
Exceptions

Procter
from Amtoft
from Hatcliff

Giving Change

Giving Change

Problem: given a set of coins (infinite supply of each
denomination), produce

I exact change for a given amount
I involving a low (but not necessarily minimal) number

of coins.
This may not always be possible

return 7c using 5c coins and 3c coins
(though it is always possible if we have 1c coins.)

I We would like not to test all combinations
Greedy Strategy: return as many as possible from highest
denomination, then as many as possible from
second-highest denomination, etc.

I this is not always optimal:
return 8c using 5c,4c,1c

I but for US coin set {25,10,5,1} it is optimal
(though not trivial to prove)

Exceptions

Procter
from Amtoft
from Hatcliff

Giving Change

Lab #2

I Find a near-minimal set of coins that equal the given
amount.

I Return the result as an option type
I If change is possible: SOME [...]
I If change isn’t possible: NONE

I Note that you will need to backtrack in some cases
I Your exception handler should be in the same

function as your recursive algorithm
I The handler will have access to the “old” state

Exceptions

Procter
from Amtoft
from Hatcliff

Giving Change

Lab #2

The function takes a list of coin amounts, and the amount
of change required:

va l Lab2 = fn : i n t l i s t ∗ i n t −>
i n t l i s t op t i on

Include the following test cases:

Lab2 ([2 5 , 1 0 , 5 , 1] , 4 8) ; (∗ Normal ∗)
Lab2 ([5 , 2] , 1 6) ; (∗ Back t r a ck i ng ∗)
Lab2 ([4] , 7) ; (∗ Imp o s s i b l e ∗)

Which should have the following outputs:

va l i t = SOME [25 , 1 0 , 1 0 , 1 , 1 , 1] :
i n t l i s t op t i on

va l i t = SOME [5 , 5 , 2 , 2 , 2] :
i n t l i s t op t i on

va l i t = NONE : i n t l i s t op t i on

	Giving Change

