Procter

Recursion

atatypes

```
We're going to practice using recursion using the concept
of a triangular number.
```

A triangular number is the number of objects that can fit in an equilateral triangle with a side made up of n objects.

```
- triangle_num 1;
val it = 1 : int
- triangle_num 2;
val it = 3 : int
- triangle_num 3;
val it = 6 : int
```

A triangular number can be calculated using a binomial coefficient: $\binom{n+1}{2}$, or in SML:

```
fun triangle_num(n) =
binom_coeff(n + 1, 2);
```

- ► Write a function that calculates the *n*th triangular number.
- You will need to use the following definition of a binomial: $\binom{n}{0} = 1, \binom{0}{k} = 0, \binom{n}{k} = \binom{n-1}{k-1} \times \frac{n}{k}$
- ► Hint: Turn the above options into function specifications using ML Patterns

binom_coeff implementation:

```
fun binom_coeff(n, 0) = 1
| binom_coeff(0, k) = 0
| binom_coeff(n, k) = round(real(
    binom_coeff(n - 1, k - 1)) * (real(n) / real(k)));
```

Procter

Recursion

Datatypes

To practice working with both types and datatypes, we're going to do an exercise from the Ullman text, which involves labeled binary trees.

Definition of a labeled binary tree:

```
— datatype 'label btree =
  Empty |
  Node of 'label * 'label btree *
  'label btree;

datatype 'a btree = Empty | Node of
  'a * 'a btree * 'a btree
```

Procter

Recursion

Datatypes

Datatypes. 1 Tobiciii Specification

Define a type (not a datatype) mapTree that is a specialization of the btree datatype to have a label type that is a set of domain-range pairs.

Type definition:

```
- type ('d, 'r) mapTree = ('d * 'r) btree;
type ('a,'b) mapTree = ('a * 'b) btree
```

Now, define a tree t1 that has a single node with the pair ("a", 1) at the root.

```
- val t1 = Node(("a",1), Empty, Empty):
  (string, int) mapTree;
val t1 = Node (("a",1), Empty, Empty) :
  (string, int) mapTree
```