
Map, Filter, and Fold:
Minilab

Procter

Anonymous functions

Map

Filter

Fold

Anonymous functions

Since map, filter, and fold are so important, we’re going
to have you try them out.

One helpful trick is the ability to define an anonymous
function

(fn x => x + 2)

Need two arguments? Use currying!

(fn x => fn y => x+y)

Map, Filter, and Fold:
Minilab

Procter

Anonymous functions

Map

Filter

Fold

Map

Using map, write a one-line expression that satisfies the
specification:

I Input: This list of ints as input:
I [1,2,~3,~4,5,6,~7,~8]

I Output: The absolute value of the input list as reals
I [1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0]

I Recall that. . .
I real(n) converts an integer to a real, and
I abs(n) converts a number to its absolute value
I map f l applies function f to each element of l

− map (fn x => r e a l (abs (x)))
[1 , 2 ,~3 ,~4 ,5 , 6 ,~7 ,~8] ;

va l i t = [1 . 0 , 2 . 0 , . . . , 8 . 0] : r e a l l i s t

Map, Filter, and Fold:
Minilab

Procter

Anonymous functions

Map

Filter

Fold

Filter

Using filter, write a one-line expression that satisfies
the specification:

I Input: This list of ints as input:
I [1,2,...,20]

I Output: A list of ints that are multiples of 3 or 5 but
not multiples of both.

I [3,5,6,9,10,12,18,20]
I Recall that. . .

I List.filter f l evaluates test f on each
element of list l and returns a list of those that pass

I not is SML’s logical not

− L i s t . f i l t e r (fn x => (((x mod 3 = 0)
ore l s e (x mod 5 = 0)) andalso (not
(x mod 15 = 0)))) [1 , 2 , . . . , 2 0] ;
va l i t = [3 , 5 , 6 , 9 , 1 0 , 1 2 , 18 , 2 0] : i n t l i s t

Map, Filter, and Fold:
Minilab

Procter

Anonymous functions

Map

Filter

Fold

Fold

Using fold, write a one-line expression that satisfies the
specification:

I Input: This list of booleans as input:
I [true, true, false, true, true,
false, false, true]

I Output: The result of taking the exclusive-or of the
input

I true
I Recall that. . .

I foldr f e l collapses list l into a single value
by repeatedly applying f using the initial value e

I Function f takes a pair of arguments, rather than
just one

I x ⊕ y = (x ∨ y) ∧ ¬(x ∧ y)

− f o l d r (fn (x , y) => (x ore l s e y)
andalso (not (x andalso y)))
f a l s e [t rue , t rue , . . . , t r u e] ;

va l i t = t r u e : boo l

	Anonymous functions
	Map
	Filter
	Fold

