (x::xs) = (reverse xs) @ [x]

Why must we call append?
» :: only allows us to add items in front of list
» reverse does non-trivial computation only when
going up the tree
We might consider doing computation when going down
the tree

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Accumulators



Passing Results Down In Call Tree (L) Rzt

Procter
from Amtoft
. . . from Hatcliff
Recall that list reversal is special case of foldl

fun foldl f e nil = e
| foldl f e (x::xs) = foldl f (f(x,e)) xs

Accumulators

fun my reverse xs = foldl op:: nil xs;

Specializing foldl wrt op: : yields

fun rev_acc e nil = e
| rev_acc e (x::xs) = rev_acc (x::e) Xs
fun reverse acc xs = rev_acc nil xs

» e holds “the results so far”

» € is flowing down the tree, informing the recursion at
the next level of something that we have
accumulated at the current level



Performance Comparison

» Recall that reverse had quadratic running time.

» Since reverse_acc uses no append, we expect
linear running time.

When called on the value of from 1 n

n \ reverse \ reverse_acc

10,000 | 2 seconds | instantaneous

20,000 | 7 seconds | instantaneous

100,000 | very slow | instantaneous
1,000,000 | infeasible | 3 seconds

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Accumulators



(Tail) Recursion

Tail Recursion
Procter
from Amtoft

from Hatcliff

Tail Recursion

fun rev_acc e nil = e

| rev_acc e (x::xs) = rev_acc (x::e) xs

This function is tail recursive:
» no computation happens after the recursive call

» value of recursive call is the return value
» thus, no variables are referenced after recursive call

This kind of recursion is actually iteration in disguise!



[terative Reverse (Tail) Recursion

Procter
from Amtoft
from Hatcliff

fun rev_acc e nil = e
| rev_acc e (x::xs) = rev_acc (x::e) xs
can be converted to “pseudo-C (renaming € to acc): Tail Recursion

list reverse(xs:list) {

list acc;

acc = [];

while (xs != nil) do {
acc = hd(xs) :: acc;
xs = tl(xs);

return acc;

}

» acc holds result
» XS and acc are updated each time through the loop



Tail Recursion versus Non-Tail Recursion

(* version 1: without accumulatorx)
fun reverse nil = nil
| reverse (x::xs) = reverse xs @ [x]

(* version 2: with accumulator x)
fun rev_acc e nil = e
| rev_acc e (x::xs) = rev_acc (x::e) xs

X is used after recursion in v.1, but not in v.2

» for tail-recursive functions, we do thus not need to
stack variable bindings for the recursive calls

» parameter passing can be implemented in the
compiler by destructive updates (that is, assignment)!
Computation occurs after recursion in v.1, but not in v.2
» for tail-recursive functions, we do thus not need to

stack return addresses; a call can be implemented in
the compiler as a goto!

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Tail Recursion



The tail-recursive function

...Is roughly equivalent to...

Procter
from Amtoft
from Hatcliff
Run-Time Structures
Accumulators
Tail Recursion
Further Examples

Summary




Converting SumList to Tail Recursion (L) Rzt

Procter
from Amtoft

fun sum list nil from Hatcliff

=0
| sum _list (x::xs) = x + sum_list xs

» The recursive calls are unfolded until we reach the
end of the list, from where we then move to the left
while summing the results.

Further Examples

fun sum list acc acc nil = acc
| sum_list acc acc (x::xs) =
sum_list acc (x4acc) xs

» Summation proceeds while moving left to right.
» Top-level call: sum_list_acc 0 xs

Performance comparison on the value of ones n

n|sum_list | sum_list_acc
4,000,000 | 5 seconds instantaneous
5,000,000 | 21 seconds | instantaneous




Tail-Recursive MultList

fun mult list acc acc nil = acc
| mult list acc acc (x::xs) =
mult list acc (x*xacc) xs

Question: what happens if we hit a 07

fun mult list _acc_ exit acc nil = acc
| mult list acc exit acc (x::xs) =
if x =0 then 0 else
mult list acc exit (xxacc) xs

In C, we might have

int mult list(xs:list) {
int acc;
acc = 1;
while (xs != nil) do {
if (hd(xs) = 0) then
return 0; /* escape x/
else
acc
xs

hd(xs) = acc;
tl(xs);

return acc;

}

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Further Examples



Making Fibonacci Tail-Recursive

fun fib 0 =0

| fib 1=1

| fib n = fib(n—=2) + fib(n-1)

has a branching call-tree, and can be made tail-recursive
by using two accumulating parameters:

fun fib_acc prev curr n =
if n =1 then curr
else fib _acc curr (prevt+curr) (n—1)

fun fibonacci acc n =
if n =0 then 0 else fib _acc 0 1 n

Performance comparison

n | fib | fibonacci_acc
42 | 7 seconds | instantaneous
43 | 11 seconds | instantaneous
44 | 17 seconds | instantaneous

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Further Examples



Correctness of Tail-Recursive Fibonacci

With F the fibonacci function we have
F(0)=0; F(1)=1;, F(n)=F(n—2)+F(n-1)
which can be tail-recursively implemented by

fun g(n,prev,curr) =
if n =1 then curr
else g(n—1,curr,prevtcurr)

Correctness Lemma: for all n>1, k > 0:
g(n, F(k), F(k+1)) = F(n+ k)

This can be proved by induction in n.
» the base case is n = 1 which is obvious.

» for the inductive case, n > 1,
g(n, F(k), F(k+1)) = g(n— F(k
g(n—1, F(k+1), F(k+2)) = (

Thus F(n) = g(n, F(0), F(1)) = ( ;1)

(Tail) Recursion

Procter
from Amtoft
from Hatcliff

Further Examples



Summary (Tail) Recursion

Procter
from Amtoft
from Hatcliff

» a tail-recursive function is one where the function
performs no computation after the recursive call

» a good SML compiler will detect tail-recursive
functions and implement them iteratively
» as loops
» there is no need to stack bindings or return addresses
» recursive calls become gotos
» we can think of arguments as being “assigned to"”
(destructively update) formal parameters.

Summary

» this substantially reduces execution time and space
(for stack) overhead



	Run-Time Structures
	Accumulators
	Tail Recursion
	Further Examples
	Summary

