
CIS 505:
Introduction to Programming Languages

Exam II with suggested answers

Wednesday, November 4, 2015 2:30-3:20pm

General Notes

• You can use any amount of printed or written material.

• You may not use laptops, cell phones or any other computing devices.

• All programming answers must be in Standard ML

• If you believe there is an error or ambiguity in any question, mention
that in your answer, and state your assumptions.

• Please write your name on this page.

Good Luck!

NAME:

1



1. Recursive Functions, 40p.

A. (20p) Write a function that concatenates each element in a list of strings
together into one large string.

Answer:

fun concatenater_list(nil) = ""

| concatenater_list(n::ns) = n ^ concatenater_list(ns);

B. (10p) Draw the call tree for your function using the input:

val myList = ["KC","Won","The","WS"];

Answer:

concatenater_list["KC","Won","The","WS"]

|

"KC"^concatenater_list(["Won","The","WS"])

|

"KC"^"Won"^concatenater_list(["The","WS"])

|

"KC"^"Won"^"The"^concatenater_list(["WS"])

|

"KC"^"Won"^"The"^"WS"^concatenater_list(nil)

|

"KC"^"Won"^"The"^"WS"^""

|

"KCWonTheWS"

2



C. (10p) Rewrite your function to take the first two strings from the list,
swap them, and then concatenate them (and then on the next iteration, swap
the first two again, etc.). If there are an odd number of strings, the last string
should not be swapped with anything (it will be the last string in both the
input and the output). For example, the previous input should result in
“WonKCWSThe.”

Answer:

fun concatenater_swapper_list(nil) = ""

| concatenater_swapper_list(n::m::ns) = m ^ n ^ concatenater_swapper_list(ns)

| concatenater_swapper_list(n::ns) = n;

3



2. Datatypes, 30p.

A. (15p) Give a datatype definition for the days of the week, i.e., Sunday,
Monday, . . . , Friday, Saturday.

Answer:

datatype weekday =

Sunday

| Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

B. (10p) Declare a type called appt (not a datatype!) that would corre-
spond to an event in a calendar. Your type must include a weekday (for the
day of the event), an integer (for the time of the event, in military-style time,
ie 1400 = 2pm), and a string for the event name.

type appt = (weekday * int * string);

C. (5p) Use your type to create a calendar entry for an event of your choice
(for example, today’s exam).

Hint: Be sure to manually specify the type so SML doesn’t assume it’s a
more general type!

val myAppt = (Wednesday, 1430, "CIS 505") : appt;

4



3. Functional Paradigm, 30p.

A: Map, Filter, and Fold (15p) Give a brief, high-level explanation of
Filter and Fold, including what they take as input and produce as output.
As an example, an explanation of Map has been provided for you.

Map. . . applies an arbitrary function to each element of a given list, and pro-
duces the resulting list.

Answer:

Filter Uses an arbitrary function (predicate) to remove elements from a
given list, producing a list of those elements which evaluate to “true” ac-
cording to the predicate.

Fold Uses an arbitrary function and initial value to combine elements from
a given list, producing a single resulting value of the type of the initial value.

5



B: Lists and Tuples (15p) What is the difference between a list and a
tuple?

Answer: Lists store an indeterminate number of elements of the same type,
and are typically iterated over, with some operation being performed on each
element individually. Tuples store a fixed number of elements of (potentially)
different types and are generally treated as a monolithic unit.

Give an example of something that would be best described as a list.

Answer: The items to buy at a grocery store are well described as a list –
something needs to be done to each element (buy it) and each element is of
the same type (an item to be purchased).

Give an example of something that would be best described as a tuple.

Answer: A user’s location is well described as a tuple – their latitude,
longitude, and altitude are most useful when considered simultaneously, and
there aren’t meaningful operations we’d do on each element individually (i.e.,
we’d never want to multiply each element by some other number).

6


