Giving Change Sxceptions
Procter
. . .. from Amtoft
Problem: given a set of coins (infinite supply of each from Hatcliff
denomination), produce
» exact change for a given amount
» involving a low (but not necessarily minimal) number
of coins.

This may not always be possible

Giving Change

return 7c using 5¢ coins and 3c coins

(though it is always possible if we have 1c coins.)

» We would like not to test all combinations
Greedy Strategy: return as many as possible from highest
denomination, then as many as possible from
second-highest denomination, etc.

» this is not always optimal:

return 8c using 5¢,4c,1c

» but for US coin set {25,10,5,1} it is optimal
(though not trivial to prove)



Lab #2

» Find a near-minimal set of coins that equal the given
amount.
» Return the result as an option type
» If change is possible: SOME [...]
» If change isn't possible: NONE
» Note that you will need to backtrack in some cases

» Your exception handler should be in the same
function as your recursive algorithm
» The handler will have access to the “old” state

Exceptions

Procter
from Amtoft
from Hatcliff

Giving Change



La b #2 Exceptions

Procter
from Amtoft

The function takes a list of coin amounts, and the amount from Hatcliff

of change required: it @i

val Lab2 = fn : int list * int —>
int list option

Include the following test cases:

Lab2([25,10,5,1],48); (x Normal x)
Lab2 ([5,2],16); (x Backtracking )
Lab2([4] .7); (x Impossible %)
Which should have the following outputs:
val it = SOME [25,10,10,1,1,1]

int list option
val it = SOME [5,5,2,2,2]

int list option
val it = NONE : int list option



	Giving Change

