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Anonymous functions

Since map, filter, and fold are so important, we’re going
to have you try them out.

One helpful trick is the ability to define an anonymous
function

( fn x => x + 2)

Need two arguments? Use currying!

( fn x => fn y => x+y )
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Using map, write a one-line expression that satisfies the
specification:

I Input: This list of ints as input:
I [1,2,~3,~4,5,6,~7,~8]

I Output: The absolute value of the input list as reals
I [1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0]

I Recall that. . .
I real(n) converts an integer to a real, and
I abs(n) converts a number to its absolute value
I map f l applies function f to each element of l

− map ( fn x => r e a l ( abs ( x ) ) )
[ 1 , 2 ,~3 ,~4 ,5 , 6 ,~7 ,~8 ] ;

va l i t = [ 1 . 0 , 2 . 0 , . . . , 8 . 0 ] : r e a l l i s t
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Using filter, write a one-line expression that satisfies
the specification:

I Input: This list of ints as input:
I [1,2,...,20]

I Output: A list of ints that are multiples of 3 or 5 but
not multiples of both.

I [3,5,6,9,10,12,18,20]
I Recall that. . .

I List.filter f l evaluates test f on each
element of list l and returns a list of those that pass

I not is SML’s logical not

− L i s t . f i l t e r ( fn x => ( ( ( x mod 3 = 0)
ore l s e ( x mod 5 = 0) ) andalso ( not
( x mod 15 = 0 ) ) ) ) [ 1 , 2 , . . . , 2 0 ] ;
va l i t = [ 3 , 5 , 6 , 9 , 1 0 , 1 2 , 18 , 2 0 ] : i n t l i s t
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Using fold, write a one-line expression that satisfies the
specification:

I Input: This list of booleans as input:
I [true, true, false, true, true,
false, false, true]

I Output: The result of taking the exclusive-or of the
input

I true
I Recall that. . .

I foldr f e l collapses list l into a single value
by repeatedly applying f using the initial value e

I Function f takes a pair of arguments, rather than
just one

I x ⊕ y = (x ∨ y) ∧ ¬(x ∧ y)

− f o l d r ( fn ( x , y ) => ( x ore l s e y )
andalso ( not ( x andalso y ) ) )
f a l s e [ t rue , t rue , . . . , t r u e ] ;

va l i t = t r u e : boo l
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