
A DEVELOPMENT AND ASSURANCE PROCESS FOR MEDICAL

APPLICATION PLATFORM APPS

by

SAM PROCTER

B.S., University of Nebraska – Lincoln, 2009

M.S., Kansas State University, 2011

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2016

Abstract

Medical devices have traditionally been designed, built, and certified for use as monolithic

units. A new vision of “Medical Application Platforms” (MAPs) is emerging that would

enable compositional medical systems to be instantiated at the point of care from a collection

of trusted components. This work details efforts to create a development environment for

applications that run on these MAPs.

The first contribution of this effort is a language and code generator that can be used

to model and implement MAP applications. The language is a subset of the Architecture,

Analysis and Design Language (AADL) that has been tailored to the platform-based envi-

ronment of MAPs. Accompanying the language is software tooling that provides automated

code generation targeting an existing MAP implementation.

The second contribution is a new hazard analysis process called the Systematic Analysis

of Faults and Errors (SAFE). SAFE is a modified version of the previously-existing System

Theoretic Process Analysis (STPA), that has been made more rigorous, partially composi-

tional, and easier. SAFE is not a replacement for STPA, however, rather it more effectively

analyzes the hardware- and software-based elements of a full safety-critical system. SAFE

has both manual and tool-assisted formats; the latter consists of AADL annotations that

are designed to be used with the language subset from the first contribution. An automated

report generator has also been implemented to accelerate the hazard analysis process.

Third, this work examines how, independent of its place in the system hierarchy or the

precise configuration of its environment, a component may contribute to the safety (or lack

thereof) of an entire system. Based on this, we propose a reference model which generalizes

notions of harm and the role of components in their environment so that they can be applied

to components either in isolation or as part of a complete system. Connections between these

formalisms and existing approaches for system composition and fault propagation are also

established.

This dissertation presents these contributions along with a review of relevant literature,

evaluation of the SAFE process, and concludes with discussion of potential future work.

A DEVELOPMENT AND ASSURANCE PROCESS FOR MEDICAL

APPLICATION PLATFORM APPS

by

Sam Procter

B.S., University of Nebraska – Lincoln, 2009

M.S., Kansas State University, 2011

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2016

Approved by:

Major Professor
John Hatcliff

Copyright

Sam Procter

2016

Abstract

Medical devices have traditionally been designed, built, and certified for use as monolithic

units. A new vision of “Medical Application Platforms” (MAPs) is emerging that would

enable compositional medical systems to be instantiated at the point of care from a collection

of trusted components. This work details efforts to create a development environment for

applications that run on these MAPs.

The first contribution of this effort is a language and code generator that can be used

to model and implement MAP applications. The language is a subset of the Architecture,

Analysis and Design Language (AADL) that has been tailored to the platform-based envi-

ronment of MAPs. Accompanying the language is software tooling that provides automated

code generation targeting an existing MAP implementation.

The second contribution is a new hazard analysis process called the Systematic Analysis

of Faults and Errors (SAFE). SAFE is a modified version of the previously-existing System

Theoretic Process Analysis (STPA), that has been made more rigorous, partially composi-

tional, and easier. SAFE is not a replacement for STPA, however, rather it more effectively

analyzes the hardware- and software-based elements of a full safety-critical system. SAFE

has both manual and tool-assisted formats; the latter consists of AADL annotations that

are designed to be used with the language subset from the first contribution. An automated

report generator has also been implemented to accelerate the hazard analysis process.

Third, this work examines how, independent of its place in the system hierarchy or the

precise configuration of its environment, a component may contribute to the safety (or lack

thereof) of an entire system. Based on this, we propose a reference model which generalizes

notions of harm and the role of components in their environment so that they can be applied

to components either in isolation or as part of a complete system. Connections between these

formalisms and existing approaches for system composition and fault propagation are also

established.

This dissertation presents these contributions along with a review of relevant literature,

evaluation of the SAFE process, and concludes with discussion of potential future work.

Table of Contents

List of Figures xiii

List of Tables xvii

Acknowledgements xviii

1 Introduction 1

2 Literature Review 5

2.1 Integrating Medical Devices . 5

2.1.1 Medical Application Platforms . 5

2.1.2 The Integrated Clinical Environment 8

2.1.3 The Medical Device Coordination Framework 9

2.1.4 Connecting Medical Devices . 13

2.1.5 A PCA Interlock App . 15

2.2 System Safety . 17

2.2.1 A Note on Terminology . 17

2.2.2 Hazard Analyses . 19

2.2.3 The Fault Propagation and Transformation Calculus 25

2.2.4 Documenting Safety: Assurance Cases 26

2.2.5 Standardization Efforts . 29

2.3 Architecture Modeling . 38

2.3.1 Why Model System Architecture? . 38

viii

2.3.2 Architecture Modeling Techniques . 41

2.3.3 Technological Approaches to Architecture Modeling 44

3 An AADL Subset for MAP Apps 54

3.1 Introduction . 54

3.1.1 App Development Environment Vision 56

3.1.2 Mechanization and Regulatory Authorities 57

3.2 Why AADL for MAPs? . 58

3.2.1 Medical Application Platforms . 58

3.2.2 Architecture Analysis & Design Language 60

3.2.3 Why subset AADL? . 61

3.3 Language Walkthrough . 63

3.3.1 Preliminary tasks: Types and Default Properties 65

3.3.2 The AADL System . 67

3.3.3 The AADL Process and Device . 69

3.3.4 The AADL Thread . 72

3.4 Code Generation and Instantiation . 73

3.4.1 Executable Code Skeletons . 73

3.4.2 App Configuration . 77

3.4.3 Launching the App . 79

3.5 Tailoring AADL to a Domain . 81

4 The SAFE Process 83

4.1 Core Concepts . 85

4.1.1 Successor Dangers . 87

4.1.2 Manifestations . 89

4.1.3 Fault Classification . 92

ix

4.1.4 Formality in Causation and Decomposition 94

4.1.5 Terminology . 99

4.1.6 Parallel and Compositional Aspects of SAFE 101

4.2 Activity 0: Fundamentals . 103

4.2.1 System-Level Fundamentals . 104

4.2.2 Specifying a Control Structure . 113

4.3 Activity 1: Externally Caused Dangers . 117

4.3.1 Successor Dangers and Process Models 117

4.3.2 Deriving an Element’s Dangers . 123

4.3.3 Documenting External Interactions . 126

4.4 Activity 2: Internally Caused Faults . 131

4.4.1 Eliminating Classes of Faults . 132

4.4.2 Documenting Internal Faults . 134

4.5 Assessment . 138

4.5.1 Objective Attributes . 138

4.5.2 Subjective Attributes of Previous Hazard Analyses 142

4.5.3 Subjective Evaluation of SAFE . 147

4.5.4 Threats to Validity . 153

5 Theoretical Foundations 154

5.1 Introduction . 154

5.1.1 Hierarchical Depth, Component Role, and Undesirability 155

5.2 Process . 157

5.3 Formalisms . 163

5.4 Compositionality . 167

5.4.1 A Baseline System . 169

x

5.4.2 Compositional Approach: App . 175

5.4.3 Compositional Approach: Pump . 178

5.4.4 Analyzing the Composed System . 181

5.4.5 Refining a Component . 185

5.5 Fault Propagation and Transformation . 190

5.5.1 Example System . 191

5.5.2 Differences Found . 193

5.5.3 Methodological Discussion and Vocabulary 195

5.6 Gaps in the Analysis . 198

6 Evaluation 201

6.1 Analysis of the PCA Interlock System . 201

6.1.1 Previously Discovered Issues . 201

6.1.2 Newly Discovered Issues . 204

6.1.3 Threats to Validity . 207

6.2 Proposed User Study . 207

6.2.1 Methodology . 207

6.2.2 Hypothesis . 209

6.2.3 Threats to Validity . 210

6.2.4 Further Studies . 210

7 Future Work and Conclusions 212

7.1 Future Work . 212

7.1.1 MDCF Architect . 212

7.1.2 The SAFE Process . 214

7.1.3 Theoretical Work . 216

7.2 Concluding Remarks . 217

xi

Bibliography 218

A SAFE Process 233

B SAFE Worksheets 254

C Full PCA Example 257

xii

List of Figures

2.1 The ICE Architecture, figure adapted from [1, 2] 8

2.2 The MDCF Architecture, figure adapted from [1] 10

2.3 The App Developer’s view of the PCA Interlock Application 16

2.4 The MDCF view of the PCA Interlock Application 18

2.5 The relationship between the terms “Fault,” “Error,” and “Failure,” repro-

duced from Figure 11 of [3] . 18

2.6 An example FTA for the PCA interlock scenario, adapted from [4] 20

2.7 A control loop from the PCA Interlock example, annotated according to

STPA. Adapted from [4] . 24

2.8 An example of the Claims-Argument-Evidence assurance case format’s graph-

ical notation that is equivalent to Figure 2.9. Adapted from [5, pg. 56] . . . 27

2.9 An example of the Claims-Argument-Evidence assurance case format’s tex-

tual notation that is equivalent to Figure 2.8. Adapted from [5, pg. 56] . . . 27

2.10 A graphical view of an AADL component. The textual view of this component

is shown in Figures 2.12 and 2.13. 47

2.11 A simple AADL property set . 47

2.12 A simple AADL component type. A graphical view of this component is

shown in Figure 2.10 . 48

2.13 A simple AADL component implementation. A graphical view of this com-

ponent is shown in Figure 2.10 . 49

2.14 Part of a simple AADL Annex Library . 50

xiii

2.15 Timing related errors in the EMV2 error type hierarchy, from [6] 52

2.16 Timing related errors extended first to the ICE Architecture (red) and sub-

sequently the PCA interlock app (blue), from [6] 53

3.1 The three-part code generation vision . 64

3.2 The SpO2 datatype used in the app excerpt . 65

3.3 The default properties used in the app excerpt 66

3.4 The top-level app excerpt architecture via the AADL system component . . 68

3.5 An AADL process specification used in the app excerpt 70

3.6 An AADL device used in the app excerpt . 71

3.7 Two AADL thread interfaces used in the app excerpt 72

3.8 Executable “skeletons” produced by the translator 74

3.9 The same “skeletons” complete with business logic 75

3.10 A partial logic-module “supertype” which hides most of the autogenerated

code . 76

3.11 An excerpt of the app’s overall layout configuration 78

3.12 The logic module’s configuration . 80

4.1 The two-state concept of a hazard . 87

4.2 The two-state concept of undesirability . 89

4.3 The range of ways that input can be incorrect 91

4.4 The PCA interlock loop in its clinical context 95

4.5 An expanded view of the shaded region from Figure 4.4 99

4.6 The dependencies between the steps in SAFE 101

4.7 The fundamentals property type definition 105

4.8 The system-level fundamentals worksheet used in M-SAFE 106

4.9 The system-level fundamentals of the PCA Interlock Scenario in M-SAFE . 106

xiv

4.10 The fundamentals property for the PCA Interlock Scenario 107

4.11 The PCA Interlock Scenario’s patient in AADL 108

4.12 Possible system boundaries for different levels of abstraction in the PCA

Interlock scenario . 113

4.13 The PCA Pump interface type in AADL . 118

4.14 The PCA Pump interface implementation in AADL 119

4.15 The component worksheet used in M-SAFE. 120

4.16 A partial M-SAFE component worksheet for the PCA Pump used in the PCA

Interlock scenario. 121

4.17 Datatypes used in the PCA Interlock’s Process Model 123

4.18 The six failure domains from Avižienis et al. encoded in AADL’s EMV2 . . 124

4.19 The PCA Pump’s possible manifestations, extending from the base failure

domains in Figure 4.18 . 125

4.20 Property types used in Activity 1 of SAFE . 129

4.21 Property types used in Activity 2 of SAFE . 137

5.1 Semantic objects in our formalism . 158

5.2 Labels used by our formalism . 159

5.3 A hypothetical “SafePCA Device” in its environment 169

5.4 The app logic in its environment . 176

5.5 A basic PCA pump in its environment . 179

5.6 The app logic and pump in their combined environment 181

5.7 An implementation of the preliminaries and setup code that enable an imple-

mentation of the specification in Section 5.4.2 186

5.8 Java code to check that the invariant from Section 5.4.2 is maintained by the

implementation . 187

xv

5.9 An implementation of the app logic that refines the specification from Section

5.4.2 . 188

5.10 An implementation of the environment that refines the specification from

Section 5.4.2 . 189

5.11 The SafePCA device and environment with FPTC behaviors 191

5.12 The first step of FPTC on the SafePCA and patient 193

5.13 The final, stabilized FTPC graph of the SafePCA and patient 194

6.1 The inner control loop of the PCA Interlock scenario 202

xvi

List of Tables

2.1 An example FMEA Worksheet for the PCA Interlock scenario, adapted from

[4, 7] . 22

3.1 AADL syntax elements and their MAP app mappings 61

3.2 AADL properties used in our MAP-targeted subset 69

4.1 The 18 combined fault classes used in SAFE 94

4.2 Dependencies between the steps of SAFE . 102

4.3 Example safety fundamentals for the PCA Interlock scenario 104

4.4 Summary of objective attributes of major hazard analyses 139

4.5 Mapping from STPA’s Step 1 Guidewords to the service failure modes from [3]139

4.6 A mapping from STPA’s fault-related guidewords to Avižienis et al.’s fault

classes . 140

4.7 Conjectured, subjective attributes of major hazard analyses 142

5.1 Examples of the formalisms applied to components of the PCA Interlock

scenario . 160

6.1 Hypothesized results of proposed user study 209

xvii

Acknowledgments

First and foremost I would like to thank my major professor, Dr. John Hatcliff, for all

the advice, help, and support he has given me throughout the course of my PhD work. I feel

very fortunate to have been able to study under him, Dr. Robby, and the other faculty in

the SAnToS Laboratory, and to have worked with all the students that have been members.

I would also like to thank my committee members for their feedback on this research; I have

in particular appreciated Dr. Eugene Vasserman’s kind words and unique perspective on

the challenges of system safety. Similarly, the advice of Dr. David Schmidt has been a great

help at various points throughout my graduate studies.

My family—both my parents, as well as my brother and his husband—have been a

source of great support and inspiration, and I would not have made it nearly as far as I have

without them. Similarly, my friends—in town and across the country, in graduate school

and in industry—have listened to my complaints and cheered my successes, and for that I

am extremely grateful.

This work was supported in part by the US National Science Foundation (NSF) awards

CNS-1239543, CNS-1355778, and CNS-1446544.

xviii

Chapter 1

Introduction

John Knight wrote that “Safety-critical systems are those systems whose failure could result

in loss of life, significant property damage, or damage to the environment” [8]. Safety-critical

software engineering, then, is the practice of building software used in these systems. Build-

ing software correctly is challenging regardless of application, but it is especially difficult

when the impact of a system failure is so high.

One domain where many systems are safety-critical is in medicine. Traditionally, medical

devices have been built as standalone units, following similarly standalone safety-engineering

processes. Increasingly, though, there is a desire for medical devices to work together—

through some form of automated coordination—to perform various types of clinical proce-

dures. These range from the straightforward, e.g., updating the electronic medical record

automatically with the readings from a physiological monitor, to the advanced, e.g., auto-

matically disabling the administration of an analgesic when a patient shows signs of respi-

ratory distress.

Typically, the safety evaluations of these medical devices also treat them as monoliths:

existing safety procedures (like hazard analyses) considered only completed systems. These

procedures are not only de facto standards, known and used in industry, but are de jure

standards as well: current evaluation processes for the United States Food and Drug Ad-

1

ministration (FDA) only consider completed systems.

There are a number of concepts that have enabled more rapid construction (though not

necessarily analysis) of software- and hardware-based systems, including:

� Interoperability: Systems are increasingly thought of not as standalone units but as

components that must interoperate in order to achieve the system’s overall goal. Such

an approach also enables component reuse.

� Reuse: In response to rising demands on development resources, previously developed

components are often reused in new systems. Some are even developed for a number

of potential uses, rather than for one particular system.

� Component-/Model-Driven Development: Rather than have developers directly im-

plement required functionality, system construction now often takes place via models

of system components. In this paradigm, components can be thought of as building

blocks that are specified and integrated before being automatically translated into

system components.

� Platforms: Components need access to underlying services that, e.g., enable real-time

communication and govern access to shared computational resources. These under-

lying services are collectively referred to as a platform; many modern development

approaches first establish the platform to be used and then build system functionality

around its capabilities and limitations.

� Systems-of-Systems: In many cases each component and the platform itself can be

built, reasoned about, and sometimes used independently as standalone systems.

Thus, what are referred to as “systems” are often actually hierarchical systems-of-

systems that have interesting, recursive properties. Though some researchers object

to the use of this term [9], we feel that it speaks to the concept of systems as a

collection of cooperating elements that can all (to varying extents) also stand alone.

2

All of these concepts can combine to enable a number of beneficial, “marketplace”-like

aspects for system development within medicine, but with this ease of development comes

a corresponding increase in the difficulty of safety assurance. Safety assessment in a multi-

vendor, component-based domain can be not only challenging but quite slow if performed

using traditional techniques, which removes much of the benefit of these more modern

development approaches.

Work in this area has, to some extent, addressed the challenges of safety-critical and

distributed systems. Many of these techniques prioritize architectural specifications as a

“single source of truth” upon which various annotations targeting particular “quality at-

tributes” can be added [10, 11]. Once all or part of the system’s architecture is annotated,

supported analyses (either manual or tool-supported) can be performed.

What is needed, then, is an examination and demonstration of the suitability of these

software engineering techniques to the challenge of safely constructing and evaluating medi-

cal device integration software. This work describes the motivations and results of an effort

to perform this task.

Specifically, the contributions of this work are:

1. Theory – Hazard Environment Hierarchy: I examine the relationship between a com-

ponent and its environment in the context of system safety. I believe that a pattern ex-

ists in the vertical decomposition of systems which makes the component-environment

relationship a hierarchically repetitive one, and this repetition can be exploited to

increase the formality of existing hazard analyses. I propose a collection of definitions

that, while by no means a full formalization or end-to-end theory, move the previously

disparate topics of system safety analysis and compositional verification one step closer

together.

2. Process – Hazard Analysis: Leveraging the realizations from 1, I propose significant

modifications to an existing systems-based hazard analysis. These modifications result

in a process that, I believe, requires less user-expertise and is more repeatable than the

3

status quo. Additionally, a subset of these modifications are designed to be integrated

with a semi-formal description of a system’s architecture, the increased rigor of which

may bring additional analytic power and reduced analysis time.

3. Tooling:

(a) Code Generation: I demonstrate existing approaches to architectural specifica-

tion and automated system construction by developing a software prototype that

will take a specification of a medical system as input and produce as output a

runnable version of that system. This enables a very close alignment of system

model and executable artifacts, saving developer time and enhancing the quality

of model-based analyses.

(b) Report Generation: Leveraging the code generation described in 3.(a), I will

describe additional annotations that align with and support the hazard analysis

process from 2, fully integrating it with a semiformal description of a system’s

architecture. The software prototype from 3.(a) will then be extended to support

automated generation of a hazard analysis report usable by a number of system

stakeholders.

Throughout this work we use as a running example the “PCA Interlock” clinical sce-

nario, which is introduced in Section 2.1.5. This work is being done—in collaboration with

engineers from UL and the United States Food and Drug Administration—in the context

of an existing standard governing integrated clinical environments as well as an upcoming

standard addressing medical device interoperability. [2]

4

Chapter 2

Literature Review

In this section, I examine the three areas that this work draws from. First, I review the

literature surrounding the integration of medical devices, primarily in the context of Medical

Application Platforms. Second, I review the relevant literature in the system safety domain,

with particular attention paid to hazard analysis techniques and medical system safety

standardization efforts. Third, I review the literature associated with system and software

architecture modeling, focusing on formal architecture descriptions that enable automated

system construction and analyses.

2.1 Integrating Medical Devices

2.1.1 Medical Application Platforms

Though the concept of integrating medical devices has been circulating for some time (e.g.,

[12, 2]), in [13], Hatcliff et al. introduce the term Medical Application Platform (MAP) and

define it as “a safety- and security-critical real-time computing platform for (a) integrating

heterogeneous devices, medical IT systems, and information displays via a communication

infrastructure and (b) hosting application programs (i.e.apps) that provide medical utility

via the ability to both acquire information from and update/control integrated devices, IT

5

systems, and displays.” They go on to explain the need for the concept, mentioning an

aging population that is projected to increase demands for healthcare services and a focus

on outcome-based medicine driving “quality enhancements and cost reductions.”

Hatcliff et al. further explain that in other, non-safety-critical domains, there are three

trends which are driving integration efforts: increasing levels of device interoperability, a

platform approach (where the entire ecosphere of hardware and software components are

governed by a single entity, e.g., Apple’s governance of iOS), and the embrace of a systems

perspective, which encourages the conception of components as (sub)systems, i.e., taking a

systems-of-systems approach. This fits well with Checkland’s definition of a system, which

is “A set of elements connected together, which form a whole, this showing properties which

are properties of the whole, rather than properties of its component parts.” [14]

These platforms allow the dynamic integration of medical devices and purpose-built

software in order to serve some clinical need. Hatcliff et al. explain that there are four

missing elements, the absence of which block the implementation and industrial adoption

of MAPs:

� Interoperability Standards: Coordinating the actions of disparate entities in a market-

place requires some form of incentives. Hatcliff et al. point out that “there has been

significant activity on standards” targeting the exchange of information, but existing

works “do not address the technical requirements for device connectivity, safety, and

security.”

� Appropriate Architectures: Architectures addressing the challenges faced by MAPs

exist in other domains, such as Integrated Modular Avionics (IMA) for aviation, or

Multiple Independent Levels of Security (MILS) in security-oriented fields [15, 16].

These are not, however, immediately applicable to the medical field.

� Regulatory Pathway: Regulatory agencies, like the US Food and Drug Administration,

approve medical devices in a monolithic fashion. Approval of each permutation of

6

a composable system like those enabled by MAP technology, though, would be an

arduous task indeed: the number of possible combinations given only a small number

of devices and applications would still be quite large.

� Interoperability Ecosystem: The phrase “interoperability ecosystem” (introduced in

[13], renamed to ecosphere and greatly expanded in [17, 1]) refers to the complete

environment surrounding a platform. King et al. define it as the “set of devices,

software applications and computational platforms intended to interact with one [an-

other]; the stakeholders that organize, manufacture, and use these products; as well

as the explicitly defined processes that are followed to develop, certify, and use these

products.”

In addition to the removal of these roadblocks, Hatcliff et al. also identify a number of

technologies necessary to enable the MAP vision. They group these technologies into four

main areas:

1. Architecture and Interfacing: Interoperable architecture, compliance-checkable inter-

faces, rich interface description language, etc.

2. Platform Technology: Static verification, composability, global resource management,

automated trust and security services, etc.

3. Safety, Effectiveness, and Certification: Component-wise regulation, third-party cer-

tification, etc.

4. Ecosystem Support: Consensus-driven component specifications, development envi-

ronment for MAP apps, etc.

It is in the fourth area, specifically in the development environment, that this work makes

the bulk of its contribution. There is a great deal of overlap between goal areas, though, so

a common development environment would include support for a number of other goals as

7

Integrated	
 Clinical	
 Environment	
 (ICE)	

Da
ta
	
 L
og
ge
r	

IC
E	

M
an
ag
er
	

…	

Medical	
 Device	

ICE	
 Equipment	

Interface	

1	

2	

Supervisor	

2a	

Network	
 	

Controller	

2b	
 2c	

Figure 2.1: The ICE Architecture, figure adapted from [1, 2]

well by supporting, e.g., interface checking; static verification tooling; repeatable analysis

processes for analysts, regulators and certifiers, etc.

2.1.2 The Integrated Clinical Environment

In 2009, ASTM International released the standard ASTM-F2761 “Medical Devices and

Medical Systems – Essential safety requirements for equipment comprising the patient-

centric integrated clinical environment (ICE) – Part 1: General requirements and conceptual

model” [2]. The standard describes the high-level functional (i.e., non-architectural/non-

implementation) requirements for a possible MAP implementation. Figure 2.1 shows the

ICE components (descriptions adapted from [2]):

8

1. Equipment Interface: Though no description is given of the ICE Equipment Interface

(only examples), it is understood to enable a piece of equipment (e.g., a medical device)

to communicate with the ICE system

2. Manager: The ICE Manager is the name used to refer to the collection of the ICE

Supervisor, Network Controller, and Data Logger.

(a) Supervisor: The ICE Supervisor is responsible for either ensuring that the re-

quirements (both functional and non-functional) provided by the Network Con-

troller can deliver the intended use of the ICE Supervisor, or for generating an

alarm if the requirements of a running system can no longer be met.

(b) Network Controller: The ICE Network Controller is responsible for ensuring

the delivery of the functional capabilities, “in accordance with non-functional

requirements” of the connected devices to the ICE Supervisor, or generating an

alarm if the connection fails in some way.

(c) Data Logger: The data logger provides a time-indexed recording of “the accessible

‘state-of-the-clinical environment’ ” This enables any problems that are encoun-

tered to be diagnosed post-hoc, be they related to safety, security, or functional

concerns.

Though there are a small number of different ICE implementations from both academic

and commercial suppliers, this focuses on one in particular, the Medical Device Coordination

Framework.

2.1.3 The Medical Device Coordination Framework

In their 2009 work, King et al. described the Medical Device Coordination Framework

(MDCF), which is an open-source implementation of the ICE standard developed at Kansas

State University and later the University of Pennsylvania [18]. The MDCF, and its associ-

ated tooling, has been under near-continuous development since.

9

Medical	
 Device	
 Coordina/on	
 Framework	
 (MDCF)	

App	
 …	

ICE-­‐Compa/ble	

Equipment	

…	

1	

Da
ta
	
 L
og
ge
r	

IC
E	

M
an
ag
er
	

Re
so
ur
ce
	

M
an
ag
er
	

App	
 Mgr.	

App	
 DB	

Services	

App	
 V.M.	

Su
pe

rv
iso

r	

Dev.	
 Mgr.	

Message	
 Bus	

Device	
 DB	

N
et
w
or
k	

	

Co
nt
ro
lle
r	

6	
 5	

4	

3	

2	

7	

Figure 2.2: The MDCF Architecture, figure adapted from [1]

Kim et al. recently described how the MDCF implements the ICE Architecture [1]1.

Figure 2.2 shows a decomposition of the ICE components, the addition of separate architec-

tural elements representing application logic and a global resource manager, and the seven

interfaces over which the ICE components interact. MDCF-specific components are outlined

in black, interfaces are thick-dashed lines, and ICE components are outlined in grey.

The MDCF specific component additions Kim et al. describe are:

1. App: Software applications that guide the integration of medical devices to do some-

thing clinically meaningful. Though these are executed in the Supervisor, they are

developed and typically analyzed as architecturally independent. Note that the term

1An earlier description can be found in Hatcliff et al.’s ICCPS 2012 paper. [13]

10

used in the ICE standard is “Application logic,” rather than app.

2. Resource Manager: Enforcing the quality-of-service specifications of both apps and

devices requires global resource management involving the allocation and monitoring

of networking and computing resources (e.g., channels and CPU time, respectively).

The MDCF relies on the resource manager provided by King’s MIDAS [19].

3. Supervisor:

(a) App Virtual Machine: Apps are envisioned to be executed in isolated environ-

ments (e.g., separation kernels [16]). As of this writing, this feature is not imple-

mented – apps are executed as written on the shared Java virtual machine.

(b) App Database: Stores the names and configuration schemata of app implemen-

tations. Executable logic is looked up at launch time based on the app’s name.

(c) App Manager: Handles the instantiation/connection (including the verification

of digital certificates), monitoring, and termination of instantiated applications.

(d) Services: A collection of services that expose the functionality of the app manager

(e.g., app launch) to the clinical user.

4. Network Controller:

(a) Device Database: Stores identity information and capability descriptions of de-

vices that have been approved to work with the MAP. This allows individual

healthcare delivery organizations (HDOs, e.g., hospital) to restrict which devices

are usable on their network.

(b) Device Manager: Similar to the app manager, this module handles the authenti-

cated connections of ICE compatible equipment.

(c) Message Bus: The actual communication infrastructure which handles the rout-

ing of messages between components.

11

Kim et al. also specify seven interfaces (identified by circled numbers in Figure 2.2) that

the components use to communicate with one another. We restate these interfaces here,

and adopt the notation A → B which signifies that component A uses an interface provided

by component B :

1. Platform → Devices: The platform uses this interface to creates instances of the

device’s supported communication exchanges. For example, if the device supports

a requester/responder mode of interaction, this interface would allow its creation and

binding to appropriate network channels.

2. Devices → Platform: Devices use this interface to connect to and authenticate with

the platform.

3. Supervisor → Devices via Network Controller: The supervisor uses this interface to

query available devices. An example of this usage would be when an app is requesting

some set of device capabilities; the check to see if those capabilities are present would

go through this interface.

4. Apps → Supervisor: This interface allows apps to request platform services, like the

reservation of computing or networking resources.

5. Data Logger → Network Controller: This interface is used by the data logger to retrieve

messages sent across the network from the network controller.

6. Network Controller → Data Logger: This interface is used by the network controller

to get messages stored by the data logger for playback. This is used for, e.g., post-

hoc/forensic analysis.

7. Supervisor → Resource Manager: This interface is used by the supervisor to request the

allocation of computing or networking resources, typically on behalf of an application

that a clinician would like to launch.

12

2.1.4 Connecting Medical Devices

When the term “device interconnectivity” is used in the medical domain, its precise defi-

nition is rarely made explicit; rather, it is typically understood to mean “interoperability.”

Work in the field of simulation theory has led to the proposal of different “types” or “levels”

of interoperability, but most recognize at a minimum the distinction between two compo-

nents being able to “interconnect” (e.g., use a similar communication protocol, data format,

etc.) and to “interoperate” (e.g., shared understanding of assumptions and semantics).

Petty and Weisel (who focus on simulation systems, though we believe their definitions

work in this domain as well) discuss composability, which they define as “the capability

to select and assemble. . . components in various combinations into valid. . . systems.” They

further explain that there are two perspectives from which composability can be understood:

the engineering perspective, which focuses on syntactic composability (i.e., “whether the

components can be connected”) and the modeling perspective, which focuses on semantic

composability (i.e., whether the computation of the composed system is semantically valid”)

[20].

Syntactic Interoperability

The primary concern of syntactic interoperability is the connection between two devices, or

between a single device and some middleware. Unfortunately efforts in this area have not yet

converged onto a single technology or style. Early work, like the first versions of the MDCF,

used the Java Messaging Service (JMS) [18], which is an API that describes a peer-to-peer

messaging service; JMS has both open-source and hardened commercial implementations

[21]. Modern implementations of the MDCF can be configured to use either a purpose-built

message-bus provided by MIDAS or the Data Distribution Service (DDS) [19, 22]. Some

commercial MAP implementations (e.g., Docbox) use DDS, while others (e.g., Dräger) use

a purpose-built web-service framework [23].

One of the early developments of research in this area was the recognition that MAP apps

13

were in general well suited to publish-subscribe (pub-sub) architectures. Pub-sub works well

because a number of MAP apps may be operating on the same patient at the same time,

so allowing multiple apps to efficiently read from the same physiological monitoring device

efficiently was a high priority. See, for example, [18] for a discussion of the performance

aspects of a JMS implementation of the MDCF in various fan-in and fan-out topologies

using a range of message sizes and types. Typical MAP implementations use an explicit

invocation style of pub-sub, in that the underlying networking middleware routes messages to

particular components, but those components themselves are responsible for implementing

handlers for event or message arrival. Another advantage of pub-sub is the decoupling of

data producers from consumers [11] (all but a necessity in a compositional plug-and-play

system like MAPs), though competing concerns like data privacy and security can, at times,

require some level of coupling.

While pub-sub works well for reading physiological data from a number of sensors, it

is less straightforward to use in more advanced MAP apps that require device control.

Since it is unnecessary (or possibly even inappropriate) to have commands sent from a logic

module to a specific device broadcast widely, point-to-point communication is, in these cases,

preferable to pub-sub. While it is possible to have per-device topics (a strategy employed by,

e.g., the MDCF); one advantage of Dräger’s web-service architecture is the explicit inclusion

of point-to-point (discussed in their work as request-response) style connections for private

communications and device control [23].

Semantic Interoperability

The issue of semantic interoperability, or the challenge of ensuring equivalency between

similar values and concepts across disparate components (e.g., medical devices, app logic

modules, etc.), is one best addressed by domain (i.e., medical) experts. To that end, we have

looked to relevant medical standards—in particular, IEEE 110732—which has two goals: to

2Note that while IEEE 11073 contains specifications for both semantic and syntactic interoperability,
syntactic interoperability is quite well treated by software engineering literature. We use the standard

14

“provide real-time plug-and-play interoperability for patient-connected medical devices” and

to “facilitate the efficient exchange of vital signs and medical device data, acquired at the

point-of-care, in all health care environments.” [24]

At a high level, the standard focuses on two topics: nomenclature and the “domain

information model” (DIM). As the name implies, the nomenclature sections of the standard

give a semantic coding for a range of physiological categorizations (e.g., alerts, body sites,

metrics, etc.). The DIM, on the other hand, “is an object-oriented model that consists of

objects, their attributes, and their methods, which are abstractions of real-world entities in

the domain of. . . medical devices.” [25]. The full family of standards includes refinements

for specific device families (e.g., pulse oximeters) and is broadly split into those devices used

for personal health and those used at the point of care.

While our examples draw inspiration from—and where possible align with—IEEE 11073,

we do not use it outright for two main reasons. First, device interconnectivity is only a part

of the full MAP vision, and IEEE 11073 does not include facilities for, e.g., hosting/execution

of application logic. Second, and more practically, the standard follows an object-oriented,

dynamic discovery style of capability description, which both prevents static knowledge

(and thus static analysis) of a system and makes makes the creation of robust application

logic more complex. That is, applications will have to be responsible for implementing a

potentially large number of code paths, depending on the result of the various dynamic

capability queries.

2.1.5 A PCA Interlock App

One of the most well-studied MAP apps is the PCA interlock scenario [26, 27, 28]. The

app deals with an unfortunately commonplace problem in clinical settings, where following

surgery or major trauma, a patient is given a patient-controlled analgesia (PCA) pump

to manage her pain. The pump, which may or may not administer a constant, low rate

primarily as a source of knowledge of domain-specific semantic aspects.

15

Pulse	
 Oximeter	

Capnograph	
 PCA	
 Pump	

Applica6on	
 	

Logic	

EtCO2,	

Resp.	
 Rate	

SpO2,	
 	

Pulse	
 Rate	

Start	
 /	
 Stop	

Commands	

Display	

Pump	
 Status,	

Pa6ent	
 Status	

Pa6ent	

Analgesic	

Bolus	
 Requests	
 Breath	

Refracted	
 Light	

Treatment	

Configura6on,	

Alarm	
 Clear	
 Clinician	

Pum
p	
 Status,	

Pa6ent	
 Status	

Figure 2.3: The App Developer’s view of the PCA Interlock Application

(sometimes referred to as the “basal” rate) allows a the patient to press a button (sometimes

referred to as a “bolus trigger”) to receive a larger dose of analgesic. This interaction is

designed to be self-limiting as patients will typically fall unconscious and be unable to self-

administer more analgesic. Various problems exist, however, which can lead to accidental

overdoses, e.g., atypical patient pharmacokinetics; a visitor pressing the button for the

patient (so-called “PCA-by-proxy”); the patient rolling over onto the trigger while asleep;

or incorrect medication, dosage, or pump settings by a clinician [29]. Regardless of cause,

an overdose can lead to respiratory depression which can cause serious injury or death.

The PCA interlock scenario involves the coordination of one or (typically) several patient

monitoring devices, e.g., a capnograph and pulse-oximeter. The app developer’s view of one

possible configuration is shown in Figure 2.3. This figure shows the primary elements of

the app (medical devices, application logic, etc.) and their connections; note that the solid

16

arrows represent connections that are explicitly created as part of the app’s instantiation

(i.e., network connections) and the dashed arrows represent communication supported, but

not directly enabled, by the app. A number of physiological parameters are monitored (e.g.,

SpO2, ETCO2, and respiratory rate) by application logic for signs of respiratory depression

according to some pharmacokinetic model. This model, which is embedded in the app’s

logic, can be configured either automatically or by the clinician according to patient history,

medical conditions, and treatment status (e.g., the presence of supplemental oxygen). When

the model indicates signs of respiratory depression, the PCA pump can be disabled, via a

stop command. More sophisticated implementations, where the pump is only enabled for

certain windows of time (which precludes situations where the PCA pump is left enabled

inappropriately due to network failure) have also been proposed [27]. Note that the app-

developer-centric view of Figure 2.3 excludes some MDCF features that are transparent to

the developer, e.g., the data logger or the fact that the physiological parameters may come

from separate devices. A different view of the application—one made to align with the

ICE/MDCF-centric view—is shown in Figure 2.4.

2.2 System Safety

2.2.1 A Note on Terminology

The vocabulary used when discussing safety, unfortunately, varies somewhat between sources.

Leveson, who developed the hazard analysis technique this work hews most closely to, uses

a set of the standard terms (accident, hazard, etc.) and gives her own definitions [30]. Er-

icson, who produced a handbook covering a number of techniques uses similar terms, but

gives his own set of definitions [7]. Avižienis et al. give a full taxonomy of terms in [3], the

definitions of which in general correspond Leveson and Ericson’s use, though they do not

explicitly cite his work. Many standards, e.g., ISO 14971, IEC 80001, and AADL’s EMV2

Annex define their own terms (sourced either from other standards or the standardization

17

Pa#ent	

ICE	
 Equipment	
 Interface	

conformant	
 Pulse	
 Oximeter,	

Capnograph,	
 and	
 Pa#ent	

Controlled	
 Analgesia	
 Pump	

RR	

Sensor	

Data	

Sensor	

Data	

Cl
in
ic
ia
n	

(A
pp

	
 A
dm

in
ist
ra
to
r)
	
 	
 MDCF	
 /	
 ICE	
 Manager	

App	

Pump	
 Status,	

Pa#ent	
 Status	

Configura#on,	

Alarm	
 Clear	

Sensor	

Data	

PCA	

Start	
 /	
 Stop	

Commands	

PR	

Sensor	

Data	

SPO2	

Logging	
 Data	

Refracted	

Light	

Refracted	

Light	

Breath	
 Breath	

Data	
 Logger	

Display	

Pump	
 Status,	

Pa#ent	
 Status	

Treatment	

EtCO2	

Figure 2.4: The MDCF view of the PCA Interlock Application

Fault	
 Error	
 Failure	
 Fault	
 …	
 …	

Figure 2.5: The relationship between the terms “Fault,” “Error,” and “Failure,” reproduced
from Figure 11 of [3]

body’s style guide) [31, 32, 33]. The end result of this is a considerable difficulty in com-

municating precisely about safety as terms may have subtly different meanings to different

readers.

Though a full reconciliation of the various terminologies is beyond the scope of this work

we recognize the challenges posed and, unless otherwise noted, adopt the terminology and

definitions used by Leveson. We adopt the specific terminology (found in [33] and shown

graphically in Figure 2.5) that errors are “the difference between a computed, observed,

18

or measured value or condition and the true, specified, or theoretically correct value or

condition,” faults are root causes of errors, and failures are the “termination of the ability

of a product to perform a required function.” Put another way, faults are the root causes

of errors and failures are the observable effects of an error.

2.2.2 Hazard Analyses

For as long as systems have been built, some consideration has been paid to their safety. It

wasn’t until the middle of the twentieth century, though, that these attempts began to be

formalized into more rigorous processes. We discuss three such processes here, the first two,

Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA) as they are

predominant in industry (using [7] as our main source); the third, System Theoretic Process

Analysis (STPA) is a newer and more modern approach (detailed in [30]) that forms the

basis of much of this work.

Fault Tree Analysis

Fault Tree Analysis, commonly referred to by the initialism FTA, was created by H. Watson

and Allison B. Mearns at Bell Labs when they were working on the Minuteman Guidance

System [7]. It is a top-down analysis technique that asks the analyst to first select an

undesirable event and then consider all the contributory errors that could combine in various

ways (typically via AND/OR gates) to cause that event. This process is then repeated

recursively until an acceptable level of specificity is met.

An example fault tree for the PCA interlock scenario is shown in Figure 2.6. The

top event corresponds to the main accident (or mishap, in the language of [7]) that the

PCA interlock app is designed to avoid—an overdose of analgesic being administered to the

patient. The figure shows that this could come about if two errors occur simultaneously:

the application logic receiving bad physiological data and the error that caused the bad

physiological data being undetected. The block that joins these two errors—labelled G1—

19

Too	
 Large	
 of	

Dose	
 Allowed	

G1

Bad	

Physiological	

Data	
 Received	

Error	
 is	
 not	

detected	

G2

Incorrect	

Physiological	

Reading	

Message	

Garbled	
 by	

Network	

SoBware	

Encoding	
 or	

Decoding	
 Error	

G3

Physiological	

Data	
 within	

Range	

Internal	

DiagnosCcs	
 Fail	

Figure 2.6: An example FTA for the PCA interlock scenario, adapted from [4]

dictates the style of this join. Block G2, on the other hand, is an or join, so any of its children

(incorrect physiological reading, software encoding or decoding error, or message garbling by

the network) could independently cause the parent error: receipt of bad physiological data by

the application logic. Figure 2.6 is, of course, only a fragment of a full FTA analysis, which

would consider not only more top-level accidents (e.g., underinfusion causing the patient

to the be in unnecessary pain, damage to the medical devices caused by inappropriate

commands, etc.) and also a deeper analysis of the causes of overinfusion as well.

As FTA has considerable industry support and a history of use, Ericson details extensive

theory beyond the basic example given above [7]. Fault tree analyses can be annotated with

the likelihoods of particular errors; various statistical methods (Fussell-Vesely importance,

Risk Reduction Worth, Birnbaum’s importance measure, etc.) then detail how these likeli-

hoods might be combined to arrive at overall probabilities of failure or success. There are

also various algorithms for determining subsets of the full fault tree—so-called cut sets—

which allow an analyst to focus on particular event chains. Additionally, while the simple

graphical notation used in Figure 2.6 forms the core of all fault tree analyses, it has been

extended with a number of constructs to allow things like prioritization between gates, ex-

20

clusivity, inhibition, m-of-n combinations, phasing, timing, dynamism, or even user-specified

extensions.

Failure Mode and Effects Analysis

Failure Mode and Effects Analysis is commonly referred to via the initialism FMEA. If

the analysis is annotated with criticality information, the technique is sometimes referred

to as Failure Mode, Effects, and Criticality Analysis, or FMECA. The technique, which

was detailed in MIL-STD-1629A, was developed in the late 1940’s by the United States

military [7]. It is a bottom-up analysis technique that asks the analyst to examine the

various elements of his system (i.e., hardware components, functional components, software

components, etc.) and consider how the element’s failure would impact the behavior of

the overall system. The set of hardware failures might include terms like “breakage” or

“collapse,” while the set of software failures might include terms like “deadlock” or “garbled

message.” This process would then be repeated for each other element in the system.

An example FMECA, following a worksheet provided by Ericson in [7] for the PCA

interlock scenario is shown in Table 2.1. This example takes a functional approach (i.e.,

failure of system functions rather than hardware or software components are considered):

the function examined is the provision of SpO2 physiological data to the app. The first row

considers the results of this function failing outright, while the second and third consider

late delivery or incorrect value delivery. The third column asks for a failure rate, which

is unknown for this function but may in some cases be available (typically those involving

hardware failures). Causal factors are listed, as are immediate (or local) effects, and then

system effects are considered separately. After the method of detection, there is sometimes a

column for “current controls” though in this example we skip to the hazard, which should be

identified and explained elsewhere. Though the entire worksheet will likely be customized by

an organization or standards committee, the “Risk” number is especially likely to be tailored

to the domain’s needs. As a general-purpose index, Ericson mentions that the risk index

21

F
a
il

u
re

M
o
d
e

a
n

d
E

ff
e
c
ts

A
n

a
ly

si
s

S
y
st

em
:

P
C

A
In

te
rl

o
ck

S
ce

n
ar

io
S

u
b

sy
st

em
:

P
u

ls
e

O
x
im

et
er

D
ev

ic
e

M
o
d

e/
P

h
a
se

:
E

x
ec

u
ti

o
n

F
u

n
c-

ti
on

F
ai

lu
re

M
o
d

e
F

ai
l

R
at

e
C

au
sa

l
F

ac
to

rs
Im

m
ed

i-
a
te

E
ff

ec
t

S
y
st

em
E

ff
ec

t
M

et
h

o
d

o
f

D
et

ec
ti

o
n

H
a
za

rd
R

is
k

R
ec

o
m

m
en

d
ed

A
ct

io
n

P
ro

-
v
id

e
S

p
O

2

F
ai

ls
to

p
ro

v
id

e
N

/A
N

et
w

or
k

fa
il

u
re

,
d

ev
ic

e
fa

il
u

re
S

p
O

2
n

o
t

re
p

o
rt

ed
U

n
k
n

ow
n

p
a
ti

en
t

st
a
te

A
p

p
L

o
g
ic

P
o
te

n
ti

a
l

fo
r

ov
er

d
o
se

3
D

A
d

d
sa

fe
ty

ti
m

eo
u

t

P
ro

-
v
id

es
la

te

N
/A

N
et

w
or

k
co

n
ge

st
io

n
,

tr
an

si
en

t
d

ev
ic

e
fa

il
u

re

S
p

O
2

n
o
t

re
p

o
rt

ed
U

n
k
n

ow
n

p
a
ti

en
t

st
a
te

A
p

p
L

o
g
ic

P
o
te

n
ti

a
l

fo
r

ov
er

d
o
se

3
C

A
d

d
sa

fe
ty

ti
m

eo
u

t

P
ro

-
v
id

es
w

ro
n

g

N
/A

D
ev

ic
e

er
ro

r
S

p
O

2

va
lu

e
in

co
rr

ec
t

In
co

rr
ec

t
p

a
ti

en
t

st
a
te

N
o
n

e
P

o
te

n
ti

a
l

fo
r

ov
er

d
o
se

1
E

H
av

e
d

ev
ic

e
re

p
o
rt

d
a
ta

q
u

a
li

ty
w

it
h

se
n

so
r

re
a
d

in
g

A
n

al
y
st

:
S

am
P

ro
ct

er
D

a
te

:
S

ep
te

m
b

er
2
6
,

2
0
1
4

P
a
g
e:

3
/
1
4

T
a
b

le
2
.1

:
A

n
ex

am
pl

e
F

M
E

A
W

or
ks

he
et

fo
r

th
e

P
C

A
In

te
rl

oc
k

sc
en

ar
io

,
ad

ap
te

d
fr

om
[4

,
7]

22

from MIL-STD-882 is “generally followed.” The first character is a severity rating, which

ranges from 1 (Catastrophic, resulting “in one or more of the following: death, permanent

total disability, irreversible significant environmental impact, or monetary loss equal to or

exceeding $10,000,000”) to 4 (Negligible, resulting “one or more of the following: injury

or occupational illness not resulting in a lost work day, minimal environmental impact, or

monetary loss less than $100,000”). The second character is a probability level, ranging from

A (Frequent, “Likely to occur often in the life of an item”) to E (Improbable, “So unlikely, it

can be assumed occurrence may not be experienced in the life of an item). Probability level

F is also sometimes used to signify accidents that have been completely eliminated from

possibility. The last column of the worksheet is the recommended action, which specifies

what is to be done to eliminate or mitigate the failure.

System Theoretic Process Analysis

After examining a number of failings with safety-critical systems (and the engineering pro-

cesses that guided their designs) Leveson recently described the Systems Theoretic Accident

Model and Processes (STAMP) causality model and an associated hazard analysis, System

Theoretic Process Analysis (STPA) [30]. As their names imply, STAMP and STPA differ

most significantly from previous hazard analyses in their use of systems theory, which is de-

fined by Leveson as an approach that “focuses on systems taken as a whole, not on the parts

taken separately.” This integration leads to the key realization that safety is an emergent

property that can be viewed as a control problem. Put another way, unsafe events are the

result of inadequate control.

Unlike FMEA, which has the failure of certain system components as its central notion,

or FTA, which focuses on avoidance of certain events, STPA is driven by the enforcement

of safety constraints, which are rules that, if properly enforced, prevent inadequate control

of the system.

Once a list of potentially unsafe control actions has been identified, causes can be an-

23

Sensor:	
 Pulse	
 Oximeter	

	

Inadequate	
 Opera-on:	
 SpO2	
 value	
 incorrect	

Inadequate	
 Opera-on:	
 SpO2	
 value	
 late	

Actuator:	
 PCA	
 Pump	

	

Inadequate	
 Opera-on:	
 Doesn’t	
 respond	
 to	

commands	

Controller:	
 App	
 Logic	

	

Process	
 Model	
 Incorrect:	
 Wrongly	
 believes	
 pa:ent	
 to	
 be	
 healthy	

Flaw	
 in	
 Crea-on:	
 Messages	
 are	
 parsed	
 incorrectly	

Controlled	
 Process:	
 Pa:ent	

Feedback:	
 PulseOx	
 –>	
 App	

	

Delayed	
 opera-on:	
 Messages	
 late	

Missing	
 feedback:	
 Messages	
 dropped	

Control	
 Ac>on:	
 App	
 –>	
 PCA	
 Pump	

	

Delayed	
 opera-on:	
 Messages	
 late	

Missing	
 feedback:	
 Messages	
 dropped	

Figure 2.7: A control loop from the PCA Interlock example, annotated according to STPA.
Adapted from [4]

alyzed and prevented or mitigated. STPA contextualizes control actions by placing them

into a hierarchical control structure. The most canonical control structure is the control

loop, an example of which is shown in Figure 2.7. Elements of this control loop are labelled

as “Component Role: Component Name” (e.g., the pulse oximeter plays the role of a “sen-

sor” in this control loop). The lower half of the components are then labelled with ways

that they can contribute to the system being unsafe, in the format “Causality Guideword:

Error.” Procter and Hatcliff describe an early version of the work in this dissertation as

(among other goals) an attempt to develop a canonical report format for STPA [4].

24

2.2.3 The Fault Propagation and Transformation Calculus

Each of the previously designed hazard analyses have as their goal to find the causes of

accidents so that they can be eliminated (by a more thoughtful system design) or mitigated

by some control. FMEA does this perhaps most explicitly by starting from causes and

working up to effects, FTA’s cut sets are essentially top-down projections over a range of

possible causes to find a causal chain, and STPA’s second step focuses on finding “causal

scenarios” which might allow safety constraints to be violated.

It should be noted that Leveson explicitly calls out the assumption that “Accidents are

caused by chains of directly related events” and instead offers the replacement “Accidents

are complex processes involving the entire socio-technical system. Traditional event-chain

models cannot describe this process adequately.” [30] Masys presents an expanded version

of this argument in his dissertation, writing that “. . . linear thinking is a myopic perspective

that does not recognize the multiple interrelations and entanglement that characterizes the

[problem] space and therefore is not an effective mode for understanding [the] complex socio-

technical domain.” [34] We argue that, though explicitly rejecting the idea of an event-chain,

by asking the analyst to identify “causal scenarios” in which safety-constraints are violated

Leveson retains the idea and importance of linear causality in STPA.

Wallace has formalized this notion of (linear) causality by introducing the Fault Propa-

gation and Transformation Calculus, or FPTC [35]. He gives a full syntax and evaluation

semantics for the calculus where a directed graph, made up of nodes corresponding to com-

ponents and communication links, is seeded with behavior tokens (i.e., a combination of

“correct” behaviors and “faults”). Then, the tokens propagate and transform through the

various components (a process which is fully specified as a fixpoint algorithm) repeatedly

until the graph stabilizes. Note that Wallace uses the term fault to include both root causes

and resultant errors as, in his calculus, they are to some extent interchangeable.

Nodes in the system’s graph may produce new behavior tokens (such a component would

be a source of the behavior), representing some independent action. For example, if the pulse

25

oximeter in our example could produce incorrect values, this would be represented in the

FPTC by having the PCA pump component be a source for a token labelled “SpO2 Wrong.”

Nodes may also consume tokens (i.e., the component is a sink), representing its ability to

compensate for some failure. Consider a sophisticated app logic implementation that cross-

checked the SpO2 values with ETCO2 and respiratory rate values—such an implementation

would consume the SpO2 Wrong faults and behave normally (as long as the other parameters

were correct). Nodes may also propagate tokens (representing, e.g., the propagation of

incorrect values) or transform them. For example, the app logic might enable the pump if

it does not get any inputs from the sensors, this would be represented in the FPTC as a

transformation from a “SpO2 Late” token into an “Inadvertent Pump Enable” token. We

provide an in-depth example of FPTC in Section 5.5.1.

2.2.4 Documenting Safety: Assurance Cases

Once a hazard analysis has been performed, the resulting artifacts (e.g., worksheet, report,

etc.) can be sent to various stakeholders for evaluation. Often, though, a hazard analy-

sis is situated as part of a larger argument of the overall safety of a system, and though

this argument can take various formats, arguments are typically presented in a structured

format called an assurance case. Assurance cases typically contain, at a minimum, claims,

arguments, and evidence, though Rushby explains in [36] that “standards and guidelines

on which some certification processes are based often specify only the evidence to be pro-

duced; the claims and argument are implicit, but presumably informed the deliberations

that produced the guidelines.”

Assurance case notation, construction and evaluation are themselves well-studied, large

subjects. While we will not go into great detail here, the interested reader is directed to [5]

which is an excellent primer on the state-of-the-art.

26

PCA	
 Interlock	
 Safe	

PCA	
 Interlock	

Avoids	
 OD	
 Verifica(on	

Ra(onale	

App	
 avoids	

bad	
 9cket	

values	

Pump	
 won’t	

run	
 without	

9ckets	

(Subclaim	
 n	

from	
 HA)	

Sta9s9cal	
 model	

of	
 popula9on’s	

analgesic	

tolerance	

Pa9ent	

tolerates	

analgesic	

…	

Figure 2.8: An example of the Claims-Argument-Evidence assurance case format’s graph-
ical notation that is equivalent to Figure 2.9. Adapted from [5, pg. 56]

ARGUMENT PCA Interlock Avoids Overdose

CLAIM

The PCA Interlock is safe

ASSUMPTIONS

The patient has a standard tolerance for analgesic

PREMISES

App avoids bad ticket values,

PCA pump won’t run without tickets,

...

Subclaim n from Hazard Analysis

JUSTIFICATION

Verification Rationale

CONFIDENCE

Statistical models have been used in the app’s construction

END ARGUMENT

Figure 2.9: An example of the Claims-Argument-Evidence assurance case format’s textual
notation that is equivalent to Figure 2.8. Adapted from [5, pg. 56]

Notations

Rushby explains that there are two primary notations for assurance cases, with some degree

of tool support for both the notations themselves and converting between the two [5].

27

Claims-Argument-Evidence (CAE) This notation, developed by Adelard, has both

textual and graphical representations. An example from Rushby [5] that has been adapted

for the PCA Interlock is shown graphically in Figure 2.8 and textually in Figure 2.9. The

figures show some of the more common elements of assurance cases (claim, justification,

etc.) as well as less common ones, like assumptions (or “side-warrants,”) and statements

of confidence (or “backing,”) which Rushby explains are derived from Toulmin’s argument

structure [37]. CAE has tool support from Adelard itself in the form of the Assurance and

Safety Case Environment (ASCE) software.

Goal Structuring Notation (GSN) A second popular notation was introduced by Kelly

and Weaver in [38] and then explained in great detail in Kelly’s doctoral dissertation [39]. A

great example of this notation can be found in Figure 2 of Feng et al.’s fragment of a safety

case for the PCA interlock scenario [40]. The primary elements here are goals (squares),

strategies (parallelograms), contexts (stadiums), and solutions (circles). Helpfully, goals

can be affixed with diamonds to denote that they are “undeveloped” and still need to be

completed.

ISO/IEC 15026 In addition to academic sources, there is regulatory guidance on as-

surance cases as well in the form of ISO/IEC 15026, which is titled Systems and Software

Engineering – Systems and Software Assurance. The standard has four parts:

1. Concepts and Vocabulary: This part clarifies the meanings of the terms as they are

used in the standard.

2. [The] Assurance Case: This explains the structure and content of an assurance case.

Note that unlike CAE and GSN, this standard uses a textual format.

3. System Integrity Levels: Since different systems have different levels of criticality,

they also should be evaluated to different levels of integrity. This part discusses the

definition and use of levels of assurance integrity.

28

4. Assurance in the Life Cycle: This final part explains how assurance cases can be used

throughout a product’s life cycle by aligning with the normatively-referenced IEEE

15288 and IEC 12207 (System and Software Life Cycle Processes, respectively) [41, 42].

Evaluation

Evaluating an assurance case is no simple task. Not only is the system being evaluated large

and complex except in all but the most trivial of cases, but also, as Rushby points out, an

evaluator is also faced with evaluating the case itself [5]. That is, a great system may have

a bad assurance case, or a bad system may have an excellent assurance case.

Worse still, many of the arguments in an assurance case are by nature subjective, so

in addition to evaluating soundness, an evaluator is also tasked with evaluating confidence.

Deciding how to explicitly include this confidence evaluation is an ongoing challenge, and

initial attempts to model it statistically resulted in less-than-practicable solutions. An alter-

native solution coming primarily from researchers at City University in London, results from

the admission of the possibility of a system’s perfection and it has yielded more promising

results—see for example [43, 44, 45].

2.2.5 Standardization Efforts

While the academic literature contains a great deal of knowledge regarding system safety,

there is also a substantial amount of information, with which much of industry aligns, in

various standards. Standards specific to particular portions of this effort are discussed

throughout this chapter (i.e., IEEE 11073 in Section 2.1.4 or AS 5506 in Section 2.3.3), but

we discuss and summarize a handful of relevant standards here.

General System Safety Standards

Though there are a number of standards specific to the (software-driven) medical device

domain, there are two more general standards we discuss first in order to orient the reader

29

to the area and align with non-medical safety efforts.

IEC 61508 Perhaps the most relevant general system safety standard is IEC 61508, titled

Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems

[46]. The seven-part standard discusses safety requirements for electrical, electronic, and/or

programmable electronic (E/E/PE) systems throughout their lifecycle. The standard is

divided into seven parts. Those parts provide both requirements (e.g., general requirements

(part 1), requirements for E/E/PE safety-related systems (part 2), software requirements

(part 3)) and guidance on meeting those requirements (e.g., examples of methods for the

determination of safety integrity levels (part 5). It also provides standardized definitions

and abbreviations (part 4), guidance on applying parts 2 and 3 of the standard (part 6),

and an overview of techniques and measures (part 7)).

ARP 4761 A second notable standard is ARP 4761, titled Guidelines and Methods for

Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment [47].

Though this standard applies to the construction of aircraft rather than generic systems or

medical devices, it is valuable because it has been analyzed and referenced by a number of

important authors in the safety literature, e.g., Leveson and Rushby [48, 5]. The process

consists of three main analyses (explained in detail in the standard’s first three appendices)

which are designed to roughly correspond to an aircraft’s primary development phases:

1. Functional Hazard Assessment (FHA): This analysis, which aligns with the require-

ments phase of an aircraft’s development, should “identify and classify the failure

condition(s) associated with the aircraft functions and combinations of aircraft func-

tions.” It “is a high level, qualitative assessment of the basic aircraft functions as

defined at the beginning of aircraft development.”

2. Preliminary System Safety Assessment (PSSA): This analysis uses as input the output

of the FHA, and “is a systematic examination of the proposed system architecture(s)

30

to determine how failures can cause the functional hazards identified by the FHA.” It

corresponds to the design phase of aircraft development.

3. System Safety Assessment (SSA): This analysis uses as input the output of the PSSA,

and “is a systematic, comprehensive evaluation of the implemented system to show

that the safety objectives from the FHA and derived safety requirements from the

PSSA are met.” It corresponds to the test phase of aircraft development.

While ARP 4761 has so far been used with some level of success, Leveson et al. explain in

[48] that “In the reality of increasing aircraft complexity and software control, we believe the

traditional safety assessment process used in ARP 4761 omits important causes of aircraft

accidents.” The authors argue that STPA (which is a product of their laboratory) or other

approaches are necessary to remedy this omission.

Medical System Safety Standards

Much as ARP4761 applies specifically to the construction of aircraft, so too are there med-

ical device safety standards, which we consider here. These standards typically apply to

device vendors and, at times, healthcare delivery organizations as well. They are created by

domain experts and published by standards organizations like the International Organiza-

tion for Standardization (ISO), International Electrotechnical Commission (IEC), American

National Standards Institute (ANSI), and the Association for the Advancement of Medical

Instrumentation (AAMI). Adherence is evaluated by certification authorities like UL (for-

merly known as Underwriters Laboratories), and required by regulatory authorities like (in

the United States) the Food and Drug Administration (FDA). These organizations derive

their authority from legislative or executive actions. The entire “ecosphere” of stakehold-

ers envisioned for the ICE project is more fully explained by Kim et al. in [1]. Here, we

summarize four particularly relevant standards.

31

IEC 60601 As medical devices have been electromechanical in nature for some time,

so too have there been standardization efforts in the area for several decades. The first

edition of one of the oldest standards, ANSI/AAMI/IEC 60601: Safety and Effectiveness of

Medical Electrical Equipment was introduced in 1977 [49]. The standard’s scope “applies to

the basic safety 3 and essential performance of medical electrical equipment

and medical electrical systems. . . ” Like most of the standards discussed in this

section, IEC 60601 is technically a family of standards, rather than a single monolithic

standard. The family is divided into three general areas:

1. 60601: General Requirements: The aim of this standard is to “specify general require-

ments and to serve as the basis for particular standards.”

2. 60601-1-XX: Collateral Standards: These apply to a family of medical electrical equip-

ment/systems. That is, these standards “specify general requirements for basic

safety and essential performance applicable to:

� A subgroup of [medical electrical] equipment (e.g., radiological equip-

ment)

� A specific characteristic of all [medical electrical] equipment not fully

addressed in [the general requirements].”

3. 60601-2-XX: Particular Standards: These apply to a specific type of device (e.g.,

cardiac defibrillators), and they “may modify, replace or delete requirements contained

in [the general requirements] as appropriate for the particular [medical electrical]

equipment under consideration. . . ”

ISO 14971 A second relevant standard, is ANSI/AAMI/ISO 14971: Medical Devices—

Application of Risk Management to Medical Devices [31]. The authors specify that its scope

3Terms in Small Capital letters have specific definitions as part of a number of standards in this
section. This convention is part of the standard; the quotes containing this notation are verbatim.

32

is to “[specify] a process for a manufacturer to identify the hazards associated with medical

devices. . . to estimate and evaluate the associated risks, to control these risks, and to monitor

the effectiveness of the controls.”

While the standard’s definition of terms is very useful (though see Section 2.2.1 for

a caveat), its main contribution is not a process, as the scope might imply, but rather

requirements for whatever process is used. These requirements are divided into four top-

level steps, which reference a number of informative annexes:

1. Risk Analysis: Performing any of a number of processes could meet the requirements

of the standard. Annex G lists several options: Preliminary Hazard Analysis (PHA),

Fault Tree Analysis (FTA), Failure Modes and Effects Analysis (FMEA), Hazard

and Operability Study (HAZOP), and Hazard Analysis and Critical Control Point

(HACCP). We believe that the process described Chapter 4 of this dissertation could

be used as well. Three important components of risk analysis, that are generic to the

process used, are:

(a) Intended Use: The notion of intended use is a particularly important one in

medical device safety analysis. Section C.2.1 of the standard poses questions

that may help identify the intended use of a device, i.e., “[W]hat is the medical

device’s role relative to diagnosis. . . of disease?” or “What are the indications for

use?”

(b) Identification of Hazards: The identification of hazards, as opposed to how haz-

ards could occur, is the focus of some processes (i.e., those types classified as

“Conceptual (or Preliminary) Design Hazard Analysis Types” by [7], e.g., PHA).

(c) Estimation of Risks: This involves estimating both the likelihood of the hazard

occurring as well as the severity if it does occur. Section 3 of Annex D provides

excellent guidance.

33

2. Risk Evaluation: Here the analyst is required to determine if a risk is great enough to

require some sort of compensation.

3. Risk Control: This set of requirements governs the compensation for a given hazard,

if required, and entails:

(a) Option Analysis: Here the analyst simply identifies the possible compensatory

actions.

(b) Implementation of Control Measures: One or more of the options is then imple-

mented.

(c) Residual Risk Evaluation: The new design, with the compensatory actions in

place, is then re-evaluated as in step 1(c). Annex J provides additional guidance.

(d) Risk/Benefit Analysis: If the compensatory action(s) cannot completely remove

the risk of the hazard, the analyst is then guided in weighing the residual risk

against the benefits of the device.

(e) Risks Arising from Control Measures: As the compensatory actions may them-

selves be unsafe, the analyst is instructed to evaluate risks resulting from their

use.

(f) Completeness of Risk Control: The analyst is required to “ensure that the risk(s)

from all identified hazardous situations have been considered.”

4. Evaluation of Overall Risk Acceptability: Finally, the overall risk of the device is

evaluated. Section 7 of Annex D provides more guidance here, including identifying

some candidate analyses (i.e., Fault and/or Event Tree Analysis).

The standard then discusses the need for a report which collects the above informa-

tion. The report will also grow to include production or post-production information, as

appropriate.

34

IEC 80001 A third relevant standard is ANSI/AAMI/IEC 80001: Application of Risk

Management for IT Networks Incorporating Medical Devices [32]. The standard has two

primary sections: roles and responsibilities, and risk management throughout the life cycle

of a component of a medical IT network. Additionally, as in ISO 14971, the standard’s

definitions are particularly useful, perhaps none moreso than the three key properties4

of safety, effectiveness, and data and systems security. Note that the risk man-

agement processes in this standard apply to medical devices after they have been acquired

by a purchaser (i.e., the “standard does not cover pre-market [activities]”).

Roles and Responsibilities The standard identifies several important roles that must

be performed:

� Responsible Organization: The organization (e.g., a hospital) that is “entirely account-

able for the use and maintenance of a medical IT-network” is responsible for the

“risk management process for the medical IT-network, spanning planning,

design, installation, [etc.]” Two elements of the organization have more specific re-

sponsibilities:

– Top Management: A number of responsibilities cannot be delegated beyond

the organization’s management, e.g., establishing risk-management policies, en-

suring the provision of resources, and ensuring participation.

– Medical IT-Network Risk Manager: Supervision of the overall risk manage-

ment process itself, however, is to be led by one person, who has a number of

responsibilities, e.g., managing and reporting on the process to top-level man-

agers.

� Medical Device Manufacturer: Though the standard does not apply to pre-market

activities (i.e., device development), various pieces of information (termed “accom-

panying documents”) need to be provided by a device’s manufacturer.

4See Footnote 3 on page 32

35

� Providers of other information technology: The providers of, e.g., servers, software,

middleware, etc., are also expected to make available certain pieces of information like

requirements, known vulnerabilities, etc.

Risk Management The top management of the responsible organization is

responsible for producing a policy and process for balancing the three key properties

across four main areas:

� Risk Management Planning and Documentation: This involves determining the “risk-

relevant assets” (e.g., hardware, software, etc.), producing supporting documentation

(and enforceable responsibility agreements), which combine to form the risk

management plan.

� Risk Management: Broadly, documentation of four steps are required (note that these

steps—section 4.4 of the standard—resemble/reference ISO 14971):

– Risk Analysis: First, hazards arising from the network are identified, as are risks

of their occurrence.

– Risk Evaluation: Then, the responsible organization determines whether

or not risk control measures are required.

– Risk Control: Next, a number of substeps collectively comprise the risk control

process including considering options for, implementation of, and verification of

risk control measures.

– Residual Risk Evaluation: Finally, the risks of the hazards are reconsidered with

the appropriate compensatory measures in place.

� Change-Release and Configuration Management: Responsible organizations are

required to have a process in place for changes. This process should involve risk man-

agement of proposed changes unless a change permit exists (and such a permit

can only be produced through previous risk management activities.)

36

� Live Network Risk Management: Responsible organizations are also required

to monitor their network and document “negative events” as well as compensatory

actions.

IEC 62304 A fourth standard that should be considered is ANSI/AAMI/IEC 62304 Med-

ical Device Software—Software Life Cycle Processes [50]. It provides an excellent, high-level

view of the full software development process for medical devices as well as providing defini-

tions for standard terms and concepts. Note that it exists at a higher level than ARP4761,

in that all four phases of 4761’s process (Concept Development, Preliminary Design, De-

tailed Design, and Design Validation and Verification) are contained in IEC 62304’s first

step (Development).

There are two important concepts in IEC 62304:

� Software Safety Classification: The standard introduces three classes of software-

driven medical device safety:

Class A “No injury or damage to health is possible”

Class B “Non-serious injury5 is possible”

Class C “Death or serious injury is possible.”

� Software of Unknown Provenance: More commonly used as the initialism “SOUP,”

this term refers to a “software item that is already developed. . . for which adequate

records of the development processes are not available.” Considering the behavior

of such software which is typically acquired in a non-bespoke, off-the-shelf manner can

pose a significant challenge to a safety assessment.

In addition to the concepts, there are detailed descriptions of five processes which col-

lectively comprise the software development lifecycle. The processes, which will overlap to

some extent, are:

5See Footnote 3 on page 32

37

1. Development: This process entails everything from planning and analysis through

implementation, testing, and release.

2. Maintenance: This focuses on planning for and implementing modifications for prob-

lems discovered after release.

3. Risk Management: This largely aligns with (and refers to) ISO 14971, though it

contains additional steps to deal with soup (e.g., the standard’s section 7.1.3).

4. Configuration Management: This deals with processes and documentation for config-

uring both bespoke and SOUP software items.

5. Problem Resolution: This process requires things like investigating software problems,

advising relevant parties, and maintaining records.

2.3 Architecture Modeling

We now turn our focus to documentation of software architectures, the “set of structures

needed to reason about the system, which comprise software elements, relations among them,

and properties of both.” This documentation can be created for a number of reasons—and

used in a number of ways—but we focus here on that documentation which is created to

enable automated analyses and used as a basis for (machine-readable) code and (human-

readable) report generation.

2.3.1 Why Model System Architecture?

In the text Documenting Software Architectures, Clements et al. explain that there are three

primary reasons for documenting a system’s architecture [11]. First, the documentation

“serves as a means of education,” primarily of people who are previously unexposed to a

system. For example, when a new developer has been hired to work with an existing system,

38

the documentation of that system’s architecture is a good place to start his training. Second,

the documentation “serves as a primary vehicle for communication among stakeholders.”

Stakeholders here can refer to a number of people, both the traditional client, whose money

is being used to pay for the system’s construction and also the developer(s) themselves.

Third, documentation “serves as the basis for system analysis and construction;” this work

closely examines the use of architecture documentation for both of these purposes. Our

eventual solution should be a process and accompanying tool that facilitates these goals.

Using Architecture Documentation for System Analysis

Documentation is necessarily a reduced version of a full system—if every aspect of a given

system were fully documented, the system would essentially be reproduced in the language of

the documentation (e.g., narrative english, box-and-line diagrams) rather than the language

of the implementation (e.g., Java). How can an analyst decide which aspects of the system

should be included in the documentation, and which should not? She should focus on those

aspects that would differentiate the system from a competitor; Clements et al. term these

quality attributes. The primary quality attribute the developers of MAP apps are concerned

with is, unsurprisingly, safety; though that actually entails a number of other attributes,

like real-time aspects (i.e., predictable performance) and correctness (even in the face of

errors, i.e., fault-tolerance). Thus, any architecture documentation a MAP app developer

would create should clearly highlight issues related predictable performance and behavior in

the presence of errors. Which properties are necessary for analysis of real-time and safety-

related concerns are well established (see, e.g., [51, 19] for real-time properties and Section

2.2.2 for safety-related properties).

An analyst’s job of determining what exactly to document, even after establishing the

set of relevant quality attributes, is not a straightforward task. Clements et al. explain that

architectural documentation has three obligations related to the attributes:

� Indicate which Quality Attribute Drove the Design: Since safety is driving the design

39

of (likely) every MAP app, this obligation is less significant than it might be in other

systems. That said, if it is at all unclear why a particular design decision is safer than

other options, that should be documentable via our process and tooling.

� Capture Solutions Chosen to Satisfy the Quality Attribute Requirements: This obli-

gation coincides nicely with the next topic of using the architecture documentation

for system construction. Capturing the solution that, when constructed, successfully

realizes the goal of being safe is—as a truism—necessary for the construction of that

system.

� Capture a Convincing Argument why the Solutions Provide the Necessary Quality At-

tributes: Meeting this obligation will lead to a preference for more rigorous (or even

semi-formal) documentation formats, since making a convincing argument is typically

easier in such styles. This obligation also fits nicely with our goal of using the system’s

architecture documentation for system construction, since automation of that relies

heavily on the formality of the documentation.

Using Architecture Documentation for System Construction

Sufficiently descriptive architecture documentation should be usable—by a developer with

working domain knowledge (or at a minimum a reasonable set of assumptions)—as the sole

guide in the creation of a system’s architecture. That is, while architecture documentation

will necessarily leave out the non-architectural aspects of a system (i.e., the logic that

converts inputs to outputs, sometimes referred to as business logic), a developer should

be able to create shells (sometimes referred to as “skeletons”) for each component. These

shells typically consist, in object-oriented software, of things like the classes and methods of

a program (though not the logic within the methods) as well as the creation of application

program interfaces (APIs) that enable access to necessary services: e.g., networking, resource

management, etc.

40

This process can be automated if architecture documentation is done in a machine read-

able language through the process of code generation. Code generation—the process of

translating some machine-readable input to some machine-readable output—is a well-known

technique in computer science (and is typically associated with the compilation process, see

e.g., [52]). In this work, however, we used an analyzable architecture modeling language

called AADL and created a code generator that produced shells of MAP apps which, af-

ter business logic was added, are runnable on the MDCF. This language and tooling are

described in Chapter 3.

2.3.2 Architecture Modeling Techniques

Techniques for modeling the architecture of a software-based system are numerous, and their

study is its own substantial field within software engineering. We briefly summarize current

thinking here in order to situate the work, but do not go into great depth.

Clements et al.: Documenting Software Architectures

Clements et al. state that architecture documentation consists of elements, their relations to

one another, and their properties [11]. An architectural style is comprised of a “specialization

of element and relation types, together with a set of constraints on how they can be used”,

and the result of applying the style to a system is a view of that system’s architecture. That

is, a view is “a representation of a set of system elements and the relationships associated

with them.” Clements et al. identify three main categories of architectural styles:

� Module Views: focus on modules, which are “implementation [units] of software that

[provide] a coherent set of responsibilities.”

� Component and Connector Views: focus on components, which are runtime entities

that are processing units in an executing system, and connectors, which are runtime

pathways of interaction between two or more components.

41

� Allocation Views: focus on “the mapping of software units to elements of an environ-

ment in which the software is developed or executes.”

Standards-Based Approaches

As in the system and medical-device safety domains, there are standards that address the

techniques used to document software-based systems. Two particularly relevant standards

are IEC 10746 and IEEE 42010.

IEC 10746 ISO/IEC 10746, titled Information Technology – Open Distributed Processing

(ODP) focuses on five viewpoints of a system and the correspondences between them [53].

Note that, unlike Clements et al., these viewpoints do not necessarily correspond cleanly to

design- or run-time constructs (e.g., modules or components, respectively) but rather “to

five clear groups of users of a whole family of standards.” [54] The five viewpoints, which

are summarized by Linington et al. in [54] are:

1. Enterprise: This viewpoint covers the needs of the enterprise (where enterprise is

defined as “any activity of interest”), including the “objectives, business rules, and

policies that need to be supported by the system being designed.”

2. Information: This viewpoint aims to synchronize the information stored and manip-

ulated in the system between the other perspectives, so as to prevent incongruous

definitions from cropping up amongst the viewpoints.

3. Computational: This viewpoint considers the “high-level [object-oriented] design of

the processes and applications supporting the enterprise activities” and refers to the

information viewpoint for the actual data stored in the particular objects. Allocation

to runtime resources is not specified in this viewpoint.

4. Engineering: This viewpoint describes the interactions between the various computa-

tional constructs. These descriptions form a set of guarantees provided to the compu-

42

tational viewpoint, which are referred to as transparencies.

5. Technology: This viewpoint considers the realization of the system in the real world,

and “represents the hardware and software components of the implemented system,

and the communication technology that provides links between these components.”

Additionally, Linington et al. discuss the language(s) for representing ODP viewpoints,

and note that textual, graphical, or machine-readable formats may be desirable for various

stakeholders/tasks. The different languages and notations used by the stakeholders gives

rise to the need for correspondences, which provide links between the elements of different

viewpoints.

IEEE 42010 ISO/IEC/IEEE 42010, which is titled Systems and Software Engineering—

Architecture Description, generalizes the notion of stakeholder-driven viewpoints [55]. Clements

et al. explain that this concept is found in IEC 10746 as well as other existing approaches,

“such as Kruchten’s 4+1 approach, Zachman’s Architecture Framework, and even the DoD

Architecture Framework. . . ” [11] At a high level, the standard requires a) the identifica-

tion of stakeholders, b) identification of their “architecture-related concerns,” c) a set of

viewpoints that collectively address those concerns, d) a set of views that have a one-to-one

mapping onto the set of viewpoints, e) a set of models that compose the views, and f) ra-

tionale justifying the architectural decisions made [11].

Techniques Used in this Work

Clements et al. explain that the approach detailed in [11] is compatible with IEEE 42010,

and provide a mapping; a similar mapping has been proposed for describing this work in

terms of IEC 10746. In this work, though, we primarily use the following styles, as identified

by Clements et al.:

� Decomposition: This design-time, module-based style is used to relate software and

hardware elements to their containing systems (e.g., MAP apps are composed of med-

43

ical devices and software, the software is composed of processes which are themselves

made up of threads, etc.).

� Pipe and Filter: This run-time, component-and-connector based style is used to show

how information arrives in a component via some input port, is transformed by the

component, and then leaves via some output port.

While these are some of the architectural documentation styles most well-suited to the

MAP app domain, our choice was also guided to a large extent by our use of the architectural

modeling language AADL.

2.3.3 Technological Approaches to Architecture Modeling

Clements et al. explain that there are three categories or styles of notation for architecture

documentation [11]:

1. Informal Notations: These are formats that are typically hand-drawn on a whiteboard

or in a document, with semantics described only in natural language.

2. Semiformal Notations: These are formats that have some well-defined rules, though

there is not the full mathematical precision of a formal notation.

3. Formal Notations: These are formats that have fully and precisely defined semantics,

which enables a number of automated tools, including those for analysis and for code

generation.

In this work we did not consider informal notations since much of the MAP vision relies

on the software-driven automation of tasks. We note, though, that in general these notations

are quite useful, and a “sketch” of a system in some informal notation may precede its initial

development in one of the more formal languages.

44

Unified Modeling Language and Systems Modeling Language

Add UML Diagram?

Unified Modeling Language (UML) UML is perhaps the best-known modeling lan-

guage for software-based systems. It has a graphical notation, and Clements et al. note that

it “has grown to become the de facto standard for representing software designs in systems

of all kinds.” [11] Indeed, UML is even the de facto standard for ODP diagrams; a tailored

version of the language is used throughout [54].

Though the language began as integration of object-oriented methods, it has grown to

include architectural description capabilities [56]. UML provides a number of different types

of diagrams, and Clements et al. explain that a developer should not expect or attempt to

use all of them but should rather pick those most relevant to the system he’s building. While

UML is useful for communicating much about a system, it is not suited to our needs because

it is too broadly focused and can be ambiguous (in fact, Clements et al. offer a number of

pieces of advice on avoiding “UML Ambiguity Traps”).

Add SysML Diagram?

Systems Modeling Language (SysML) SysML is a systems-modeling language that

is developed as a profile of UML to support “the specification, analysis, design, verification,

and validation of [systems which] may include hardware, software, information, processes,

personnel, and facilities.” [57]. To that end, SysML solves one of the shortcomings identified

in UML, in that it is much more tailored to the domain we work in. SysML adds a focus

on the lifecycle of system development, and includes diagrams for things like requirements,

while carrying over some UML diagrams e.g., sequence and package. As it is based on UML,

though, it still has ambiguous semantics.

There are efforts, though, to formalize subsets or particular diagrams of UML and

SysML: e.g., SysML’s Activity Diagram [58], UML’s Statechart Diagram [59], or UML’s

sequence Diagram [60]. The tool support for these formalizations is disparate at best as

45

most tools for UML and SysML are focused on flexible diagramming rather than enabling

analysis.

Architecture Analysis & Design Language

The Architecture Analysis and Design Language (AADL) is a model-based architecture

description language developed in 2004 by the Society of Automotive Engineers (SAE)

[61]. It enables a developer to completely model a system’s architecture: the software that

provides the required functionality, the hardware that the software runs on, as well as the

binding from the latter to the former. It was “designed to provide. . . modeling and analysis

capabilities” that “enable the analysis and prediction of a product’s critical aspects before

it is operational.” [62]

Tool and Industry Support AADL is supported by a number of tools, including RAM-

SES, Ocarina, and OSATE2 [63, 64, 65]. OSATE2 consists of an Eclipse-based IDE for

AADL and a collection of plugins for architectural analysis. The language has previously

been used successfully on a number of projects in a range of domains including Boeing’s

integrate-then-build approach in its System Architecture Virtual Integration (SAVI) effort,

modeling of security and non-functional behavior, and code generation and compositional

verification of medical devices [66, 67, 68, 69].

Basic Usage AADL has both a graphical and textual declarative syntax—which can be

instantiated to an instance model—that describe a system’s components and the connec-

tions between them. Figure 2.10 shows an example of the graphical notation, while the

other figures in this section use the textual syntax. An AADL model consists of zero or

more property sets and packages, which themselves are composed of any combination of

component types, component implementations and annex libraries [62].

� Property Sets: These are collections of either pre-defined or custom property types

and values that are used in the model. Property sets are attached to one or more

46

Figure 2.10: A graphical view of an AADL component. The textual view of this component
is shown in Figures 2.12 and 2.13.

1 property set MAP_Properties is
2 Process_Kind : type enumeration (logic, display);
3 Process_Type : MAP_Properties::Process_Kind applies to (process);
4 Component_Kind : type enumeration (actuator, sensor);
5 Component_Type : MAP_Properties::Component_Kind applies to (device);
6 Output_Rate : Time_Range applies to (port);
7 Channel_Delay : Time applies to (port connection);
8 Worst_Case_Execution_Time : Time applies to (thread);
9 Exchange_Name : aadlstring applies to (port);

10 end MAP_Properties;

Figure 2.11: A simple AADL property set

components, and used by the various analyses performed by AADL tooling, e.g., tim-

ing properties would be used by latency analysis. Figure 2.11 shows an example of

an AADL property set. Lines 2 and 4 show the creation of new property types while

lines 3 and 5-9 show the creation of new properties. Note how the set of compo-

nents that a property can be used on is restricted by its “applies to” clause, e.g., the

47

1 package PCA_Shutoff_Logic
2 public
3 with PCA_Shutoff_Types, PCA_Shutoff_Properties, MAP_Properties;
4

5 process ICEpcaShutoffProcess
6 features
7 SpO2 : in event data port PCA_Shutoff_Types::SpO2;
8 ETCO2 : in data port PCA_Shutoff_Types::ETCO2;
9 RR : in event data port PCA_Shutoff_Types::RR;

10

11 CapnographError : in event port;
12 PulseOxError : in event port;
13

14 CmdPumpNorm : out event data port PCA_Shutoff_Types::PumpCmd;
15 flows
16 spo2_flow: flow path SpO2 -> CmdPumpNorm;
17 properties
18 MAP_Properties::Process_Type => logic;
19 annex EMV2 {**
20 use types PCA_Shutoff_Errors;
21 error propagations
22 SpO2 : in propagation {SpO2ValueHigh};
23 ETCO2 : in propagation {ETCO2ValueHigh};
24 RespiratoryRate : in propagation {RRLow, RRHigh};
25 CmdPumpNorm : out propagation {InadvertentPumpNormally};
26 flows
27 HighSpO2LeadsToOD : error path SpO2{SpO2ValueHigh} ->

CmdPumpNorm{InadvertentPumpNormally};↪

28 HighETCO2LeadsToOD : error path ETCO2{ETCO2ValueHigh} ->
CmdPumpNorm{InadvertentPumpNormally};↪

29 LowRRLeadsToOD : error path RR{RRLow, RRRigh} ->
CmdPumpNorm{InadvertentPumpNormally};↪

30 end propagations;
31 **};
32 end ICEpcaShutoffProcess;
33

34 -- Package continues below...

Figure 2.12: A simple AADL component type. A graphical view of this component is shown
in Figure 2.10

Process Type property can only be used on Process components.

� Packages: These are collections of component types, implementations, and annex

libraries. Figures 2.12 and 2.13 show an example package declaration.

– Component Types: Component types are specifications of component interfaces,

48

35 -- Package continues from above...
36

37 process implementation ICEpcaShutoffProcess.imp
38 subcomponents
39 UpdateSpO2Thread : thread UpdateSpO2Thread.imp;
40 UpdateRRThread : thread UpdateRRThread.imp;
41 PumpControlThread : thread PumpControlThread.imp;
42

43 CapnographErrorThread : thread CapnographErrorThread.imp;
44 PulseOxErrorThread : thread PulseOxErrorThread.imp;
45 connections
46 incoming_spo2 : port SpO2 -> UpdateSpO2Thread.SpO2In;
47 incoming_rr : port RR -> UpdateRRThread.RRIn;
48 rr_to_pump_ctrl : port UpdateRRThread.RROut -> PumpControlThread.RR;
49 spo2_to_pump_ctrl : port UpdateSpO2Thread.SpO2Out ->

PumpControlThread.SpO2;↪

50 pump_cmd_out : port PumpControlThread.PumpNorm -> CmdPumpNorm;
51

52 capnog_err_in : port CapnographError ->
CapnographErrorThread.CapnographError;↪

53 pulseox_err_in : port PulseOxError ->
PulseOxErrorThread.PulseOxError;↪

54 end ICEpcaShutoffProcess.imp;
55 end PCA_Shutoff_Logic;

Figure 2.13: A simple AADL component implementation. A graphical view of this compo-
nent is shown in Figure 2.10

and are categorized into one of: hardware (i.e., processor, memory, bus, etc.),

software (i.e., data, thread, process, etc.), composite (system), or generic (ab-

stract). Figure 2.12 shows an example AADL component type, in this case a

process. All declarations and properties that are relevant to the type itself (as

opposed to specific implementations) are aggregated in a component’s type dec-

laration, including:

* Features: Lines 7-14 are the external features of the component: incoming

and outgoing communication points (ports in this case) which the component

uses to communicate with other components.

* Flows: Line 16 is a flow specification, which documents how messages arriv-

ing on incoming communication points affect the component’s output. They

49

1 package MAP_Errors
2 public
3 annex EMv2
4 {**
5 error types
6

7 -- =============================== --
8 -- Timing Errors Applied to an App --
9 -- =============================== --

10

11 PhysioParamLate : type extends ErrorLibrary::LateDelivery;
12 ControlActionLate : type extends ErrorLibrary::LateDelivery;
13 PhysioParamFlood : type extends ErrorLibrary::HighRate;
14 ControlActionFlood : type extends ErrorLibrary::HighRate;
15 MissedPhysioParamDeadline : type extends ErrorLibrary::DelayedService;
16 MissedControlActionDeadline : type extends ErrorLibrary::DelayedService;
17

18 end types;
19

20 -- ============================= --
21 -- Error behavior of a Component --
22 -- ============================= --
23

24 error behavior MAP_Errors
25 use types MAP_Errors;
26 events
27 badInput: error event;
28 badAlgorithm: error event;
29 states
30 working : initial state;
31 flaky : state;
32 failed : state;
33 transitions
34 working -[badInput]-> failed;
35 working -[badAlgorithm]-> flaky;
36 end behavior;
37 **};
38 end MAP_Errors;

Figure 2.14: Part of a simple AADL Annex Library

can be high level, as in this example, or trace a more detailed path through

the component’s subcomponents. Additionally, this specification can be used

by a flow specification in a higher level of abstraction (e.g., in the system

component that contains this process).

* Properties: Line 18 is a property attachment, which sets the value of a

50

property for all instances of this component type.

* Annexes: Lines 19-31 are error modeling annotations for this component

type. The details of this particular block are specific to the annex itself, and

other annex annotations for things like behavior modeling would be attached

to this component type in a similar fashion.

– Component Implementations: Component implementations specify the architec-

tural implementation of component types. There may be zero or more implemen-

tations of a given type; determination of which implementation is used is part

of the model instantiation process. Figure 2.13 continues the package that was

started in Figure 2.12; it shows an example AADL component implementation.

Implementations contain one possible architectural decomposition of the com-

ponent type: i.e., its subcomponents (lines 39-44), their interconnections (lines

46-53), and any declarations specific to the particular implementation. Note that

the connections in a component implementation are both between subcompo-

nents (e.g., line 48) and between subcomponents and the component’s external

interface (e.g., line 46).

– Annex Libraries: AADL has a number of language annexes which extend its mod-

eling scope beyond system architecture, to things like behavior or error modeling

[70, 33]. Figure 2.14 shows an example package consisting only of an error mod-

eling annex library.

Error Modeling Annex The AADL error modeling annex (in its second version, abbre-

viated EMV2) consists not only of special properties and declarations that can be attached

directly to component types and implementations (e.g., lines 19-32 of Figure 2.12) but also

high-level “libraries” which can contain error types, failure state machines, and other con-

structs (e.g., Figure 2.14) [33].

The annex has a number of features including a type system for describing error hierar-

51

TimingRelatedError	

SequenceTimingError	
 ServiceTimingError	
 ItemTimingError	

HighRate	
 DelayedService	

LateDelivery	
 EarlyDelivery	

EarlyService	
 RateJi<er	
 LowRate	

Figure 2.15: Timing related errors in the EMV2 error type hierarchy, from [6]

chies and a library of common error types, which are refined from five “root” error types.

Figure 2.15 shows the timing related errors—other root error types are related to value,

service, replication and concurrency problems—which can then be further refined by a de-

veloper to be more tailored to a system’s specific architecture and implementation, as in

Figure 2.16. The error type propagation aspects of the annex (e.g., lines 22-29 of Figure

2.12) are based on Wallace’s fault propagation and transformation language and calculus;

they enable a developer to model error types, sources, propagations, behavior, detections,

etc. [33, 35]. Lines 11-16 of Figure 2.14 show the declaration of some fault types (those

corresponding to the red errors in Figure 2.16), while lines 24-36 show a generic behav-

ior state machine of a component that may get bad input (in which case it fails) or be

built incorrectly (in which case it becomes unreliable). Larson et al. have previously exam-

ined the application of EMV2 to a safety-critical medical device, and found that it enabled

the realization of a number of benefits, including (a) formal, machine-readable inputs; (b)

tight integration with the architectural model; and (c) automated construction of FTA and

FMEA-like reports [71].

52

TimingRelatedError	

SequenceTimingError	
 ServiceTimingError	
 ItemTimingError	

HighRate	
 DelayedService	

LateDelivery	
 EarlyDelivery	
 EarlyService	
 RateJi<er	
 LowRate	

MissedPhysioParamDeadline	

MissedControlAcConDeadline	
 PhysioParamLate	

ControlAcConFlood	

ControlAcConLate	

PhysioParamFlood	

RRLate	
 PumpShutoffLate	

EtCO2Late	
 SpO2Late	

RRFlood	
 PumpShutoffFlood	

EtCO2Flood	
 SpO2Flood	

Figure 2.16: Timing related errors extended first to the ICE Architecture (red) and subse-
quently the PCA interlock app (blue), from [6]

53

Chapter 3

An AADL Subset for MAP Apps

3.1 Introduction

Although work has been done on MAP app requirements (e.g., [72]) and the architecture

of MAPs (e.g., [73, 13]), little attention has been paid to the architectures of MAP apps

themselves. As discussed in Section 2.1.1, these MAP apps are essentially new medical

devices1 that are: a) specified by an application developer, b) instantiated at the point

of care, and c) coordinated by the MAP itself. Previously, most MAP apps were built

to run on prototype platforms and were designed in an ad-hoc manner with the goal of

demonstrating certain functionality concepts rather than as full-blown, industrial-strength

implementations.

What is needed is to move from this ad-hoc approach to something that can enable

systematic engineering and reuse. Such an approach would enable true component-based

development, which could utilize network-aware devices as services on top of a real-time,

publish-subscribe middleware. These components (and their supporting artifacts) could be

composed by an application at runtime to define the medical system’s behavior, though this

would require careful reasoning about the architecture of the application. While this careful

1In fact, MAP apps are sometimes referred to as virtual medical devices or platform-constituted medical
devices.

54

analysis of MAP apps has not been performed before, the architectures of other bus-based,

safety-critical systems have been given a great deal of attention. Much of that attention has

been focused on AADL (see Section 2.3.3).

Since MAP app development is in need of more engineering rigor and AADL was devel-

oped to provide architectural modeling and analysis for safety-critical systems, it seems nat-

ural to evaluate their combined use. However, it is not immediately clear whether AADL,

a technology aimed at the integration of hardware and software in the automotive and

aerospace industries, will be applicable to the domain of MAP apps. For example, since

MAPs do not expose the raw hardware of their platform—rather programming abstrac-

tions above it—it is unclear how well certain AADL features (e.g., those designed to model

hardware) will work when only these software abstractions are important.

What is needed, then, is: a) a subset of AADL that is useful when describing the

architecture of MAP apps, and b) a supporting set of tools to facilitate app development.

In this chapter, we describe a proposed subset and prototype toolset that target the Medical

Device Coordination Framework (MDCF, see Section 2.1.3); while specific to MDCF, we

believe our work generalizes to other similarly rigorously engineered MAPs.

Specifically, in this chapter we describe:

1. A proposed subset of the full AADL (selected components and port-based communi-

cation) that is useful for describing a MAP app’s architecture.

2. A proposal for a set of properties necessary for describing the real-time (RT) and

quality-of-service (QoS) properties of MAP apps. This set includes some of AADL’s

built-in properties, and it also utilizes AADL’s property description mechanism to

specify new properties.

3. An implementation of a translator that takes as input the relevant properties and app

component structure (as identified in 1 and 2) and produces as output an application

for the MDCF. Specifically, the translator produces code that automatically:

55

(a) Handles non-developer-modifiable activities, e.g., task instantiation, port-to-channel

binding, message marshalling/unmarshalling, etc.

(b) Configures the component layout via the underlying publish/subscribe middle-

ware as specified in the architectural model.

(c) Enforces the RT and QoS parameters via properties described in 2.

4. A runnable app which demonstrates the expected translator output and implements

the previously discussed PCA Interlock Scenario. The architecture of the app is spec-

ified in our proposed subset of AADL and the output is runnable on the MDCF.

3.1.1 App Development Environment Vision

At the center of the long-term MAP app development vision is an App Development Envi-

ronment (ADE) that is built on an industrial grade Integrated Development Environment

(IDE) in order to support model-driven development of apps. The IDE should provide ac-

cess to traditional software development tools including editors, compilers, debuggers, and

testing infrastructure. The ADE should then add on to that a pluggable architecture so that

a variety of components for supporting app analysis, verification, and artifact construction

can be easily connected to the environment. Additionally, the envisioned ADE should en-

able compilation and packaging of an app so that it can be directly deployed and executed

on a MAP.

In addition to supporting traditional development, an important aspect of our vision

is that the ADE should, in the long-term, support preparation of a variety of artifacts re-

quired for third-party certification and regulatory approval of the app. For example, the

ADE might support the construction of requirements documents with capabilities enabling

requirements to be traced to both individual features and formal specifications in the app

model and implementation. The ADE should support preparation of hazard and risk analy-

sis artifacts which should also be traceable to models/code. We envision a variety of possible

56

forms of verification such as a) app to device interface compatibility checking, b) compo-

nent implementation to component contract conformance verification, c) model checking of

real-time aspects of concurrent interactions, d) error and hazard modeling using the EMV2

annex for AADL [71], and e) proof environments that support full-functional correctness

proofs of an app’s behavior. The ADE could also support construction of rigorous styles

of argumentation, such as assurance cases (again, with traceability links to other artifacts).

The ADE might also support preparation of third-party certification and regulatory submis-

sion documents (e.g., the FDA’s 510(k) or specific documentation in the format of a relevant

standard, see Section 2.2.5), as well as the packaging of artifacts into digitally-signed archives

that would be shipped to relevant entities. These organizations would be able to use the

same framework to browse the submitted artifacts and re-run tests/verification tools.

The work presented in this chapter describes the MDCF Architect, and it represents a

necessary, enabling first step towards achieving this vision. The work presented in Chapter 4

is a second step, in that it achieves an architecturally integrated hazard analysis technique for

MAPs. Installation information and user-targeted documentation for the MDCF Architect

is available at santoslab.org/pub/mdcf-architect.

3.1.2 Mechanization and Regulatory Authorities

The enforcement of safety standards, e.g., those described in Section 2.2.5, is a primarily

manual one that can take significant amounts of time. Since one of the key advantages of

the MAP vision is that many apps will be considerably simpler to build than traditional

devices, a corresponding change to the regulatory approval process will be necessary to

avoid a backlog of unapproved MAP apps. One way to greatly reduce the amount of

manual effort necessary for understanding the intended use of an app is to have much

of the verification work done automatically. A logically separate, machine readable—and

machine verifiable—architecture is one of several artifacts that could aid in this automated

verification. Further, hazard analyses (i.e., FMEA, FTA, or STPA) that are currently

57

http://santoslab.org/pub/mdcf-architect/

not performed, or are developed in isolation from an app’s implementation, could be built

on top of an app’s architectural description. AADL’s error modeling annex, for example,

already enables developers to generate FMEA and FTA-like reports from annotated models

of a system’s architecture, and Chapter 4 describes annotations and tooling to support

an STPA-like process for MAP apps. We believe that a similar process could reduce the

(currently substantial) difficulty involved in verifying claims about an app’s behavior. This

would enable the linking of claims about an app’s functionality to the implementation

of that functionality, and this traceability could further reduce the burden on regulatory

authorities.

3.2 Why AADL for MAPs?

Before we examine the subset of AADL that we use, though, we provide an in-depth justi-

fication for why we believe AADL is particularly well-suited for MAP app architectures.

3.2.1 Medical Application Platforms

MAP applications, as distributed systems, are built using the traditional “components and

connections” style of systems engineering. Any development environment for apps, then,

should have a number of core features that are important to component-based development:

� Support for well-defined interfaces: The components of distributed systems should be

self-contained, with the exception of the inputs and outputs they expose over well-

defined interfaces. This enables a library of commonly used components to be made

available to developers.

� Support for common patterns of communication: Not only are the components of

such a system often reusable, but so are the styles of communication between the

components (see, e.g., [74]). Adhering to common patterns will also result in a more

58

straightforward software verification process.

� Support for real-time and quality-of-service configuration: In a real-time, safety-critical

distributed system, computational correctness requires not only correct information,

but also getting it at the correct time. Safety arguments can be difficult to make

without the ability to set expected timings in an app’s configuration (e.g., a task’s

worst-case execution time) and have a guarantee of the enforcement of those timings

from the underlying middleware.

The translator and example artifact portions of this work target the MDCF because it

supports a rigorous notion of component specification. Since the MIDdleware Assurance

Substrate (MIDAS) [19] is one of the middleware frameworks supported by the MDCF, our

translator supports setting a range of timing properties attached to both connections (e.g.,

a port’s latency) and components (e.g., a task’s worst-case execution time). As previously

noted, though, the work described here is not deeply tied to the MDCF but could be

targeted to any MAP implementation that supports similarly rigorous notions of component

definition, configuration, and communication.

We believe the core concepts common to definitions of app architectures are:

� Layout: A high-level schema that defines how various components connect to one

another and collectively form the app.

� Medical Device: Individual medical devices which will either be controlled by software

components, or produce physiological information that will be consumed by software

components.

� Software Component: Software pieces that typically (though not exclusively) consume

physiological information and produce clinically meaningful output: e.g., information

for a display, smart alarms, or commands to medical devices.

59

� Channel: Routes through a network over which components (i.e., both medical devices

and software) can communicate.

Taken together, the core features and concepts enable reusability by ensuring that com-

ponents communicate over interfaces in common, pattern-based ways with strict timing

constraints. A component is capable of interoperating in any other system where it “fits;”

that is, its interface exposes the required ports, utilizes the same communication patterns,

and has compatible timing requirements.

3.2.2 Architecture Analysis & Design Language

As explained in Section 2.3.3, AADL is a standardized, model-based engineering language

that was developed for safety-critical system engineering, so it has a number of features that

make it particularly well suited to our needs:

� Hierarchical refinement: AADL supports the notion of first defining an element and

then further refining it into a decomposition of several sub-components. This will not

only keep the modelling elements more clean and readable, but will also allow app

creators to work in a top-down style of development. They will be able to first think

about what components make up the system and how those components would be

linked together, define those components, and finally reason about how those individ-

ual components would themselves be comprised.

� Distinction between types and implementations: AADL allows a developer to first

define a component and then give it one or more implementations, similar to the

object-oriented programming practice of first defining an interface and then creating

one or more implementations of that interface. This keeps app models cleaner and

enables code re-use.

� Extensible property system: AADL allows developers to create properties, specify

their type, and restrict which constructs they can be attached to. We have used

60

AADL Construct MAP Concept

Components

System Layout

Device Device

Process Software Component

Thread Task

Connections

System Level Channel

Process Level Task Trigger

Process Implementation Level Task-Port Communication

Table 3.1: AADL syntax elements and their MAP app mappings

this feature to, for example, associate various physiological parameters with their

IEEE11073 nomenclature “tag” [25].

� Strong tool support: AADL is supported by a wide range of both open source and

commercial tools. We have used OSATE2 as the basis for our toolset, and have found a

number of its features quite useful (e.g., element name auto-completion, type-checking,

etc.).

3.2.3 Why subset AADL?

In general, AADL models are composed of components and their connections describing a

complete “co-designed” system: software, hardware, and the bindings between the two. To

support this, AADL includes a number of constructs for modeling software entities (e.g.,

thread, process, data, etc.), hardware entities (e.g., processor, memory, device, etc.), and

composite entities (e.g., system and abstract). AADL also includes connections between

components of various types such as ports, data accesses, bus accesses, etc. However, since

MAPs are managed platforms, i.e., developers author only the software elements while the

platform manages the allocation of (and bindings to) hardware resources. That is, since we

61

use AADL in a restricted manner to focus—exclusively—on what an app developer would

need to specify to enable construction of a MAP app, we have pared down the language

considerably.

Therefore, we do not use the full AADL—because the hardware elements are fixed,

along with the allocation of the software elements to them—but instead use only the subset

specified in Table 3.1. Further, nearly every element of our subset2 has had its semantics

modified, at least slightly, from the original AADL specification. Two features that are rep-

resentative of the problems that would be caused by the use of AADL without modification

are the process construct, and data access connection:

� Process Construct: Feiler and Gluch write that “An AADL process represents a

protected address space that prevents other components from accessing anything in-

side the process and prevents threads inside a process from causing damage to other

processes.” [62, pg. 135] Clearly, in a Java-based MAP like the MDCF, creation of

protected address spaces is not easily achievable or (likely) desirable. Instead, as ex-

plained in Section 3.3.3, an AADL process in our subset translates to a Java class,

which has many of the same desirable properties regarding encapsulation.

� Data Access Connection: The same AADL text explains that “. . . multiple threads

may operate on a common data area (i.e., they share access to a data component). . . In

AADL, you model this through data access features and access connections.” [62,

pg. 210] Similar to the process construct, realizing the semantics of data access

connections would not only be difficult or impossible in a distributed, publish-subscribe

system like the MDCF, but doing so would not be particularly useful either.

Support for currently-unused constructs may be added in the future, as our modeling

language expands to use more of the features of AADL; see the discussion in Section 7.1.1.

2The exception is the device construct.

62

3.3 Language Walkthrough

In this section, we describe the process of creating a MAP app with our prototype toolset

using the motivating example of the PCA Interlock app initially described in Section 2.1.5.

This app consumes various physiological parameters to determine the health of the patient

and disables the flow of an analgesic when there are indications of respiratory failure. A high-

level, ICE-configuration/logical view of the app is shown in Figure 2.4. The diagram shows

that in addition to the PCA pump, there are four sensors: a) a blood-oxygen saturation

(SpO2) sensor, b) a pulse rate sensor, c) a respiratory rate sensor, and d) an end-tidal carbon

dioxide (ETCO2) sensor. In this application, the sensors may be on the same device: SpO2

and pulse rate information are often produced by a pulse oximeter (e.g., the Ivy 450C [75]),

and respiratory rate and ETCO2 information can come from, e.g., a capnography machine

(e.g., the Capnostream 20 [76]).

The PCA pump consumes information from the app (e.g., tickets) while the other devices

produce information in the form of sensor data that is used by the app’s logic. An important

part of the app (and indeed the entire MAP vision) is that it will use suitable physiological

parameters regardless of their source; that is, instead of building the app to work with a

specific device or set of devices, it is built to work with a generic source of the required

physiological parameters.

Figure 3.1 gives an overview of the app architecture development, code generation, and

app instantiation process. Part (A) of the figure shows the various AADL artifacts that

compose the app; note that they are labeled with the number of the subsection they are

discussed in. Part (B) shows the execution and configuration artifacts that result from code

generation, which are discussed in the next section. It also highlights the large number

of components (signified by dashed lines) whose generation is completely automated. Part

(C) shows the app’s instantiation on a running MAP, which was first sketched in Figure

2.4, with both the computation hosting and communication aspects of the app having been

realized in the ICE architecture.

63

 < <subName>SpO2</subName>
 <pubComp>
 <name>$PLACEHOLDER$</name>
 <type>$PLACEHOLDER$</type>
 <role>Device</role>
 </pubComp>
 <subComp>
 <name>appLogic</name>
 <type>ICEpcaInterlockProcess</type>
 <role>Logic</role>
 </subComp>
 <channelDelay>100</channelDelay>
 </mdcf.core.app.Channel>
 <mdcf.core.app.Channel>
 <chanName>$PLACEHOLDER$</chanName>
 <subName>PulseRate</subName>

<mdcf.core.app.AppSpec>
 <appName>PCA_Interlock_System</appName>
 <components>
 <mdcf.core.app.VirtualComponent>
 <name>appDisplay</name>
 <type>ICEpcaDisplayProcess</type>
 <role>AppPanel</role>
 </mdcf.core.app.VirtualComponent>
 <mdcf.core.app.VirtualComponent>
 <name>appLogic</name>
 <type>ICEpcaInterlockProcess</type>
 <role>Logic</role>
 </mdcf.core.app.VirtualComponent>
 </components>
 <channels>
 <mdcf.core.app.Channel>

System.cfg.xml

D
ev

2.
ja

va

LogicSuperType.java

Logic.java

Logic.compsig.xml
DisplaySuperType.java

Display.java

Display.compsig.xml

Task1

Task2

Task3

Task4
Task2

Task1

D
ev

1.
ja

va

appLogic : process
PCA_Interlock_Logic::ICEpcaInterlockProcess.imp;
appDisplay : process
PCA_Interlock_Display::ICEpcaDisplayProcess.imp;
pcaPump : device
PCAPump_Interface::ICEpcaInterface.imp;
connections
-- From components to logic
spo2_logic : port pulseOx.SpO2 -> appLogic.SpO2;
pulserate_logic : port pulseOx.PulseRate ->
appLogic.PulseRate;
respiratoryrate_logic : port
respiratoryMonitor.RespiratoryRate ->
appLogic.RespiratoryRate;

package PCA_Interlock
public
with PulseOx_Interface, RespiratoryMonitor_Interface,
PCAPump_Interface, PCA_Interlock_Logic,
PCA_Interlock_Properties, PCA_Interlock_Display;

 system PCA_Interlock_System
 end PCA_Interlock_System;

 system implementation PCA_Interlock_System.imp
 subcomponents
 pulseOx : device

PulseOx_Interface::ICEpoInterface.imp;
 respiratoryMonitor :

device
RespiratoryMonitor_Interface::ICErrInterface.imp;

D
ev

ic
e1

D

ev
ic

e2

AADL System

AADL Process: Logic AADL Process:
Display

Thread2

Thread1

AADL Types

Default
Properties

3

ICE Manager
App

Task3

Task1

Task2

Task4

Display

PseudoDev1

ICE Data Logger

Task1 Task2

Translates to…

Instantiates as…

Channel Delay:
50ms Period: 50ms

WCET: 5ms

Output rate: 1
sec .. 5 sec

A

B

C

Thread1

Thread3

Thread4

3

2

Thread2

4

1

1

PseudoDev2

Figure 3.1: (A) The AADL platform artifacts used by the code generation process, (B) the
generated app configuration and executable files, and (C) the fully configured and executing
platform.

64

1 package PCA_Interlock_Types
2 public
3 with Data_Model, IEEE11073_Nomenclature;
4

5 data SpO2
6 properties
7 Data_Model::Data_Representation => Float;
8 IEEE11073_Nomenclature::OID =>

IEEE11073_Nomenclature::MDC_PULS_OXIM_SAT_O2;↪

9 Data_Model::Real_Range => 0.0 .. 100.0;
10 end SpO2;
11

12 data Ticket
13 properties
14 Data_Model::Data_Representation => Integer;
15 Data_Model::Integer_Range => 0 .. 600;
16 end Ticket;
17

18 end PCA_Interlock_Types;

Figure 3.2: The SpO2 datatype used in the app excerpt

This section presents excerpts of AADL models that specify the application architecture

which, when used with our translator, results in application code runnable on the MDCF.

For clarity, we only show one physiological parameter: SpO2, though the full app would

contain all four parameters (i.e., SpO2, pulse rate, respiratory rate, and ETCO2). In the next

section, we discuss AADL types and default properties, followed by a top-down walkthrough

of the hierarchy of components used by our toolset.

3.3.1 Preliminary tasks: Types and Default Properties

Before we can describe a MAP app’s architecture, we should briefly examine AADL’s

type and property definition mechanisms (marked by a (1) in part (A) of Figure 3.1) and

how they are used to specify various parameters in our app.

65

1 property set PCA_Interlock_Properties is
2

3 -- Synchronize thread period and deadlines by using this default
4 Default_Thread_Time : constant Time => 50 ms;
5

6 -- A periodic task will be dispatched once per period
7 Default_Thread_Period : Time

=> PCA_Interlock_Properties::Default_Thread_Time applies to (thread);↪

8

9 -- A task will be scheduled so that it has time to run before its deadline
10 Default_Thread_Deadline : Time

=> PCA_Interlock_Properties::Default_Thread_Time applies to (thread);↪

11

12 -- The most time that a task will take to execute after it is dispatched
13 Default_Thread_WCET : Time => 5 ms applies to (thread);
14

15 -- Periodic tasks are run once per period, sporadic upon message arrival
16 Default_Thread_Dispatch : Supported_Dispatch_Protocols => Sporadic applies

to (thread);↪

17

18 -- Ports must specify the most / least frequently they will broadcast
19 Default_Output_Rate : Time_Range => 100 ms .. 300 ms applies to (port);
20

21 -- The maximum time a message will spend on the network
22 Default_Channel_Delay : Time

=> 100 ms applies to ({PCA_Interlock} ** port connection);↪

23

24 end PCA_Interlock_Properties;

Figure 3.3: The default properties used in the app excerpt

66

Data Types:

The data type for the SpO2 parameter and pump-control tickets are shown in Figure 3.2.

The SpO2 parameter is stored as a floating point number between 0.0 and 100.0, while

tickets are stored as integers between 0 and 600 seconds to allow tickets between zero and

ten minutes in length. Note that these ranges are not enforced by the code generator since

Java doesn’t natively support restricting ranged types.

AADL’s property description mechanism is easily extensible, allowing us to specify

customer-specific metadata. In this example, we have leveraged this capability to attach an

IEEE11073 nomenclature “tag” with our SpO2 parameter [25]. Note that these datatypes

could either be generated from or mapped down to a more standard interface definition

language (e.g., CORBA IDL [77]).

Default property values:

While it is useful to be able to attach properties to individual AADL constructs (e.g., ports,

connections, threads, etc.), sometimes a large number of constructs take the same values for

certain properties. In this case, it is useful to set app-wide defaults, as shown in Figure 3.3.

These properties apply to every applicable element, unless overridden. Override names, as

well as types and example values, are specified in Table 3.2.

3.3.2 The AADL System

The top level of the app architecture is described by an AADL system, marked by a (2)

in Figure 3.1, and shown textually in Figure 3.4. Systems have no external features (lines

5-7), though the system implementation lists their internals (lines 9-33). In our subset

an AADL system implementation consists of, at its core, a declaration of sub-components

(e.g., devices and processes) and the connections between them.

67

1 package PCA_Interlock
2 public
3 with SpO2Req_Interface, PCAPump_Interface, PCA_Interlock_Logic,

PCA_Interlock_Display, MAP_Properties, PCA_Interlock_Properties;↪

4

5 system PCA_Interlock_System
6 -- No external features since we’re at the top level of the app
7 end PCA_Interlock_System;
8

9 system implementation PCA_Interlock_System.imp
10 subcomponents
11 -- Some device, probably a pulse oximeter, that produces SpO2
12 spo2Device : device SpO2Req_Interface::SpO2Interface.imp;
13

14 -- A logic component to turn SpO2 readings into PCA pump tickets
15 appLogic : process PCA_Interlock_Logic::ICEpcaInterlockProcess.imp;
16

17 -- Logic to drive a display for a clinician
18 appDisplay : process PCA_Interlock_Display::ICEpcaDisplayProcess.imp;
19

20 -- The PCA pump attached to the patient
21 pcaPump : device PCAPump_Interface::ICEpcaInterface.imp;
22 connections
23 -- From sensors to controller
24 spo2_logic : port spo2Device.SpO2 -> appLogic.SpO2;
25

26 -- From controller to PCA pump
27 TicketChannel : port appLogic.Tickets -> pcaPump.Tickets
28 {MAP_Properties::Channel_Delay => 50 ms;};
29

30 -- From controller to display
31 spo2_disp : port spo2Device.SpO2 -> appDisplay.SpO2;
32 TicketDisplay : port appLogic.Tickets -> appDisplay.Tickets;
33 end PCA_Interlock_System.imp;
34

35 end PCA_Interlock;

Figure 3.4: The top-level app excerpt architecture via the AADL system component

68

Name

Override Default Type Example

Thread

Default Thread Period Period Time 50 ms

Default Thread Deadline Deadline Time 50 ms

Default Thread WCET Worst Case Execution Time Time 5 ms

Default Thread Dispatch Dispatch Protocol Sporadic or Periodic Periodic

Port

Default Output Rate Output Rate Time Range 1 ms .. 3 ms

Port Connection

Default Channel Delay Channel Delay Time 100 ms

Process

N/A Process Type Logic or Display Display

Table 3.2: AADL properties used in our MAP-targeted subset

3.3.3 The AADL Process and Device

Now that the software and hardware elements — the AADL processes and devices marked

by a (3) in Figure 3.1 — have been referenced by the AADL system implementation, a

developer must specify their type and implementations.

AADL Processes:

A process defines the boundaries of a software component, and is itself composed of a number

of threads (which are described in Section 3.3.4). The type of a process in AADL is a listing

of its interface points, i.e., the ports it uses to communicate with other components (see lines

7-12 of Figure 3.5). The process implementation is, like the system implementation

that was discussed in Section 3.3.2, a listing of subcomponents and connections.

Though the full AADL specification allows processes to have a number of different types of

subcomponents and connections, our subset restricts these to threads and port connections.

These connections are directional links between a thread and one of the process’s ports,

69

1 package PCA_Interlock_Logic
2 public
3 with PCA_Interlock_Types, MAP_Properties;
4

5 process ICEpcaInterlockProcess
6 features
7 -- Incoming SpO2 data arrives on this port
8 SpO2 : in data port PCA_Interlock_Types::SpO2;
9

10 -- Tickets sent to the pump leave on this port
11 Tickets : out event data port PCA_Interlock_Types::Ticket
12 {MAP_Properties::Output_Rate => 1 min .. 10 min;};
13 properties
14 -- If this process drove a display, this would be set to display
15 MAP_Properties::Process_Type => logic;
16 end ICEpcaInterlockProcess;
17

18 process implementation ICEpcaInterlockProcess.imp
19 subcomponents
20 -- Note that we don’t need a thread for the SpO2 port, since it’s not an

’event’ or ’event data’ port↪

21

22 -- This thread calculates the length of ticket
23 CalcTicketThread : thread CalcTicketThread.imp;
24 connections
25 -- Outgoing tickets from the thread are sent out of the process on the

’Tickets’ port↪

26 outgoing_ticket : port CalcTicketThread.Tickets -> Tickets;
27 end ICEpcaInterlockProcess.imp;
28

29 end PCA_Interlock_Logic;

Figure 3.5: An AADL process specification used in the app excerpt

70

1 package SpO2Req_Interface
2 public
3 with PCA_Interlock_Types, MAP_Properties;
4

5 device SpO2Interface
6 features
7 -- SpO2 information leaves the device via this port
8 SpO2 : out event data port PCA_Interlock_Types::SpO2;
9 end SpO2Interface;

10

11 device implementation SpO2Interface.imp
12 -- This implementation is empty since our subset only describes device

interfaces↪

13 end SpO2Interface.imp;
14

15 end SpO2Req_Interface;

Figure 3.6: An AADL device used in the app excerpt

which allows messages received by the process to be routed to particular threads, and vice

versa. Note that as both logic and display components are modeled as AADL processes they

are distinguished from one another via the MAP Properties::Process Type property

(line 15).

Ports must be labeled as data, event, or event data. The presence of data signifies

a payload (and requires a type specification, i.e., PCA Interlock Types::SpO2 on line

8 of Figure 3.5), while the presence of event signifies that a developer wants to be notified

of (and handle via a thread) incoming messages. If event is not specified then the

incoming data is simply stored (in the MDCF, this takes the form of a predictably-named

protected field). data ports can be particularly useful in apps where there are a large

number of physiological parameters: rather than specify behavior to be executed each time

a message arrives, the most recent data can simply be used when needed.

AADL Devices:

Apps describe the interfaces of the devices they need to connect to using the AADL device

construct (see Figure 3.6). Device components are placeholders for actual devices that will

71

1 thread CalcTicketThread
2 features
3 -- Tickets leave the thread via this port
4 Tickets : out event data port PCA_Interlock_Types::Ticket;
5 properties
6 -- Our default properties don’t fit for this thread, so we override them
7 Thread_Properties::Dispatch_Protocol => Periodic;
8 Timing_Properties::Period => 50 ms;
9 Timing_Properties::Deadline => 10 ms;

10 MAP_Properties::Worst_Case_Execution_Time => 5 ms;
11 end CalcTicketThread;
12

13 thread implementation CalcTicketThread.imp
14 -- Thread implementations aren’t specified in our subset of AADL
15 end CalcTicketThread.imp;

Figure 3.7: Two AADL thread interfaces used in the app excerpt

be connected to the app when it is launched. These actual devices will produce information

and send it out over ports whose type matches the specification (see line 8 of Figure 3.6).

Note that the device implementation is left empty, since the app’s device needs can

be met by any device that realizes the interface requirements.

3.3.4 The AADL Thread

AADL threads, marked by a (4) in Figure 3.1, represent semi-independent units of

functionality, and are realized in the MDCF as MIDAS tasks (see Figure 3.7) [19]. They

can be either sporadic, which signifies that they are executed when a port that they are

“attached” to receives a message, or periodic, where they are executed after a specified

period of time. Typically, threads which consume information operate sporadically (so they

can act as soon as updated data arrive), and threads which produce information operate

periodically.

Thread implementations are empty because this is the lowest level of abstraction sup-

ported by our subset; all work below this is implemented by a developer within code “skele-

tons” that are auto-generated by our translator. Figure 3.7 shows the interface of the

CalcTicketThread which generates the tickets for the PCA pump. The skeleton and

72

implemented form of this thread are shown in Figure 3.8 and Figure 3.9.

3.4 Code Generation and Instantiation

Once the previous AADL constructs have all been fully specified, an app’s architecture

description is complete. The next step, which is fully automatic, is to generate the MAP-

compatible, executable code (part (B) of Figure 3.1). Our translator will interpret the

AADL to create a model of the app, and then render it to a target MAP implementation;

currently the only implementation supported is the MDCF.

For an app to run on the MDCF, a number of files must be generated. There are two

types of files produced: .java files which contain the logic of the component, and .xml files3

which specify the RT/QoS properties to the underlying middleware.

3.4.1 Executable Code Skeletons

Figure 3.8 shows a simplified user-modifiable executable “skeleton” for the PCA interlock

logic module (the architecture of which was specified in Figure 3.5). Note that there is only

one thread and an empty initialization function. These skeletons are ready to be edited, and

can—leveraging the fact that OSATE2 is built on Eclipse, and this is also a Java development

environment—be immediately loaded back into OSATE2 where the app architecture was

specified [65].

At this point, an app developer can create as complex or simple of an app as she would

like. A very simple example is shown in Figure 3.9. Note that a full-blown implementation

would be larger and more complex, e.g., it might additionally use ETCO2, respiratory rate,

and pulse rate information (compare, for example, the complexity of Figures 2.12 and 2.13

to Figure 3.5, which was used to generate the examples in this section), and would likely

have a far more sophisticated process for determining the length of tickets. A more complex

3These files are serializations of Java classes which are deserialized using XStream [78]

73

1 package mdcf.app.pca_interlock;
2

3 import mdcf.channelservice.common.MdcfMessage;
4

5 public class ICEpcaInterlockProcess extends ICEpcaInterlockProcessSuperType {
6

7 public ICEpcaInterlockProcess(String GUID, String host) {
8 super(GUID, host);
9 }

10

11 @Override
12 protected void initComponent() {
13 // TODO Fill in custom initialization code here
14 }
15

16 @Override
17 protected void CalcTicketThreadMethod(){
18 // TODO: Fill in custom periodic code here
19 }
20 }

Figure 3.8: Executable “skeletons” produced by the translator

algorithm that incorporates the findings of the hazard analysis portion of this dissertation

is discussed in Section 6.1.2.

In the implementation shown in Figure 3.9, each time the CalcTicketThreadMethod

is run (which is triggered periodically by the scheduler) it will check to see if the pump has

a valid ticket (lines 24-27) and if so, it terminates. If not, though, the current SpO2 value is

used to calculate a ticket value (lines 29-41) which is sent out over the TicketsSenderPort

port (line 44).

Of course, there’s much more to making the app run than what’s visible in Figure 3.9.

Activities that are not user-modifiable, e.g., registering tasks with the scheduler and ports

with the network are handled by an automatically generated abstract class; an example is

shown in Figure 3.10. Though the class has been compressed somewhat for space, important

regions of the code are the:

� Constructor: Shown in lines 7-13, this initializes the ports, creates the objects that

provide the tasks’ behavior and state, and puts the various objects into mappings used

74

1 package mdcf.app.pca_interlock;
2

3 import java.time.Instant;
4

5 import mdcf.channelservice.common.MdcfMessage;
6

7 public class ICEpcaInterlockProcess extends ICEpcaInterlockProcessSuperType {
8

9 private int previousTicketValue = -1;
10 private Instant previousTicketExpires;
11 private final int TICKET_DURATION_STEP = 60; // 1 minute increments
12

13 public ICEpcaInterlockProcess(String GUID, String host) {
14 super(GUID, host);
15 }
16

17 @Override
18 protected void initComponent() {
19 // No setup necessary...
20 }
21

22 @Override
23 protected void CalcTicketThreadMethod(){
24 Instant now = Instant.now();
25 if(previousTicketExpires.isAfter(now)){
26 return; // The pump still has a valid ticket
27 }
28

29 double spo2 = getSpO2Data();
30 int ticketLength = 0;
31 if (spo2 > 100.0){
32 // Something’s wrong, leave duration at 0
33 } else if(spo2 > 99.0){
34 ticketLength = TICKET_DURATION_STEP * 5;
35 } else if (spo2 > 97.0){
36 ticketLength = TICKET_DURATION_STEP * 3;
37 } else if (spo2 > 95.0){
38 ticketLength = TICKET_DURATION_STEP;
39 } else {
40 // The patient can’t take more analgesic, so we leave the duration at 0
41 }
42

43 previousTicketExpires = now.plusSeconds(ticketLength);
44 TicketsSenderPort.send(ticketLength);
45 }
46 }

Figure 3.9: The same “skeletons” complete with business logic

75

1 /* Imports and package declaration removed for space */
2

3 public abstract class ICEpcaInterlockProcessSuperType extends LogicComponent{
4 /* Field and abstract method declarations removed */
5

6 /* The constructor initializes the fields and registers with the MDCF */
7 public ICEpcaInterlockProcessSuperType(String GUID, String host) {
8 super(GUID, "ICEpcaInterlockProcess", host);
9 SpO2ReceiverPort = new MdcfReceiverPort<Double>("SpO2", Double.class,

host);↪

10 TicketsSenderPort = new MdcfSenderPort<Integer>("Tickets",
Integer.class, host);↪

11 taskInstanceMap.put(SpO2TaskTask.class.getSimpleName(), new
SpO2TaskTask());↪

12 taskInstanceMap.put(CalcTicketThreadTask.class.getSimpleName(), new
CalcTicketThreadTask());↪

13 }
14

15 @Override /* Call the user-specified initialization method */
16 public void init(){ initComponent(); }
17

18 /* The auto-generated getter for our incoming data port named "SpO2" */
19 protected Double getSpO2Data(){ return SpO2Data; }
20

21 /* Pub / Sub handler registration removed for space */
22

23 /* An autogenerated "set" for the SpO2 port */
24 private void SpO2ListenerOnMessage(MdcfMessage msg, Double SpO2Data){
25 this.SpO2Data = SpO2Data; }
26

27 /* Tasks are the MDCF equiv. of AADL threads. Even though there is no SpO2
28 thread, there is an implicit one created to handle incoming messages */
29 public class SpO2TaskTask implements Task {
30 @Override public void run() {
31 MdcfMessage message = SpO2ReceiverPort.getReceiver().getLastMsg();
32 try { Double SpO2Data = SpO2ReceiverPort.getLastMsgContent();
33 SpO2ListenerOnMessage(message, SpO2Data); /* Call our setter */
34 } catch (MdcfDecodeMessageException e) {
35 System.err.println(getComponentTypeName() + ".SpO2TaskTask task:

invalid message:" + message.getTextMsg());↪

36 e.printStackTrace(); }
37 }
38 }
39

40 /* This task will be run by the MDCF / MIDAS scheduler once per period */
41 public class CalcTicketThreadTask implements Task {
42 @Override public void run() { CalcTicketThreadMethod(); }
43 }
44 }

Figure 3.10: A partial logic-module “supertype” which hides most of the autogenerated code

76

by the MDCF.

� Message Handlers: Handler methods for SpO2 data are shown on lines 18-38. Though

the exact configuration of the handler depends on the port’s specification (i.e., whether

it is a event, event data, or data port) there are some common pieces. These

include the task itself (lines 29-38) which handles unmarshalling the data and calls

the listener, which may be abstract or fully specified, as in lines 24-25.

� Tasks: Specified as classes that implement mdcf.core.ctypes.Task, sporadic

tasks are instantiated with whatever message triggered their launch while periodic

tasks are instantiated without parameters, as in lines 41-43.

3.4.2 App Configuration

In addition to the business logic skeletons, the MDCF Architect also produces both a layout

schematic that describes both how the components of the app fit together and a collection

of files specifying each component’s real-time and quality-of-service settings.

App Topology Specification

Figure 3.11 shows an excerpt of an app configuration XML file; at app launch the

runtime system deserializes this file and instantiates the software components. An app’s

configuration consists of three elements:

1. App Name: The application’s name (line 2).

2. Components: A list of components that must be instantiated for the app. Each com-

ponent consists of a name, the Java type to be instantiated, and the component’s role:

“AppPanel” for components that will need a user interface or “Logic” for logic com-

ponents and device interfaces (lines 3-10). Note that as device components themselves

are not instantiated (since they are physical objects) they are not listed here.

77

1 <mdcf.core.app.AppSpec>
2 <appName>pca_shutoff</appName>
3 <components>
4 <mdcf.core.app.VirtualComponent>
5 <name>appLogic</name>
6 <type>ICEpcaInterlockProcess</type>
7 <role>Logic</role>
8 </mdcf.core.app.VirtualComponent>
9 <!-- Other virtual components removed for space -->

10 </components>
11 <channels>
12 <mdcf.core.app.Channel>
13 <chanName>$PLACEHOLDER$</chanName>
14 <pubName>Tickets</pubName>
15 <subName>Tickets</subName>
16 <pubComp>
17 <name>appLogic</name>
18 <type>ICEpcaInterlockProcess</type>
19 <role>Logic</role>
20 </pubComp>
21 <subComp>
22 <name>appDisplay</name>
23 <type>ICEpcaDisplayProcess</type>
24 <role>AppPanel</role>
25 </subComp>
26 <channelDelay>100</channelDelay>
27 </mdcf.core.app.Channel>
28 <!-- Other channels removed for space -->
29 </channels>
30 </mdcf.core.app.AppSpec>

Figure 3.11: An excerpt of the app’s overall layout configuration

78

3. Channels: A list of the connections between the components, consisting of the publish-

ing and subscribing port names and component descriptions (lines 11-29). Information

that is unknowable at compile-time, such as channel names and the names of specific

devices, is represented by the string $PLACEHOLDER$ and is replaced as the app is

launched.

Component Timing Specification

A software component’s RT/QoS specification is shown in Figure 3.12. Like the app

topology, this class is deserialized at app launch, and used by the MDCF for scheduling.

There are three parts of a component’s timing specification:

1. Type: The Java type name of the component (line 2).

2. Module Tasks: A listing of the component’s tasks and their properties (lines 3-20). In

addition to timing properties (i.e., period, deadline, and worst-case execution time or

“wcet”) tasks also have a name and a “trigger port.” Message arrival on a sporadic

task’s trigger port will cause the task to be executed with the value of the message

as a parameter. Note that some values are unused: periodic tasks have an unused

placeholder value for their trigger port, and sporadic tasks have an unused placeholder

value for their period.

3. Port Signatures: A mapping of a component’s port’s names to their properties (lines

21-42). In addition to periodicity information, a port’s name, direction, and the type

of its payload is specified in each port signature.

3.4.3 Launching the App

Once the business logic has been specified, the app is ready to be launched on a compatible

MAP. When the app is launched, the specifications will be deserialized, the executable

artifacts will be instantiated, and if compatible devices and the necessary computational

79

1 <mdcf.core.ctypes.AppModuleSignature>
2 <type>ICEpcaInterlockProcess</type>
3 <moduleTasks>
4 <mdcf.core.ctypes.TaskSignature>
5 <type>PORT_SPORADIC</type>
6 <trigPortName>SpO2</trigPortName>
7 <periodMs><!-- Placeholder value: Sporadic task’s periods are derived

from their triggering port -->-1</periodMs>↪

8 <taskName>SpO2TaskTask</taskName>
9 <deadlineMs>50</deadlineMs>

10 <wcetMs>5</wcetMs>
11 </mdcf.core.ctypes.TaskSignature>
12 <mdcf.core.ctypes.TaskSignature>
13 <type>PERIODIC</type>
14 <trigPortName><!-- Placeholder value: Periodic tasks are triggered by

time, not message arrival -->Placeholder</trigPortName>↪

15 <periodMs>50</periodMs>
16 <taskName>CalcTicketThreadTask</taskName>
17 <deadlineMs>10</deadlineMs>
18 <wcetMs>5</wcetMs>
19 </mdcf.core.ctypes.TaskSignature>
20 </moduleTasks>
21 <portSignatures>
22 <entry>
23 <string>SpO2</string>
24 <mdcf.core.ctypes.PortSignature>
25 <portName>SpO2</portName>
26 <portDirection>SUBSCRIBE</portDirection>
27 <minPeriod>100</minPeriod>
28 <maxPeriod>300</maxPeriod>
29 <portType>Double</portType>
30 </mdcf.core.ctypes.PortSignature>
31 </entry>
32 <entry>
33 <string>Tickets</string>
34 <mdcf.core.ctypes.PortSignature>
35 <portName>Tickets</portName>
36 <portDirection>PUBLISH</portDirection>
37 <minPeriod>60000</minPeriod>
38 <maxPeriod>600000</maxPeriod>
39 <portType>Integer</portType>
40 </mdcf.core.ctypes.PortSignature>
41 </entry>
42 </portSignatures>
43 </mdcf.core.ctypes.AppModuleSignature>

Figure 3.12: The logic module’s configuration

80

resources (cpu time, network capacity, etc.) are available the app will come online. Part

(C) of Figure 3.1 shows how primary elements of the app excerpt would look on the MDCF

at runtime.

3.5 Tailoring AADL to a Domain

In the design of our language subset, we encountered some challenges that could potentially

be addressed by future revisions to AADL. Specifically, in Section 3.2.3, we discussed the

need for our identification and use of a subset of AADL rather than the full language. We

believe that other users of AADL who target managed platforms rather than a system’s

“raw hardware” would similarly want to exclude parts of the full language and / or slightly

modify the semantics as we have.

Unfortunately, there is no straightforward way to make these modifications, especially if

industrial-quality tooling is desired. That is, there is no automated enforcement of our sub-

set’s modified syntactical rules so syntax errors are only discovered and marked by the trans-

lator when translation is attempted, rather than as a developer uses a disallowed construct

or writes erroneous code. We note that OSATE has a number of standard development-

environment features, e.g., syntax highlighting, code completion, etc., but these features are

not easily adaptable to subsets of AADL like ours.

What is needed, then, is some way for language users to identify the subset of the lan-

guage they would like to work with, and then to enforce the boundaries of their modified

language. In effect, this would allow users to create a domain-specific language (ideally

through some sort of meta-modelling functionality4) that would be customized to their par-

ticular needs. The core of AADL—a collection of constructs, connections, and property

specifications—would be present in any domain-specific incarnation, but the overhead in-

4To be explicit, we advocate a user-editable metamodel for AADL, which would be a type-model (in the
language of Kühne) that describes the permitted connections, features, and properties for each language
element. [79]

81

volved in creating and using a tailored subset, like the one identified in Section 3.3, would

be greatly reduced.

82

Chapter 4

The SAFE Process

When initially examining how best to perform hazard analysis on the applications that

run on Medical Application Platforms, we considered both Fault Tree Analysis (FTA) and

Failure Modes and Effects Analysis (FMEA). They are both well-established, partially par-

allelizable/compositional, and had tool support in the OSATE, the AADL editing environ-

ment we had previously used (see Section 3.4). Additionally, they had a detailed process

and collection of worksheets available, leaving little ambiguity to their implementation [7].

However, the research done by Leveson and her students includes compelling arguments

against the use of non-systems-theory based analyses like FMEA and FTA [30, 80, 81, 82].

Following this realization, we attempted to use System Theoretic Process Analysis (STPA),

but were unable to use it without significant modifications for four main reasons:

1. STPA lacks a precisely defined process: Though Engineering A Safer World explains

the need for and motivation behind STPA in considerable detail, the process itself

is only described at a high-level. The descriptions of STPA’s steps are described in

somewhat general terms rather than in an explicit, mechanizable level of precision.

This is almost certainly a conscious choice on the part of Leveson—her process derives

a great deal of power from its flexibility, particularly when analyzing sociotechnical

elements like the behavior of humans or organizations.

83

2. STPA is informal: System safety is a large field, and there are formalizations of many

concepts. Leveson, however, did not use or connect to mathematical treatments of

many existing topics. These include formalisms for everything from causality (e.g.,

[83, 35]), to decomposition/refinement (e.g., [84]), to system architecture (e.g., [61]).

We believe that many of these formalisms can be used to improve STPA’s rigor and

repeatability.

3. STPA lacks a specific output format: While there are STPA analyses of a number

of example systems, there seems to be little convergence on output formats: unsafe

control actions are sometimes presented in a tabular format (e.g., Table 7 in the

Balgos Thesis, Table 11 of the Thornberry Thesis, or Table 9 of the Placke Thesis

[80, 85, 86]), other times in graphical notation (e.g., Figure 8.7 of Leveson’s text [30]),

and sometimes in large, narrative or list-based documents (e.g., Section 4.4.3 of the

Sotomayor Thesis [81]). Like the imprecision in the process specification, this is very

likely by design: a single, rigid documentation format would likely be a poor fit for

the full range of possible sociotechnical system elements.

4. STPA is completely non-compositional: Leveson explains that “[t]he systems approach

focuses on systems taken as a whole, not on the parts taken separately” and her

reasoning is well-documented in [30, pg. 63]. She writes that, in contrast to small

systems (which can be completely examined) and huge populations (which can be

analyzed statistically), some systems exhibit “organized complexity.” She explains:

“These systems are too complex for complete analysis and too organized for statistics.”

[ibid.]

We believe that once a system has been decomposed into subsystems that are small

enough to be completely examined, a by-the-book STPA is—in some cases—no longer the

most appropriate analysis. Specifically, the small software- and hardware-based systems

(like MAP apps) that are small enough to be completely examined should be. We recognize,

84

though, that MAP apps are used as parts of full sociotechnical systems, and so we produced

a heavily modified form of STPA for these small software- and hardware-based subsystems.

Our process is designed to “take over” from a standard STPA once analysis has reached

a low level of a system’s abstraction hierarchy. That is, our process can use as input the

outputs of an STPA that has been performed on the full system that encloses a low-level

subsystem.

We call this process the Systematic Analysis of Faults and Errors, or SAFE. SAFE has

two documentation formats: one that is spreadsheet-based and can be performed manually

and one that consists of AADL constructs/properties and is tool-assisted. We use SAFE

to refer to the generic process, but where differentiation is required we denote the manual

version as M-SAFE and the tool-assisted version as T-SAFE.

In the next section, we introduce concepts and terminology that are unique to SAFE. The

three sections following that describe the activities that collectively compose our process,

and we conclude with an assessment of SAFE in Section 4.5. Note that the full, analyst-

targeted process for M-SAFE is given in Appendix A, blank M-SAFE worksheets are given

in Appendix B, and the complete PCA Interlock scenario analysis is given in Appendix C.

4.1 Core Concepts

SAFE is, at its core, a backwards-chaining analysis that moves through a system’s archi-

tecture in an iterative manner. While not fully compositional, it is much more component-

oriented than STPA. Though STPA’s “whole system” approach is valid for analysis of the

socio-technical aspects of systems, it is not mechanizable or parallelizable; both significant

barriers to integration in a modern, component-based software-engineering process like we

envision for MAP app development.

Component-based engineering is part of the bedrock of modern software engineering

practice. One central tenet of component-based engineering is the notion of a component’s

85

interface: when elements are designed to work in any conformant component-based system

rather than bespoke designs, they must communicate with other elements exclusively via

declared inputs and outputs. In this style, elements declare the types of messages they

can receive and produce as well as other metadata required to ensure smooth interconnec-

tion with other elements, e.g., RT/QoS specifications. Modern hardware- and software-

architecture specification languages like AADL include capabilities for specifying interfaces

for failure-related behavior as well; see the EMv2 discussion in Section 2.3.3.

Indeed, Hatcliff et al. explain that the goals of the MAP vision include specific “Ar-

chitecture and Interfacing” needs. These include, a) interoperability points (interfaces),

b) interface compliance and compatibility1 checking, and c) a “rich device interface lan-

guage” that would be able to fully specify such interfaces [13]. Compositional certification

is also raised as a challenge to certifiably-safe software-dependent systems in [87], which

cites as one of the challenges “Limited Engineering Approaches and Ready-to-Use Solutions

for Partitioning and Delimiting Emergent Behaviors in Dynamic Contexts.”

Clearly, then, even a semi-compositional approach to hazard analysis needs a notion

of component interface that supports descriptions of failure-related behavior. In this sec-

tion we first closely examine two concepts that are central to these component interfaces:

successor dangers and manifestations. We then describe areas where STPA’s informality

can be improved upon: fault identification, causality models, and decomposition. Next, we

discuss terminology that is used throughout SAFE. Finally, we are able to specify the exact

dependencies between the various activities in SAFE, which enables a precise discussion of

what is, and is not, compositional and/or parallelizable in our process.

86

Not	

Running	

Stop	

Start	

Running	

Healthy	
 At	

Risk	

Over-­‐	

dosed	

Dose	
 Dose	

Wait	

Dose,	

Wait	

Pa/ent	

PCA	
 Interlock	
 System	

Figure 4.1: A graphical representation of Leveson’s definition of a hazard, which requires
the system to be in some state and its environment to be in a worst-case state. Note that
“worst-case” is specific to the system state, i.e., the Not Running state might have its own
worst-case environment state(s).

4.1.1 Successor Dangers

One of the key parts of Leveson’s work is its two-part definition of hazard: not only must the

system be in some state, but the environment must also be in a worst-case state for losses to

necessarily occur. Her definition is “[a] system state. . . that, together with a particular set

of worst-case environmental conditions, will lead to an accident.” [30, pg. 184] Consider the

PCA Interlock scenario: it is inaccurate to say that it is hazardous for the PCA pump to

run, since this considers only the state of the system. Similarly, it is not accurate to say that

1Compliance essentially asks “Does the component implement its interface?” while compatibility asks
“Does component A’s interface allow it to work with component B?”

87

it is hazardous for the patient to be at risk of respiratory depression—if an at-risk patient

is not given any more opioid, no damage to his health will occur—since this considers only

the state of the environment. Rather, the hazard comes about when the PCA pump is

administering more narcotic when the patient is at risk of respiratory depression.

Consider Figure 4.1, which shows the states of the app and the patient modeled as de-

terministic automata. The highlighted pairing—where the PCA pump is running and the

patient is at risk of an overdose—is clearly a hazard. But what would happen if we decom-

pose the system into its requisite elements, i.e., pump, app logic, sensor, and connections?

Now only the pump can directly cause the hazard, since no state of the app logic or sensor

will independently move the patient from “At Risk” to “Overdosed.”

In order to solve this problem, we introduce the concept of undesirability. It is the

analogue of Leveson’s hazard in that it is a pairing of one system state and one environment

state that will necessarily lead to a hazard, but it applies to components that are not

at the system boundary. The critical difference between the two terms is that while a

hazard requires an intransitive causal link between the state pairing and the notion of loss,

undesirability requires a transitive causal link.

Consider Figure 4.2, which shows the PCA Interlock system from Figure 4.1 broken down

into its requisite parts of pump, app logic, and a generic “Sensors” component. Undesirable

app-state and patient-state pairings are highlighted by grey ovals. Observe that incorrect

ticket values from the app are not hazardous, since they require a transitive step—through

the PCA pump—in order to cause an overdose. They are clearly undesirable, though, both

intuitively and under our definition.

While we formalize the concept of undesirability and explore its theoretical ramifications

in the next chapter, for now we focus on using the notion of undesirability to move from

Leveson’s whole-system approach to SAFE’s per-component approach. This leads to a

slight reformulation of the question analysts must pose to themselves, since they must now

avoid not system-level notions of loss but rather individual elements providing outputs that

88

Running	

Not	

Running	

Stop	

Start	

Healthy	

Dose	
 Dose	

Wait	

Dose,	

Wait	

Healthy	

At	

Risk	

Over-­‐	

dosed	

Ticket	

Val	
 =	
 0	

Pa/ent	

Sensors	

App	
 Logic	

Ticket	

Val	
 =	
 600	

Pump	

Ticket	

Val	
 =	
 1	

Over-­‐	

dosed	

At	

Risk	

…	

Figure 4.2: A graphical representation of undesirable state pairings.

are dangerous to their direct successors. Thus, while hazard avoidance asks “How can the

system avoid causing loss?” undesirability avoidance asks “How can I avoid giving providing

dangerous output to my successor?” The identification of this dangerous output is one of

the key parts of SAFE. Undesirable outputs that are provided to a component’s successor

are termed successor dangers.

4.1.2 Manifestations

Bottom-up analyses like FMEA can be quite verbose since all failure modes of a component

must be considered. Though this is a tractable strategy for simple, mechanical elements, it

89

is less tenable for software-based or sociotechnical systems that can fail in myriad, unpred-

icatble ways. Other analyses, like FTA or STPA, are top-down. These approaches are by

design much more limited in scope than bottom-up styled analyses, since faults and errors

that do not lead to top-level hazards are never considered. A full discussion, and vocabulary

of terms, on this topic is provided in Section 5.5.3.

In creating SAFE, we have attempted to merge the two approaches. Since we are align-

ing with STPA, full-system analyses should be top-down and thus driven by system-level

notions of loss. However, since we also aim to be component-oriented—and to some degree

compositional—we have to consider component-level failures in the absence of a full system

design. Trying to consider every way that a software- or hardware-based element could fail

can be very difficult. Further, the difficulty only compounds when a component must be

connectable to other components, some of which may be created by external organizations

or at a later date. There are so many ways that an error produced by a component could

negatively impact any other component to which it might be connected that enumerating

all of them can be difficult or impossible. This problem, which is common to other areas of

software verification like model checking, is often referred to as a combinatorial explosion of

possibilities.

What is needed is some way to compress the space of possible failure modes: a way

to classify the errors that propagate from one component to another. One popular way

to classify errors is by their appearance to the component that receives them. That is,

regardless of what causes an error, we ask “How does the error manifest at its recipient?”

Such an approach has been advocated by, e.g., Walter and Suri who wrote that a model they

proposed “organizes diverse fault categories into a cohesive framework by classifying faults

according to the effect they have on the required system services rather than by targeting

the source of the fault condition.” [88]

Though we do not use Walter and Suri’s model, we note that the service failure domains

from Avižienis et al. align well with their approach. Our adapted form of these domains—

90

Ti
m
in
g	

Co

rr
ec
t	

Value	
 High	

Value	
 Low	

Va

lu
e	

Co

rr
ec
t	

Too	
 Early	

Too	
 Late	

N
ot
hi
ng
	
 C
or
re
ct
	

Halted	

Erra9c	

Co
m
po

ne
nt
	

Correct,	
 Timely	
 Input	

Universe	
 of	

inputs	

Possible	

values	

Figure 4.3: The ways that input can fail (adapted from Avǐzienis et al.’s failure domains)
[3]

which we term manifestations—is shown in Figure 4.3, which is a graphical representation

of the six ways that input errors can manifest to a receiving component2. That is, input can

have a correct value but a) arrive too early or b) too late, it can arrive at the correct time

but (assuming it is numeric) be c) incorrectly high or d) incorrectly low, it can e) not arrive

at all, or f) arrive out of the blue. Non-numeric input can also have value errors, though

further delineations will depend on the input’s type.

2The seventh option is correct, timely input.

91

4.1.3 Fault Classification

Ideally, a similarly clean distinction would exist when dealing with faults, which are the

“internally caused” analog to errors, which can be thought of as externally caused problems

(a full discussion of these terms was provided in Section 2.2.1). Unfortunately, there are

a number of ways to classify faults: e.g., by phase of creation, or phenomenonological

cause, etc., and no single classification comfortably divides the large space of possible faults.

Instead, Avižienis et al. describe eight fault classes, and argue that a given fault can be

classified according to all eight. The classes they propose are: [3]

1. Phase of Creation: When the fault is created, i.e., design-time or runtime.

2. System Boundaries: Where the fault occurs, i.e., inside the system/element or outside

of it. Note that we consider environmentally caused problems to be faults, rather

than errors. Even though the fault source (e.g., water, heat, etc.) is external to

the physical boundaries of the element, if it does not affect the element through an

established link/port/interaction point, it is considered to be a fault3.

3. Phenomenonological Cause: Whether the fault is caused by a human action or a

“natural phenomena without human participation.”

4. Dimension: Whether the fault affects the element’s hardware or software.

5. Objective: Whether the fault is the result of a malicious act.

6. Intent: Whether or not the person who introduced the fault was aware of the impact

of their choice. Note that this is separate from objective; this distinction allows the

analyst to distinguish good-faith but incorrect choices from actively malicious ones.

3Note that problems with measured physical values would be errors rather than faults according to this
definition. That is, if a thermometer’s sensor can be damaged by too much heat, that would be considered
an error because it occurs at an established interaction point.

92

7. Capability: Whether or not the fault was an accident or the result of incompetence.

This allows the analyst to consider whether blame is appropriate for the action that

caused the fault.

8. Persistence: Whether the fault’s occurrence is permanent or transient.

These classes are combined into a 256-element possible-fault matrix, which is then re-

duced to 31 base fault classes [3]. As part of the creation of SAFE, we further reduced

the fault classes by eliminating fault classes 7 and 8. The Capability class was eliminated

because, as Leveson argues, blame should not be part of hazard analysis but is rather a legal

question. She writes that “Blame is the enemy of safety. Focus should be on understand-

ing how the system behavior as a whole contributed to the loss and not on who or what to

blame for it.” [30] The persistence fault class was eliminated because it does not address the

source of the fault: it seems unreasonable to think that, given two fault descriptions which

vary only in their persistence, an analyst will specify different detection or compensatory

mechanisms.

The elimination of these classes left us with 15 base fault classes. To this list we added

three more to address interaction problems, which address situations where two elements

function correctly but work together in such a way that causes a successor danger. Leve-

son notes that these problems are increasingly common, writing that “In complex systems,

accidents often result from interactions among components that are all satisfying their in-

dividual requirements, that is, they have not failed.” The 18 fault classes used in SAFE

are listed and described in Table 4.1. We note that this list can be extended, shortened, or

modified as necessary by domain experts in order to tailor the set of faults to a particular

area. This can be done in order to align the guidewords with standardization efforts, a

concept introduced by Procter et al. [6].

We note that consideration of the final three fault classifications in Table 4.1 involves

elements other than the one under analysis, which seemingly violates our claims of enabling

local reasoning. These classifications, though, are crucial for detecting barriers to safe

93

No. Guideword Description

1 SW Bug Mistakes made in software creation

2 Bad SW Design Poor choices made in software creation

3 Compromised SW Adversary tampers with software in development

4 Compromised HW Adversary tampers with hardware in development

5 HW Bug Mistakes made in hardware development

6 Bad HW Design Poor choices made in hardware development

7 Production Defect Production defects due to natural phenomena

8 Deterioration Hardware fault at runtime due to degradation over time

9 Environment Damages HW Hardware fault at runtime due to environment

10 Operator HW Mistake Operator makes a mistake while interacting with hardware

11 Operator HW Wrong Choice Operator makes a poor choice while using hardware

12 Adversary Accesses HW Adversary tampers with hardware at runtime

13 Adversary Accesses SW Adversary tampers with software at runtime

14 Operator SW Mistake Operator makes a mistake while interacting with software

15 Operator SW Wrong Choice Operator makes a poor choice while using software

16 Syntax Mismatch Sender uses a different syntax than receiver

17 Rate Mismatch Sender transmits at a different rate than receiver expected

18 Semantic Mismatch Sender and receiver interpret same value differently

Table 4.1: The 18 combined fault classes used in SAFE

composability, i.e., both syntactic and semantic interoperability (see Section 2.1.4). And—

except in strongly connected systems—analysis of these classifications will not require fully

global reasoning. Rather, since they involve consideration only of an element’s immediate

neighbors, reasoning about them is bounded by a small constant in all but pathological

systems.

4.1.4 Formality in Causation and Decomposition

As discussed previously, we have been careful to—where possible—align SAFE with STPA

so that the two can be used together on different parts of the same system. When, though,

should an analyst use SAFE instead of STPA? This is to some degree a judgement for the

94

Pulse	
 Oximeter	
 PCA	
 Pump	

App	
 Logic	

Pa5ent	

Clinician	

Clinician	
 Instruc-ons	
 Clinician	
 Feedback	

Health	
 Outcomes	

PCA	
 Interlock	
 Scenario	
 in	
 Opera5on	

Hospital	
 Clinical	
 Opera5ons	

Ite
ra
5o

n	

an

d	

Co

n5
nu

ed
	

De
ve
lo
pm

en
t	

Procedure	
 Revisions	

So<ware	
 Updates	

Hardware	
 Updates	

Clinician	
 Feedback	

Health	
 Outcomes	

App	
 Development	
 Hospital	
 Opera5ons	

Congress	
 and	
 Legislature	

Regulatory	
 Authori-es	

Congress	
 and	
 Legislature	

(e.g.,	
 FDA)	

Regulatory	
 Authori-es	

(e.g.,	
 UL)	

Vendor	
 Management	

Development	
 Team	

App	
 Design	

App	
 Implementa-on	
 	

and	
 Assurance	

Hospital	
 Business	
 Opera-ons	

Hospital	
 Clinical	
 Opera-ons	

Clinical	
 Assump-ons	

Clinical	
 Procedures	

App	
 In	
 Context	

Figure 4.4: The PCA interlock loop in the clinical context, adapted from figure 4.4 of
Leveson [30]. SAFE would apply only to the shaded region.

analyst herself to make, though we believe SAFE should be used when both a) a systems

theoretic model of causality begins to hinder analysis more than it helps, and b) components

can accurately decomposed/refined into a collection of cooperating automata. A view of the

PCA Interlock scenario in the full clinical context is shown in Figure 4.4; we imagine that

SAFE would be most useful in the shaded region. For absolute clarity, this section discusses

research in the areas of causality and decomposition, but we believe that the direct use of

this research will be necessary only in very rare circumstances.

Causality

Leveson writes that “The definition of accident causation needs to be expanded beyond

failure events so that it includes component interaction accidents and indirect or systemic

causal mechanisms.” [30] We agree that both component interaction and indirect causes

are important to consider, but STPA’s literature provides no clear definition of causality.

In STPA’s hierarchical control structures (like Figure 4.4), what do the arrows between

components mean, precisely? Do arrows between two software- or hardware-based elements

95

signify something different than those between social constructs like organizations?

At all levels of a system’s sociotechnical hierarchy, arrows between components intuitively

read as communication, or more precisely a causal relationship between observable actions

of the sender and the behavior of the receiver. Can we be more precise about the semantics?

Similarly, what is meant by the lack of arrows between two elements? It would be incorrect

to state that the app logic does not affect the patient, but there is no arrow connecting

the two. We believe that the semantics of arrows between software- and hardware-based

elements of a system’s control structure diagrams should be those of actual, intransitive

causality.

Actual Causality We agree with Leitner-Fischer, who writes that actual cause, as pro-

posed by Halpern and Pearl, is the correct model of causality for reasoning about safety-

critical systems [89, 83]. Leitner-Fischer explains that actual cause theory is a refinement

of, and addresses problems with, the popular counterfactual (or alternative world) style of

reasoning, which he explains as:

The “naive” counterfactual causality criterion according to Lewis is as follows:

event A is causal for the occurrence of event B if and only if, were A not to

happen, B would not occur. The testing of this condition hinges upon the

availability of alternative worlds. A causality can be inferred if there is a world

in which A and B occur, whereas in an alternative world neither A nor B occurs.

Unfortunately, Leitner-Fischer explains that there are a number of problems with this

naive approach, including: a) the failure to identify conjunctions or disjunctions of events

as causal, b) preemption of one event by another (and event ordering in general, a major

focus of [89]), as well as c) event non-occurrence and irrelevance4. In order to address these

problems, the counterfactual model was extended by Halpern and Pearl to what they term

4We note that these are similar to many of the problems with existing hazard analyses that drove Leveson
to adopt systems theory.

96

the structural equation model (SEM)5. The SEM presents situations as “logical combinations

of events as well as a distinction [between] relevant and irrelevant causes.” [89]

Halpern and Pearl specify a formalized, three-part test to determine if some event is an

actual cause of another event. This test is quite detailed, and not fully germane to this

work, so we do not reproduce it here. We recommend, however, the interested reader to

both Halpern and Pearl and Leitner-Fischer’s works for a full description and formalization

of actual causality [83, 89].

Intransitivity At first, using the alternate-world semantics of actual causality seems to

lead to a strongly-connected control structure, since each element in the control structure

clearly affects each other element. That is, in an alternate world where there is no app logic,

the patient may experience a PCA overdose, so why is there no arrow directly connecting

the app and the patient? Indeed, every square in the shaded region Figure 4.4 would have

to have an arrow pointing to every other square, which is unsatisfactory and confusing.

We believe a reasonable solution to this problem is intransitive noninterference, which

comes from the information flow community [91]. Rushby explains that “The idea of non-

interference is really rather simple: a security domain u is noninterfering with domain v if

no action performed by u can influence subsequent outputs seen by v.” [92]. Rephrased

into the domain of elements, communication, and observability, then, we might say that “an

element e is noninterfering with another element f if no action performed by e can influence

subsequent outputs seen by f .”

We believe that the existence of an arrow in a system’s control structure should signify

intransitive observability. If one element is reachable from another (i.e., some path exists

between them) that would signify (exclusively) transitive observability. That is, interaction

between two components that are not directly connected would necessarily be mediated by

all intermediary components. This aligns with our intuition: the only information the pump

5We note that the SEM bears some resemblance to the formulae created by Thomas in Section 4.3 of
[90].

97

receives from the sensors in Figure 4.4 would be via commands generated by the app based

on the sensors output. This notion of intransitivity of interference/observability becomes

especially important when we consider the propagation of errors between components, a

topic addressed in some depth in Section 5.5. We note that the arrows in STPA’s diagrams

model interactions—primarily information or command flow, but also occasionally physical

phenomena. Causality can often be derived from these interactions.

Decomposition and Refinement

The entire PCA Interlock scenario will likely be thought of as one element by the hospital

management, and it is possible that another implementation of the same scenario could

satisfy the same goals. That is, a number of systems could suffice for the objectives of the

shaded region of Figure 4.4. They would share the same inputs and outputs but could be

composed of different devices and application logic. Indeed, this interchangeability is at the

core of the component-based MAP vision. How, though, can we know the refinement from

one element to a set of subelements is sound? We aim to answer this question with the firm

notion of decomposition and refinement from Shankar’s Lazy Compositional Verification

[84].

The hierarchical safety structures used in both STPA and SAFE (i.e., Figure 4.4) can be

thought of as models of decomposition and refinement. Decomposition is a term for breaking

a system down into its component parts, while refinement is a related term that signifies

increasing the level of specificity of a model into a more detailed specification, sometimes

down to the implementation level. A good example of decomposition is moving down an

abstraction hierarchy, i.e., in the language used to describe MAP apps from Section 3.3,

from the AADL System level to the AADL Process level. Similarly, the code gener-

ation aspects of the MDCF Architect (from Section 3.4) is a good example of refining a

component’s architecture down to the implementation level.

Careful thought has been given to these notions in the formal methods community and

98

Sensor:	
 	

Pulse	
 Oximeter	

Actuator:	

PCA	
 Pump	

Controlled	
 Process:	

Pa7ent	

Auto.	
 Controller:	

App	
 Logic	

Pump-­‐>Pa7ent:	

IV	
 Line	

App-­‐>Pump:	

Tickets	
 to	
 Pump	

Sensor-­‐>App:	
 	

SpO2	
 to	
 App	

Connec7on	

Component	

Link	

Element	

Key	

Pa7ent-­‐>Sensor:	

Infrared	
 light	
 to	
 PulseOx	

App	
 Logic’s	
 Successor	
 App	
 Logic’s	
 Predecessor	

Figure 4.5: An expanded view of the shaded region from Figure 4.4, showing components,
connections, and the links between the two

we believe that similarly rigorous notions should be used in SAFE as well. Using such

formalisms, we could know if the shaded region in Figure 4.4 could be safely replaced by a

different process that claims to achieve the same goals, i.e., could uphold the same invariants.

This is a topic we explore in some depth in Section 5.4.

4.1.5 Terminology

In order to discuss subtle concepts clearly, we have assigned specific meanings to several

terms that are commonly used in component-based engineering.

Components, Connections, and Links

One of the key realizations from Wallace’s FPTC (described in Section 2.2.3) is that connec-

tions between elements can modify the failure behavior of a system in a similar way to com-

ponents [35]. Dolev and Yao also explain the same realization, writing that connections—or

adversaries with access to connections—can drop, duplicate or resend, or modify the pay-

99

loads of messages [93]. Thus, safety analyses should treat them as first-class citizens, and not

focus entirely on component analysis. The terminology of SAFE reflects this importance.

Figure 4.5 shows the shaded region from Figure 4.4 after it has been expanded to ex-

plicitly show both components and connections. Note that we use the term element to

refer to a generic component or connection. Additionally, note that the arrows between

elements are referred to as “Links;” links are infallible, directed bonds between elements of

different types. That is, links cannot transform, produce, or consume errors; they can only

propagate them. Additionally, SAFE does not allow one component to be linked directly to

another component (or a connection linked directly to another connection): there must be

a mediating element of the opposite type.

Predecessors and Successors

We often consider an element in the context of its immediate neighbors, i.e., those elements it

is connected to via link. We phrase the relationship between an element and such neighbors

in terms of “predecessors” and “successors.” That is, in Figure 4.5 the connections from the

sensors are the app logic’s predecessors because they carry the messages it uses as input,

while the connection to the PCA pump is the successor to the app logic since the logic

generates the messages it carries.

Activities, Steps, and Tasks

We term the basic unit of the SAFE process a task, which is a single part of the process that

cannot be reasonably divided further. Tasks combine to make up steps, which are ordered

collections of tasks that accomplish some specific goal. Tasks are then ordered and collected

into three top-level activities, which are intended to completely address either the system

itself (Activity 0), all of an element’s interactions with its predecessors (Activity 1), or all

of an element’s possible internal faults (Activity 2).

100

…	

Ac%vity	
 0	
 Step	
 1	

(System-­‐Level	
 Fundamentals)	

A1S1	

A1S2	
 A2S1	

A1S3	
 A2S2	

Ac%vity	
 1	
 Step	
 1	
 	

(Successor	
 Dangers)	

Ac%vity	
 1	
 Step	
 2	
 	

(Manifesta%ons)	

Ac%vity	
 2	
 Step	
 1	
 	

(Fault	
 Class	
 Elimina%on)	

Ac%vity	
 1	
 Step	
 3	

(Error	
 Documenta%on)	

Ac%vity	
 2	
 Step	
 2	

(Fault	
 Documenta%on)	

…	

A1S1	

A1S2	
 A2S1	

A1S3	
 A2S2	

A1S1	

A1S2	
 A2S1	

A1S3	
 A2S2	

First	
 Element	
 Inside	

System	
 Boundary	

E’s	
 Predecessor	

Element	
 E	

E’s	
 Successor	

Ac%vity	
 0	
 Step	
 2	
 	

(Control	
 Structure)	

Figure 4.6: The dependencies between the steps in SAFE. To completely analyze some
element E (darkly shaded, center), all steps (white rectangles) with solid borders must be
completed in the topological ordering implied by the dependencies (arrows). Steps or depen-
dencies represented as dashed lines can be done at any time, but are not necessary for the
analysis of E.

4.1.6 Parallel and Compositional Aspects of SAFE

The SAFE process begins either by analyzing a system’s fundamental aspects (notions of

loss, hazards, etc.) or by importing those aspects from an STPA of the system’s sociotechni-

cal elements. After that step (Activity 0, Step 1) is completed, the next step is creating the

system’s control structure (Activity 0, Step 2). Defining this control structure consists of

specifying element interactions and element-level fundamentals in a backwards chain from

101

Step Enables

A0S1 A0S2 on first element inside system boundary

A0S2 A1S1 (given A1S2 on E’s predecessor)

A1S1 A1S2, A2S1

A1S2 A1S2, A1S1 on E’s successor

A1S3 —

A2S1 A2S2

A2S2 —

Table 4.2: Dependencies between the steps of SAFE. ANSM signifies “Activity N, Step M,”
and all steps (except Activity 0’s first step) are assumed to be performed on some element
E.

the element closest6 to the controlled process. Each element’s successors must all be defined

before the element itself is specified.

Unlike Activity 0, Activities 1 and 2 focus on individual system elements. In order to

begin analysis of a particular element E, an analyst will need to have a) performed Activity

0’s second step on E (i.e., created a control structure that includes E), and b) performed

Activity 1’s first and second steps (identifying successor dangers and manifestations) on E’s

predecessor. Once Activity 1’s first step is complete for E, the analyst can perform Activity

1’s second step or Activity 2’s first step on E. Performing Activity 1’s second step enables

Activity 1’s first step on E’s successor as well as Activity 1’s third step on E. Activity

2 is largely standalone: its first step enables only its second step. Note that as the first

element inside the system boundary has no predecessor, it instead relies on system-level

fundamentals, which were established in Activity 0’s first step.

Figure 4.6 shows a graphical representation of this process, and Table 4.2 shows a tabular

representation. In the figure, the required steps to fully analyze element E are depicted as

solid-bordered squares, and the solid arrows signify a “depends-on” relationship that must

be met. Optional steps and dependencies, which can be performed/met at any time or in

6Closest in a topologically sorted version of the system’s architecture.

102

parallel to the required ones, are depicted as dashed squares and arrows. This flexibility

in ordering allows an analyst to focus on whatever aspects of the system she prefers. Ad-

ditionally, though the first two steps of each component’s analysis are sequential, the rest

are fully parallelizable, and so additional analysts can be cooperate to decrease the time

required for a full system analysis.

4.2 Activity 0: Fundamentals

The first activity in SAFE is centered around defining certain “fundamental” characteristics

of a system. These include the both the notions and criticality levels of possible losses, known

as accidents and accident levels, respectively. These losses are typically safety related (i.e.,

death or injury to humans, damage to the environment, etc.) but could, in theory, be any

undesirable occurrence. Leveson terms the events that lead to accidents hazards, and rather

than define them as a state of the system, she explicitly acknowledges that the environment

must also be in a particular state for the loss to occur. Thus, hazards in SAFE are pairs of

system and environment states. Lastly, the analyst considers system-level safety constraints,

which are properties that—if maintained—would prevent the hazards from occurring.

As the analyst works through the system’s accidents, hazards, and constraints she is likely

considering, and should document, a candidate control structure for the system. Creating

such a structure involves two related but subtly different tasks:

� Determining the top-level system decomposition: This requires assigning tasks to the

elements that collectively comprise a system. Typically, an analyst/designer first allo-

cates sensory functions, control algorithms, and actuation to their respective compo-

nents and then connects the components to one another via communication channels.

This decomposition can be formally shown to uphold the same invariants as the top-

level system, if necessary (see Section 5.4).

� Determining the top-level system boundary: While the analyst allocates system tasks

103

Fundamental Narrative Explanation

Accident Level Death or serious injury

Accident Patient harmed by too much analgesic from the PCA pump

Hazard System Element: PCA Pump

System State: Administering analgesic

Environmental Element: Patient

Environment State: Cannot tolerate more analgesic

Hazardous Factor: Opioid analgesic

Safety Constraint Disable pump when patient is at risk of overdose

Table 4.3: Example safety fundamentals for the PCA Interlock scenario. Note that these
are specific to the notion of opioid overdose; other undesirable events would have other
fundamentals.

to components, she also must consider what tasks are handled by elements in the

environment. For the purposes of SAFE, environmental elements are those outside of

the analyst’s direct control. Environmental elements can either provide information

to the system (monitored variables in [94]) or be controlled by the system (controlled

variables, ibid.).

We use the term fundamentals to collectively refer to the system-level accident levels,

accidents, hazards, and safety constraints as well as a specification of the control structure.

An example of these textual fundamentals for the PCA Interlock Scenario is given in Table

4.3, while the shaded portion of Figure 4.4 is a partial example of the PCA interlock’s

control structure. A more complete example is given in Figure 4.12 and discussed in Section

4.2.2.

4.2.1 System-Level Fundamentals

SAFE’s first step consists of documenting system-level fundamentals. These properties

apply to the entire system, and are necessarily considered and documented before individual

components are analyzed. This step aligns very closely with STPA: if an analyst has already

104

1 property set MAP_Error_Properties is
2

3 -- Other properties removed for space
4

5 Accident_Level : type record (
6 Name : aadlstring;
7 Description: aadlstring;
8 Explanations : list of aadlstring;
9 Accidents : list of MAP_Error_Properties::Accident;

10);
11

12 Accident : type record (
13 Name : aadlstring;
14 Description : aadlstring;
15 Explanations : list of aadlstring;
16 Hazards : list of MAP_Error_Properties::Hazard;
17);
18

19 Hazard: type record (
20 Name : aadlstring;
21 Description : aadlstring;
22 HazardousFactor : aadlstring;
23 SystemElement : reference (device, process);
24 EnvironmentElement : reference (abstract);
25 Explanations : list of aadlstring;
26 Constraints : list of MAP_Error_Properties::Constraint;
27);
28

29 Constraint: type record (
30 Name : aadlstring;
31 Description : aadlstring;
32 ErrorType : reference({emv2}** error type);
33 Explanations : list of aadlstring;
34);
35

36 Fundamentals : record (
37 Fundamentals : list of MAP_Error_Properties::Accident_Level;
38 Explanations : list of aadlstring;
39) applies to (abstract);
40

41 end MAP_Error_Properties;

Figure 4.7: The fundamentals property type definition

105

A B C D E F G H I J K

1 System: [Fill]

2 System Environment

3 Name Reference [Fill] [Fill]

4

5 Accident Levels [Fill] N / A

6

7 Accidents: [Fill] [Fill]

8
Hazardous

Factor System Element
System Element

State Env. Element
Env. Element

State

9 Hazards: [Fill] [Fill] [Fill] [Fill] [Fill] [Fill] [Fill]

10

11 Safety Constrai [Fill] [Fill]

12

13

14 Reference

15

System Boundary

Fundamentals

Explanations

Explanation

Figure 4.8: The system-level fundamentals worksheet used in M-SAFE

A B C D E F G H I J K

1 System: PCA Interlock

2 System Environment

3 Name Reference PCA Pump Patient

4 App Logic

5 Accident Levels:
AL.DeathOrSeri
ousInjury N / A Pulse Oximeter

6 Capnograph

7 Accidents:
Acc.PatientHar
med

AL.DeathOrSeri
ousInjury

8
Hazardous

Factor System Element
System Element

State Env. Element
Env. Element

State

9 Hazards:
H.TooMuchAnal
gesic

Acc.PatientHar
med Analgesic PCA Pump Pumping Patient NearHarm

10

11
Safety
Constraints:

SC.DontODPati
ent

H.TooMuchAnal
gesic

12

13

14 Reference

15
Acc.PatientHar
med

16
H.TooMuchAnal
gesic

17 Architecture

18

19

System Boundary

Fundamentals

Explanations

Explanation

The patient is harmed or seriously injured as a result of the App's actions or inaction

The patient is given more analgesic than he / she can safely tolerate

As modeled by Arney-etal in ICCPS10 (in section 4.3) with some modifications

A lot of possibly unmeetable assumptions (guaranteed timing of network and app)

Modified to include RR and EtCO2 physiological monitors (in addition to SpO2)

Figure 4.9: The system-level fundamentals of the PCA Interlock scenario from Table 4.3,
specified using the worksheet from Figure 4.8

106

1 package PCA_Shutoff
2 public
3

4 system PCA_Shutoff_System
5 -- Type specification removed for space
6 end PCA_Shutoff_System;
7

8 system implementation PCA_Shutoff_System.imp
9 -- Implementation removed for space

10 annex EMV2 {**
11 use types PCA_Shutoff_Errors;
12 properties
13 MAP_Error_Properties::Fundamentals => [
14 AccidentLevels => ([
15 Name => "DeathOrSeriousInjury";
16 Description => "Death or serious injury to a human";
17 Accidents => ([
18 Name => "PatientHarmed";
19 Description => "Patient dies";
20 Explanations => (["The patient is harmed..."]);
21 Hazards => ([
22 Name => "TooMuchAnalgesic";
23 Description => "The patient receives more analgesic than they

can tolerate";↪

24 HazardousFactor => "Analgesic";
25 SystemElement => reference (pcaPump);
26 EnvironmentElement => reference (patient);
27 Explanations => (["The patient is given more analgesic

than..."]);↪

28 Constraints => ([
29 Name => "DontODPatient";
30 Description => "The pump shouldn’t run if the patient shows

signs of an overdose";↪

31 ErrorType => reference(TooMuchAnalgesic);
32]);
33]);
34]);
35]);
36];
37 -- Top-level explanations removed for space
38 **};
39 end PCA_Shutoff_System.imp;
40

41 end PCA_Shutoff;

Figure 4.10: The fundamentals of the PCA Interlock scenario from Table 4.3, specified
using the fundamentals property type from Figure 4.7

107

1 package PCA_Shutoff_Patient
2 public
3 with MAP_Properties, PCA_Shutoff_Types;
4 abstract PCA_Shutoff_Patient
5 features
6 vein: in feature;
7 fingerclip: out feature;
8 exhalation: out feature;
9 properties

10 MAP_Properties::Component_Type => controlled_process;
11 end PCA_Shutoff_Patient;
12

13 abstract implementation PCA_Shutoff_Patient.imp
14 subcomponents
15 health_status: data PCA_Shutoff_Types::PumpCmd;
16 end PCA_Shutoff_Patient.imp;
17

18 end PCA_Shutoff_Patient;

Figure 4.11: The PCA Interlock Scenario’s patient in AADL

begun the STPA process she can likely carry much of this information over to SAFE without

modification. The exact format of this documentation depends on whether the analyst is

using M-SAFE or T-SAFE: M-SAFE’s system-level worksheet is shown in Figure 4.8, T-

SAFE’s fundamentals property type definition is shown in Figure 4.10.

Identifying System Components

The first tasks in SAFE are straightforward: they consist of identifying the system and its

top-level decomposition. If the analyst is examining an extant system, then she can simply

write down the human-readable names of the system itself and its components. If, however,

the system is still being designed then this task can be slightly more complex due to the two-

task process of determining the system composition and boundaries (see the introduction

to this section).

In M-SAFE, these names are filled in the provided spreadsheet cells: see cells B1 and

J3-K3 of Figures 4.8 and 4.9. In T-SAFE, this step consists of creating and naming the

various components that make up the system as discussed in Section 3.3. Note that we have

108

extended the language slightly, however, to include the use of abstract components and

feature connections, which are used to model components and connections for which no

code-generation is required. An example, which models the patient in the PCA Interlock

scenario, is shown in Figure 4.11. Use of these language constructs enables hazard analysis

annotations required by T-SAFE to be used without affecting the code generation aspects

of the MDCF Architect.

Accident Levels

Next, the analyst should consider what the worst-case result of the scenario going wrong

would be, i.e., the application’s accident level. This can be an application specific notion,

or an analyst can choose to align with standardized levels of criticality. Example standards-

based notions include IEC 62304’s “Software Safety Classifications” and ISO 14971’s qual-

itative severity levels (discussed in Section 2.2.5). For the analysis of the PCA Interlock

scenario, we have—somewhat arbitrarily—chosen to use the safety classifications from ISO

62304, and so we note that this application would be “Class C” as “Death or serious

injury is possible.”

The worst-case result of a failure in the PCA Interlock scenario is the death of, or

serious harm to, the patient. Other MAP apps may involve other accident levels, such as

damage to equipment or a waste of valuable resources. Multiple accident levels should be

ordered in descending order of undesirability, e.g., human death would rank first, followed

by human injury, followed by equipment damage. In M-SAFE, accident levels are written in

a spreadsheet cell and prefixed with “AL” for identification purposes, as in cell B5 of Figure

4.9. In T-SAFE the analyst would document the accident level using the Accident Level

property from the MAP Error Properties property set. The property is defined in lines

5-10 of Figure 4.7, and the accident level associated with the PCA Interlock example is

shown see lines 15-16 of Figure 4.10.

109

Accidents

The next action required by SAFE is to document the actual losses that can occur, these are

termed accidents. Each accident should cause harm at a level specified by a given accident

level, and be traceable to that accident level. In the PCA Interlock scenario, we have

primarily focused on the accident of opioid overdose: i.e., if our application fails to disable

the pump when it should, the patient could be seriously injured or killed by an overdose of

analgesic. Alternatively, an analyst may want to also avoid the underinfusion of a patient:

this would be a separate accident and would trace to a second, lower-ranked accident level.

In M-SAFE, accidents are documented by name in the a spreadsheet cell and prefixed

with “Acc.” They should also, in a reference cell, have a link to the accident level that

the accident would cause. Cells B7 and C7 of Figure 4.9 show the accident name and

accident level reference, respectively. T-SAFE allows multiple accidents to be embedded

as sub-properties of the accident level they are linked to. The Accident property type is

specified in lines 12-17 of Figure 4.7, and the PCA Interlock example is shown in line 17-20

of Figure 4.10. This structure allows a developer/analyst to directly connect a collection of

accidents to the same accident level.

Hazards

After identifying system-level accidents, the analyst should next consider the system-level

hazards that would cause them. Recall that hazards are pairings of one system state and

one worst-case environment state: we ask the analyst to consider both system and environ-

mental elements as well as their states. Additionally, if possible, analysts should identify

the hazardous factor, which is a concept advocated by Ericson7. Ericson defines the term as:

“. . . the basic hazardous resource creating the impetus for the hazard, such as a hazardous

energy source. . . being used in the system.”

7Ericson uses the term hazardous element, but since element has a specific meaning in SAFE (component
or connection) we have renamed the term.

110

In the PCA Interlock scenario, our primary hazard then consists of the elements identified

in Table 4.3. That is: the hazard name, a reference to the caused accident, the hazardous

factor, system element, system element’s state, environment element, and environment ele-

ment’s worst-case state are all recorded together. In M-SAFE, the information is entered in

row 9, columns B-I in Figure 4.8. The worksheet complete with information regarding the

PCA Interlock is shown in the same cells in Figure 4.9. T-SAFE follows a similar pattern as

with accidents and accident levels: the hazard property is specified in lines 19-27 of Figure

4.7, and an example of the hazard embedded as a subproperty of the accident it would cause

is shown in lines 21-27 of Figure 4.10. The current version of T-SAFE does not allow iden-

tification of system or environment element states, but only the elements themselves. The

relevant states of the elements are derivable, though, so analyst-specified state information

is not required.

Safety Constraints

The specification of safety constraints is central to STPA, and is similarly important in

SAFE. Leveson writes that “The most basic concept in [the accident model underlying

STPA] is not an event, but a constraint. Events leading to losses occur only because safety

constraints were not successfully enforced.” [30] Safety constraints, like the one specified in

Table 4.3, are associated with a hazard and—if enforced—guarantee the avoidance of the

associated hazard. Often they take the form of requiring the system to be in a specific state

when the environment/controlled process is in a particular state.

In M-SAFE, safety constraints are documented much like the other fundamentals: with

a name, prefixed by “SC.,” and a reference to the associated hazard. See cells B11 and C11

of Figures 4.8 and 4.9. In T-SAFE, safety constraints are embedded as subproperties of the

hazard they are associated with; see lines 29-34 of Figure 4.7 and 28-31 of Figure 4.10.

111

Explanations

While we recognize that one of the strengths of STPA is its flexibility, we also believe that

too much flexibility in a documentation format can lead to variance in analysis quality.

We have attempted to strike a balance between an overly-rigid format and one that would

allow too much variability, and that balance comes in free-form, narrative explanations that

can be attached to any fundamental construct. These are designed to be short (sentence-

length) justifications or elaborations that clarify unintuitive accidents, hazards, constraints,

or architectural decisions. That is, these explanations are not intended to be used for

paragraph (or longer) narratives.

In M-SAFE, these explanations are written in rows 15+ of columns B-I; column A is used

for a reference to the accident level, accident, hazard, or safety constraint. Figure 4.9 shows

some sample explanations for the PCA Interlock scenario, including fuller explanations of

the accident and hazard as well as some notes about the architecture of the system itself. In

T-SAFE these explanations are added using the optional Explanations subproperty of

each fundamental property type or the top-level Fundamentals property for explanations

not bound to any particular accident level, accident, hazard, or safety constraint. For

example, see lines 20 and 27 of Figure 4.10.

Candidate Graphical Control Structure

The final task in Activity 0’s first step is to determine a candidate control structure. We note

that this task is both optional (but recommended) and specific to M-SAFE. Additionally,

if the analysis is being performed on a system that has already been built then this step is

straightforward, and the structure is unlikely to change much. If, however, the analysis is

being performed as the system is built, then the control structure will likely be modified as

the design and safety analysis proceed—thus, the output of this step should be considered

more of a sketch than a final version.

Control structures in M-SAFE are required to be specified textually (see Step 2, below)

112

Pulse	
 Oximeter	

Capnograph	
 PCA	
 Pump	

Applica6on	
 	

Logic	

EtCO2,	

Resp.	
 Rate	

SpO2,	
 	

Pulse	
 Rate	

Start	
 /	
 Stop	

Commands	

Display	

Pump	
 Status,	

Pa6ent	
 Status	

Pa6ent	

Analgesic	

Bolus	
 Requests	

Breath	

Refracted	
 Light	
 Treatment	

Configura6on,	

Alarm	
 Clear	

Clinician	

Pum
p	
 Status,	

Pa6ent	
 Status	

Clinical	
 Process	
 Boundary	

App	
 Logic	
 	

Boundary	

	
 App	
 System	
 Boundary	

Figure 4.12: Possible system boundaries for different levels of abstraction in the PCA
Interlock scenario

and optionally graphically as well. Graphical representations are typically much easier to

use, but play no role in the rest of the analysis; the textual representation is used to guide

the order in which all remaining tasks are performed. Control structures are determined

programmatically in T-SAFE, so this step has no equivalent in the tool-supported process.

4.2.2 Specifying a Control Structure

Activity 0, Step 2 involves specifying the candidate control structure in an actionable format.

This sets up the actual analysis to be performed in activities 1 and 2.

113

Drawing System Boundaries

An analyst begins by selecting the element closest to the controlled process that is inside

the system boundary. Which elements, though, should be considered “inside” the system

boundary? Recall from the introduction to Activity 0, where we explained that elements

which are directly under the analyst/developer’s control should be considered inside the sys-

tem, while those that are not should be considered to be in the environment. Note, however,

that the boundary will, expand/shrink as analysts move up/down a system’s abstraction

hierarchy.

Consider Figure 4.12, which overlays three boundaries onto the app-developer’s view

of the PCA Interlock scenario from Figure 2.3. The innermost boundary, in red, is that

of the app logic developer: he gets input from, and sends output to, the devices, but he

has no control over what those devices are. The middle boundary, in blue, is that of the

app designer herself: by specifying the properties required of the devices, she exercises

direct control over which ones get used and which do not. She does not, though, control

the patient or the clinician directly, so they are still considered environmental. Finally, the

outermost boundary, in black, includes all elements of the clinical process. Other boundaries

are possible, including those at both lower and higher levels of abstraction. Additionally,

boundaries are not necessarily concentric: the PCA Pump creator’s boundaries exist at the

same level of abstraction as the app logic developer’s, but they do not overlap.

Identifying Elements

The next task is to uniquely identify the elements by their place in the system’s control

structure. When specifying a control structure, analysts should typically start at the con-

trolled process and work backwards, at each element asking “what element(s) affects this

current one?” For example, in the PCA Interlock scenario, an analyst would begin by

considering the patient: what component or connection affects the patient? The IV line.

What affects the IV line? The PCA pump. This process would continue iterating back-

114

wards through the control structure until all the elements identified previously have been

allocated. When in doubt, analysts should recall the two-part notion of causality discussed

in Section 4.1.4: for some component A to control some component B, A should have an

intransitive, actual effect on B. In fact, it as at this level that we believe system causality

becomes more of a burden than a benefit: when hardware- and software-based components

are directly interacting, non-traditional models of causality can become quite unintuitive.

In Figure 4.12, the first element inside the app system boundary—when working back-

wards from the patient—is the PCA Pump, so the analyst should start here. For M-SAFE

this requires creating a copy of the element worksheet shown in Figure 4.15 for the pump.

Then, the element is named and the names of predecessor and successor links are specified

using row 4 of the worksheet.

In T-SAFE this step is automatically performed by specifying the app layout in the

language subset from Chapter 3. Both the System and the Process constructs can

be thought of as defining boundaries and decompositions, since they include an external

interface (the type) and the internal decomposition (the implementation). Systems are

used to specify the app’s overall component and connection topology, equivalent to the blue

boundary in Figure 4.12. The Process construct is one level lower in the abstraction

hierarchy, and is equivalent to the red boundary in Figure 4.12. See Sections 3.3.2 and 3.3.3

for details.

Specifying Classifications

In the hierarchical control structures used by STPA, components are typically assigned

roles, e.g., controller, actuator, sensor or controlled process. We believe that this notion

is useful, but SAFE generalizes the concept somewhat. We name these roles architectural

classifications, but we expect that future work may come up with other, possibly domain-

specific, classifications as well. These classifications may be used to guide tasks in activities

1 and 2, and we believe that they may be tailored by domain experts to if domain specificity

115

would be useful. The final task in Activity 0 is to document the role played by a particular

component, or in the case of a connection, the roles played by its sender and receiver. In

M-SAFE a component’s architectural classification is specified in cell 4H, while T-SAFE

uses the Component Type property to set the value (see line 10 of Figure 4.13).

Note that if a single component has multiple successor links and could reasonably be

classified under multiple architectural classification, the analyst should “split” the compo-

nent for the purpose of the SAFE analysis. That is, since the system is being modeled

based on its control structure—rather than its physical deployment—what we consider to

be a component or connection are technically logical components and connections. Typi-

cally these logical structures (e.g., app logic, PCA pump) align with physical realizations

(e.g., executable code, a specific PCA pump) when a system is deployed, but in the cases

where they do not, the logical structures should be modeled.

Backwards Iteration

Once a component’s classification(s) have been specified, the analyst can either start iden-

tifying a new component by moving backwards one step in the control structure or proceed

with analysis of a previously-identified element by beginning Activity 1. If the analyst

moves to a new element, a new copy of the worksheet from Figure 4.15 should be created

for each predecessor that has a link to the current element, and the analyst should return

to the “Identifying Elements” task. This backwards iteration should continue until all el-

ements inside the system boundary (as specified at the beginning of this step) have been

identified. Note that any time after a component’s predecessors have been fully identified

and documented as part of Activity 0’s second step, Activity 1’s tasks can be performed

on it. If multiple analysts are available, the two activities can be performed in parallel, as

long as each component’s predecessors are fully identified before its external interactions are

analyzed.

116

4.3 Activity 1: Externally Caused Dangers

The first activity in SAFE is, like the second step of Activity 0, performed on each element

individually. Activity 1 involves first discovering, and then documenting, a) a component’s

individual, local notion of danger (i.e., its successor dangers, see Section 4.1.1); b) whether

or not external errors arriving via the element’s predecessor links would manifest as those

successor dangers (i.e., manifestations, see Section 4.1.2); and finally c) the relationship

between the element’s successor dangers and its manifestations. Documenting that rela-

tionship involves not only linking a manifestation to a successor danger, but also explaining

the link and any possible compensatory actions.

These explanations are written primarily in a narrative format, but may also involve

quasi-formal statements involving process models. Process models are a central part of

STPA, and Leveson describes them as “a model of the process being controlled.” [30]

Process models are most relevant for components that calculate control actions based on

sensor input though they can be useful for sensing and actuation components as well.

4.3.1 Successor Dangers and Process Models

The first step in Activity 1 is to determine an element’s successor dangers and, if it is a

component, document its process model.

Import the Element’s Successor Dangers

Recall from Section 4.1.1 that these are outputs from our current component which would

transitively cause system-level safety constraint violations. Typically this task is straight-

forward, as the manifestations of a component’s successor are its successor dangers, and

they can be directly copied in. Since the first element to be considered has no successor

inside the system boundary, it uses violations of the system-level constraints as its successor

dangers.

117

1 package PCAPump_Interface
2 public
3 with PCA_Shutoff_Types, MAP_Properties, MAP_Error_Properties,

PCA_Shutoff_Patient;↪

4

5 device ICEpcaInterface
6 features
7 TktsIn:in event data port PCA_Shutoff_Types::Ticket;
8 DrugFlow:out feature;
9 properties

10 MAP_Properties::Component_Type => actuator;
11 annex EMV2 {**
12 use types MAP_Errors, PCA_Shutoff_Errors;
13 use behavior PCA_Shutoff_Errors::PumpStatus;
14 error propagations
15 TktsIn:in propagation {TktTooLong, TktTooShort, ErraticTkt, NoTkt,

EarlyTkt, LateTkt};↪

16 DrugFlow:out propagation {TooMuchAnalgesic};
17 end propagations;
18 **};
19 end ICEpcaInterface;

Figure 4.13: The PCA Pump interface type in AADL

In the PCA Interlock example, the PCA pump’s successor danger is violating the system-

level safety constraint by administering narcotic when the patient is not healthy enough to

tolerate it. In M-SAFE this would be documented by writing the constraint’s name in cell

A13, or by creating a reference to the associated constraint’s cell. Figures 4.15 and 4.16 show

an example of the blank worksheet and part of the full PCA pump analysis. In T-SAFE

successor dangers are generated automatically from the error types that propagate out of a

component. See line 16 of Figure 4.13, which shows the TooMuchAnalgesic error type

being propagated out on the pump’s DrugFlow port.

Document the Process Model

Leveson, citing Ashby, explains that controlling a process requires four conditions: a) a

goal condition (what the controller is trying to achieve), b) an action condition (how the

controller can affect the system’s state), c) an observability condition (how the controller

can sense the system’s state), and d) a model condition, which is some anticipated relation

118

1 device implementation ICEpcaInterface.imp
2 subcomponents
3 Tkt:data PCA_Shutoff_Types::Ticket
4 {MAP_Error_Properties::ProcessVariable => true;};
5 annex EMV2 {**
6 use types MAP_Errors, PCA_Shutoff_Errors;
7 use behavior PCA_Shutoff_Errors::PumpStatus;
8 error propagations
9 flows

10 -- Externally errors
11 LongTktOD:error path TktsIn{LongTkt}->DrugFlow{TooMuchDrug};
12 ErraticTktOD:error path TktsIn{ErraticTkt}->DrugFlow{TooMuchDrug};
13 LowTktsSafe:error sink TktsIn{TktTooShort};
14 NoTktsSafe:error sink TktsIn{NoTkt};
15 -- Internal faults
16 DeteriorationLeadsToOD:error source DrugFlow{TooMuchDrug} when

{Deterioration};↪

17 CosmicRayLeadsToOD:error source DrugFlow{TooMuchDrug} when
{CosmicRay};↪

18 end propagations;
19 component error behavior
20 events
21 -- Detectable external problems
22 TimeoutVio:error event {EarlyTkt};
23 TimestampVio:error event {LateTkt};
24 -- Detectable internal problems
25 PumpDeteriorates:error event {Deterioration};
26 transitions
27 SwitchToKVO:Normal -[TimeoutVio or TimestampVio]-> PermanentKVO;
28 end component;
29 properties
30 MAP_Error_Properties::RuntimeErrorDetection => [
31 ErrorDetectionApproach => Concurrent;
32 Explanation => "Minimum sep. between messages detect early arrivals";
33] applies to TimeoutVio;
34 MAP_Error_Properties::RuntimeErrorHandling => [
35 ErrorHandlingApproach => Rollforward;
36 Explanation => "The pump switches into a fail-safe mode";
37] applies to SwitchToKVO;
38 MAP_Error_Properties::ExternallyCausedDanger => [
39 ProcessVariableValue => reference(Tkt);
40 ProcessVariableConstraint => "Too high for patient’s status";
41 Explanation => "The ticket has a time value that is too long";
42] applies to LongTktOD;
43 **};
44 end ICEpcaInterface.imp;
45 end PCAPump_Interface;

Figure 4.14: The PCA Pump interface implementation in AADL

119

A B C D E F G H I

1

2

3

4 Architectural:

5

6

7

8

9

10

11

12 High Low Early Late

13 [Fill] [Fill] [Fill]

14 [...] [...] [...]

15

16
Process

Variable Name Unit
17 [Fill] [Fill] [...] [Fill]

18 [...] [Fill] [...] [...]

19

20

21

22
Successor

Danger Name
Process Var.

Name
Process Var.

Value
Co-occurring

Dangers
Run-time
Detection

Run-time
Handling

23 [Fill] [Fill] [Fill] [Fill] [Fill] [Fill] [Fill]

24 [...] [...] [...] [...] [...] [...] [...]

25

26

27

28

29

30

31

32

33

34

35

36

37
Successor

Danger Guideword
Co-occurring

Dangers
Design-time

Detection
Run-time
Detection

Run-time
Error Handling

Run-time
Fault Handling

38 [Fill] [Fill] [Fill] [Fill] [Fill] [Fill] [Fill]

39 [...] [...] [...] [...] [...] [...] [...]

40

Activity 0: Fundamentals
Step 0.2

Element: Successor Link Name(s): Predecessor Link Name(s) Classification

[Fill] [Fill] [Fill] [Fill]

[...] [...] [...]

Activity 1: Unsafe Interactions
Step 1.1 Step 1.2

Successor Dangers
Manifestations

Pred. Link
Content

Halted Erratic
Timing

[Fill] [Fill] [Fill]

[...] [...] [...]

Process Values

Step 1.3

Externally Caused Dangers Proposed Mitigations

Interpretation

[Fill]

[...]

Activity 2: Internal Faults

Step 2.1

Faults Not Considered

Guideword Justification

[Fill] [Fill]

[...] [...]

Step 2.2

Internally Caused Dangers

Interpretation

[Fill]

[...]

Figure 4.15: The component worksheet used in M-SAFE.

120

A B C D E F G H I

1

2

3

4 Architectural:

5

6

7

8

9

10 High Low Early Late

11

AppLogicComm
ands -> PCA

Pump
PCAPump.Ticket

TooLong Not Hazardous Not Hazardous
PCAPump.Errati

cTicket
PCAPump.Early

Ticket
PCAPump.LateT

icket

12

13
Process
Variable Unit

14 Ticket Duration 1 2 3 ... 598 599 600 Seconds

15

16

17

18
Successor

Danger Name
Process Var.

Name
Process Var.

Value
Co-occurring
Dangers

Run-time
Detection

Run-time
Handling

19
SC.DontODPati

ent
PCAPump.Ticke

tTooLong Ticket Duration Higher than safe None None N / A

20
SC.DontODPati

ent
PCAPump.Errati

cTicket Ticket Duration Any None None N / A

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
Successor

Danger Guideword
Co-occurring

Dangers
Design-time

Detection
Run-time
Detection

Run-time
Error Handling

Run-time
Fault Handling

38
SC.DontODPati
ent

Deterioration None

Testing:
Maintenance

intervals should
be estab. by the
manufacturers
and verified by

regulators

Preemptive:
Periodic pump
examinations

None None

39
SC.DontODPati
ent

Operator HW
Wrong Choice None

Testing: Perform
user studies on

the interface
None None

Diagnosis:
Thoughtful UI

(re)design,
periodic

retraining

40

Activity 0: Fundamentals
Step 0.2

Element: Successor Link Name: Predecessor Link Name(s) Classification

PCA Pump PCA Pump -> IV Line
AppLogicCommands -> PCA
Pump Actuator

Activity 1: Unsafe Interactions
Step 1.1 Step 1.2

Successor Dangers
Manifestations

Pred. Link
Content

Halted Erratic
Timing

SC.DontODPatient

Process Values

Step 1.3

Externally Caused Dangers Proposed Mitigations

Interpretation

The PCA pump receives a
non-zero ticket when the patient

cannot tolerate any more
analgesic, which leads

to the pump administering drug
when it should not.

(Removed Due to Space
Constraints)

(Removed Due to Space Constraints)

Activity 2: Internal Faults

Step 2.1

Faults Not Considered

Guideword Justification

Compromised Software
We're using a "proven in use" PCA PumpBad Hardware Design

Production Defect

Semantic Mismatch The PCA pump isn't a connection between two components

Adversary Accesses Hardware The hospital has physical security measures in place

(Removed Due to Space Constraints)

Step 2.2

Internally Caused Dangers

Interpretation

The pump is poorly maintained and
fails open due to deterioration

The operator misunderstands the
patient state and / or clinical

process, giving either too much
drug, too strong of a drug, or drug

too quickly

(Removed Due to Space Constraints)

Figure 4.16: A partial M-SAFE component worksheet for the PCA Pump used in the PCA
Interlock scenario.

121

between the actions and their effects [30, 95]. This model condition can also be thought of as

a combination of the natural relation between a system’s monitored and controlled variables

(which Parnas and Madey term the NAT relation) and the current observable state of the

system (i.e., Parnas and Madey’s vector
˜
mt) [94].

As systems are decomposed into subsystems (an idea more fully explored in Section

5.4), it follows that what is considered an actuator at one level of abstraction may in fact

be an entire subsystem—that contains a controller—at a lower level of abstraction. Thus,

though traditional control theory speaks to process models existing in controlling elements

(i.e., their architectural classification is “controller”), we recognize that it may sometimes

be useful for actuators and sensors to have a process model as well. To that end, in SAFE,

process models can be documented on any component, but are only considered required for

controllers.

In the PCA Interlock scenario, for example, we can think of the PCA pump as having a

model of the patient’s health that has been simplified to the ticket value, and a goal to not

damage the patient’s health. If the value is zero, the patient is unhealthy and the pump

should not run; if the ticket value is non-zero then the pump can run safely. In SAFE a

process model is documented by naming its composite variables, listing their possible values,

and—if possible—giving the variables’ units. For example, the PCA pump’s process model

might be called “Ticket Duration,” and range from 1 to 600 seconds.

In M-SAFE this would be written using rows 17 and 18 of the worksheet, see Figure

4.15. Figure 4.16 shows the PCA Pump’s process model on line 14. In T-SAFE this is

done by creating a datatype and tagging it with the ProcessVariable property, as

in lines 3 and 4 of Figure 4.14. Then, the datatype definition should include the repre-

sentation of the data (e.g., floating point, string, character, etc.), the unit, and—if the

process variable is numeric—the range of acceptable values. An example is shown in Figure

4.17. Note that these datatype definitions have only been slightly modified from Figure

3.2 to include the Measurement Unit subproperty. Other subproperties, such as the

122

1 package PCA_Shutoff_Types
2 public
3 with Data_Model;
4

5 data SpO2
6 properties
7 Data_Model::Data_Representation => Float;
8 Data_Model::Real_Range => 0.0 .. 100.0;
9 Data_Model::Measurement_Unit => "Percent";

10 end SpO2;
11

12 data Ticket
13 properties
14 Data_Model::Data_Representation => Integer;
15 Data_Model::Integer_Range => 0 .. 600;
16 Data_Model::Measurement_Unit => "Seconds";
17 end Ticket;
18

19 end PCA_Shutoff_Types;

Figure 4.17: Datatypes used in the PCA Interlock’s Process Model

IEEE11073 Nomenclature::OID from Figure 3.2, can be added as necessary without

affecting the T-SAFE report generation.

4.3.2 Deriving an Element’s Dangers

The next step, which has only one task, is to consider how errors from previous components

could cause the current element to exhibit its successor dangers. This is done by first

selecting one of the component’s predecessor links (which were identified in the second step of

Activity 0) and then considering what would happen if the incoming messages were erroneous

according to any of the six failure domains discussed in Section 4.1.2. This consideration

will result in a judgement, by the analyst, of whether or not input failing according to the

particular domain will manifest as a problem leading to a successor danger. This judgement

will be that the combination of failure domain and input is either not dangerous, or a valid

manifestation.

An input and failure domain pairing that are incorrect but not unsafe should be labelled

123

1 package MAP_Errors
2 public
3 annex EMv2
4 {**
5 error types
6

7 Content : type;
8 High : type extends Content;
9 Low : type extends Content;

10

11 Timing : type;
12 Early : type extends Timing;
13 Late : type extends Timing;
14

15 Halted : type;
16 Erratic : type;
17

18 end types;
19 **};
20 end MAP_Errors;

Figure 4.18: The six failure domains from Avǐzienis et al. encoded in AADL’s EMV2

“not dangerous.” Take for example the PCA Interlock scenario where the only hazard being

considered is the overdose of the patient: if the tickets sent to the pump are too short—i.e.,

the patient could safely tolerate more analgesic—then there is no danger. The patient will be

in unnecessary pain, but he will not be at risk of overdose. If, on the other hand, the pairing

would lead the component to an unsafe state, then a valid manifestation has been found.

For example, if the value of the incoming tickets is too high—i.e., the ticket is too long—

then the analyst has found an externally-caused danger. In this case, she should simply

record a human-readable name for the manifestation; further analysis and explanation will

be performed in the next step.

Manifestations in M-SAFE are recorded in Cells D-I of row 13 (and additional rows for

each additional predecessor link) of the worksheet in Figure 4.15. The previously discussed

“not dangerous” interaction is recorded in cell D11 of Figure 4.16, while the overlong ticket

danger is documented in cell C11.

In T-SAFE manifestations are recorded in two steps, using AADL’s EMV2 error types

124

1 package PCA_Shutoff_Errors
2 public
3 with MAP_Errors;
4

5 annex EMV2
6 {**
7 error types
8

9 -- Pump Manifestations
10 LongTkt : type extends MAP_Errors::High;
11 TktTooShort : type extends MAP_Errors::Low;
12 NoTkt : type extends MAP_Errors::Halted;
13 ErraticTkt : type extends MAP_Errors::Erratic;
14 EarlyTkt : type extends MAP_Errors::Early;
15 LateTkt : type extends MAP_Errors::Late;
16

17 end types;
18 **};
19 end PCA_Shutoff_Errors;

Figure 4.19: The PCA Pump’s possible manifestations, extending from the base failure
domains in Figure 4.18

and their propagations:

1. Create Manifestations: First, manifestations must be created, which is itself a two

part process:

(a) Create Error Types: We leverage the error type system to declare error types, and

error types should be linked to their respective failure domains via type extension.

Figure 4.18 shows the six base failure domains encoded as AADL EMV2 types.

Figure 4.19 shows the usage of these types by a developer of the PCA Pump’s

interface. The names of the extended types should be short, human-readable

descriptions equivalent to manifestation names written in M-SAFE.

(b) Declare In Propagation: All six component-specific error types should then be

declared in the component type’s incoming propagations, even if they are not haz-

ardous given the implementation of the component. This is done since the type

of the component may be refined into different implementations, some of which

125

may propagate out successor dangers given a particular input failure where a dif-

ferent, better implementation would not. An example of this input propagation

declaration is shown in line 15 of Figure 4.13.

2. Specify Caused Successor Dangers: Second, the component implementation should

specify which input errors cause which successor dangers. This is done using EMV2’s

error paths: line 11 of Figure 4.14 shows the link between the PCA pump receiving

an overlong ticket and the overadministration of analgesic. Incoming errors that are

not dangerous are recorded using error sinks; see line 13 of Figure 4.14 for a

specification of the previously-discussed “short tickets” issue.

4.3.3 Documenting External Interactions

The final step in Activity 1 is to fully document the connection between each particular man-

ifestation and the successor danger or dangers it would cause. Broadly, this documentation

has three parts: a) identifying the state of the component and the worst-case environmental

state, b) providing a narrative description of how the manifestation causes the successor

danger, and c) specifying any applicable run-time detection or handling steps. These three

tasks will be repeated for each pairing of one manifestation and one of the successor dangers

it would cause. That is, if there are n manifestations which each cause m successor dangers,

these steps will be repeated once per possible pairing, or n ×m times.

Identifying Component and Environment States

After selecting an unexamined manifestation and successor danger pairing, an analyst’s first

task is to fully identify the component and environment states that describe the potential

danger. Recall that SAFE uses Leveson’s two-part notion of hazard, which we extend to

the component level as undesirability (see Section 4.1.1). The goal of this task is document

both the system and worst-case environment states necessary for this successor danger to

126

occur.

The state of the controlled process does not need to be explicitly given as it is implicit in

the successor danger: a successor danger traces to a particular safety constraint violation,

which itself traces to a hazard, and that hazard is associated with a worst-case environmental

state. Leveson explains that safety constraint violations come about as a result of either

inappropriate commands8 being provided or appropriate commands not being followed [30].

Errors causing the former can often be stated in terms of a process model mismatch, i.e.,

a situation where a component’s process model is out-of-sync with the actual state of the

controlled process.

Thus, in M-SAFE, we ask analysts to provide—when possible—semi-formal statements

involving the state of the process variables relative to the state of the controlled process.

In the PCA Interlock scenario, for example, the “ticket duration” process variable might be

described as having a value that is “too high.” Here, “too high” implicitly refers to the state

of the controlled process, i.e., the patient’s respiratory health status. An example of this

documentation is given in cells C19 and D19 of Figure 4.16. In T-SAFE, we ask the analyst

to reference the relevant process variable using an AADL reference property, and then

to specify the constraint on its state using a string, as in lines 39 and 40 of Figure 4.14. We

recognize that these constraints would ideally be fully formal, and note that there is similar

research in this area which allows the modeling and verification of process variables as LTL

properties using XSTAMPP and SPIN [96].

The state of the system includes more than the state of the process model: simultaneously

occurring errors should also be documented. In M-SAFE these co-occurring dangers are

documented in column G of the externally caused dangers section of Figures 4.15 and

Figures 4.16. Note that each safe and unsafe occurrence of a manifestation should have its

own row, so if some danger A requires another danger B to cause successor danger C, four

entries will be created in the externally caused dangers section: a) C, caused by A with

8Leveson uses the term “control action”

127

co-occurring B; b) no danger, when A occurs alone; c) C, caused by B with co-occurring A;

and d) no danger, when B occurs alone. Documenting co-occurring dangers is considerably

more straightforward in T-SAFE, as the left-hand side of error path declarations can contain

multiple, comma-separated error types. Thus, an analyst need only document the collective

occurrence with one error path, after which analysis can proceed as normal.

Providing a Narrative Description

At this point in Activity 1 Step 2, the analyst should have a clear understanding of exactly

how the current manifestation causes the given successor danger. This task involves simply

documenting that understanding in a human-readable format.

What we know about our running example involving the PCA pump’s use in the PCA

Interlock scenario might be phrased as a) the manifestation of “TicketTooLong” on the

pump’s incoming-tickets link, b) the successor danger of “TooMuchAnalgesic” leaving on

the PCA Pump-IV Line link, c) the system state “PCA Pump receives a ticket with a

non-zero length of time,” and d) the associated worst-case environment state “The patient

is at risk of respiratory distress, and cannot safely tolerate more analgesic.” Thus, the

analyst should phrase all of this together into a succinct description like “The PCA pump

receives a non-zero ticket when the patient cannot tolerate any more analgesic, which leads

to the pump administering drug when it should not.”

In M-SAFE, this would be written in Cell E23 of the worksheet, under the “Interpreta-

tion” heading, see Figures 4.15 (worksheet) and 4.16 (PCA Interlock example). In T-SAFE,

this would be written in the Explanation subproperty of the ExternallyCausedDanger

property, which is applied to the relevant error path. The property type specification is

shown in lines 7-11 of Figure 4.20, and lines 38-42 of Figure 4.14 show a completed example.

Specifying Run-Time Detections and Compensations

The last thing an analyst should do when considering a particular manifestation and

128

1 property set MAP_Error_Properties is
2

3 -- Other properties removed for space
4

5 ErrorHandlingApproachType : type enumeration (Rollback, Rollforward,
Compensation);↪

6

7 ExternallyCausedDanger : record (
8 ProcessVariableValue : reference(data);
9 ProcessVariableConstraint : aadlstring;

10 Explanation : aadlstring;
11) applies to (all);
12

13 RuntimeErrorDetection : record (
14 ErrorDetectionApproach : enumeration (Concurrent, Preemptive);
15 Explanation : aadlstring;
16) applies to (all);
17

18 RuntimeErrorHandling : record (
19 ErrorHandlingApproach : MAP_Error_Properties::ErrorHandlingApproachType;
20 Explanation : aadlstring;
21) applies to (all);
22

23 end MAP_Error_Properties;

Figure 4.20: Property types used in Activity 1 of SAFE

successor danger pairing is think about how their co-occurrence might be avoided. Avižienis

et al. explain error detection and handling techniques, and we provide the names of these

techniques as guidance to the analyst.

Error detection, which “identifies the presence of an error” is broken down into two

categories in [3]:

1. Concurrent Detection: This “takes place during normal [operation],” and typically

requires some sort of designed-in detection mechanism.

2. Preemptive Detection: This “takes place while [operation] is suspended,” and typically

requires routine inspections of the element.

Avižienis and his co-authors divide error handling, which “eliminates errors from the

system state,” into three categories [3]:

129

1. Rollback: This technique “brings the system back to a saved state that existed prior

to error occurrence,” and requires a system that can save its state, also known as

“checkpointing.”

2. Rollforward: This involves using a “state without detected errors [as the] new state,”

and requires the system to have a safe state. This may not be feasible, since some

systems will not have a default safe state.

3. Compensation: Here, “the erroneous state contains enough redundancy to enable the

error to be masked,” which requires a system designed with redundancy.

Not all of these techniques are available for every system design, and some may be

prohibitively difficult. Leveson argues that error handling strategies relying on compensation

can be particularly complex, even to the detriment of the overall system’s safety, writing

that [97]:

Although redundancy provides protection against accidents caused by individ-

ual component failure, it is not as effective against hazards that arise from the

interactions among components in the increasingly complex and interactive sys-

tems being engineered today. In fact, redundancy may increase complexity to

the point where the redundancy itself contributes to accidents.

If an analyst determines that the current manifestation and successor danger pairing can

be detected and/or handled by the system, she should write down the technique (if applica-

ble) and then provide a short, human-targeted description. For example, when considering

the issue of early message arrival, the analyst might specify that a concurrent strategy involv-

ing minimum message inter-arrival times would enable detection of early messages. Then,

if the system supports network enforcement of these specifications, the offending messages

could be dropped and the system itself rolled forward into a safe state. We note that the

MDCF uses this detection approach—though it does not automatically roll forward—which

is enabled by its MIDAS networking [19].

130

In M-SAFE these explanations, prefaced by the name of the technique (if applicable) are

documented in cells H23 and I23 of Figure 4.15. T-SAFE allows considerably more flexibility,

at the cost of greater complexity. Detectable problems are first specified using component-

specific error events, which bind the error type associated with the manifestation to a named

error event; see lines 22-23 of Figure 4.14. Technique names and human-readable descrip-

tions are specified using the RuntimeErrorDetection property, which is specified in

lines 13-16 of Figure 4.20. An example usage of this property is shown on lines 30-33 of Fig-

ure 4.14. Compensations for these events are specified using the component’s component

error behavior’s transitions section, which essentially allows the creation of state

machine-like transitions that describe the component’s implementation-specific behavior in

the presence of errors. Error handling technique names and human readable descriptions are

specified in a manner similar to detections, i.e., by using the RuntimeErrorHandling

property which is shown in lines 18-21 of Figure 4.20. The handling properties should

then be applied to the named transitions between error-behavior states that are guarded by

occurrence of the previously declared detections; see line 27 of Figure 4.14.

At this point, the documentation of this manifestation and successor danger pairing is

complete. The analyst should pick a new, undocumented pairing, or move on to another

available step, e.g., Activity 2’s first step on this element, or Activity 1 on a different

element.

4.4 Activity 2: Internally Caused Faults

SAFE’s Activity 2 focuses on identifying and documenting faults that occur within a com-

ponent or by non-element entities (adversaries, physical objects, etc.) in its environment.

These faults are linked to the successor dangers identified in Activity 1’s first step, so be-

ginning Activity 2 requires that step’s completion. This activity consists of two steps: the

elimination of classes of faults based on properties of the element, and then the documen-

131

tation of any faults that were not eliminated.

4.4.1 Eliminating Classes of Faults

As discussed in Section 4.1.3, Avižienis et al. identify eight fault classifications, of which

SAFE uses six. Based on these categories, we have developed the following questions which

an analyst can use to eliminate various faults from consideration. Note that the numbers

used in this list correspond to the fault numbers from Table 4.1.

1. Phase of Creation or Occurrence: Should faults from the element’s development be

considered?

� Yes: Development and operational faults

� No: Operational faults only (Remove 1-7)

2. Dimension: Does the element involve hardware, software, or both?

� Hardware: Hardware only (Remove 1-3,13-15)

� Software: Software only (Remove 4-12)

� Both: Both hardware and software

3. Phenomenological Cause 1: Will the hardware elements be protected from natural

phenomena?

� Yes: Natural faults excluded (Remove 7-9)

� No: Natural faults included

� No hardware elements: Natural faults excluded (Remove 7-9)

4. Phenomenological Cause 2: Does the element receive input from directly from a human

operator that is not modeled as an element?

� Yes: Human-made operational faults included

132

� No: Human-made operational faults excluded (Remove 10-11,14-15)

5. Objective 1: Is it possible that an adversary could gain access to the element during

development?

� Yes: Malicious development-time faults included

� No: Malicious development-time faults excluded (Remove 3-4)

6. Objective 2: Is it possible that an adversary could gain access to the element during

operation?

� Yes: Malicious runtime faults included

� No: Malicious runtime faults excluded (Remove 12-13)

7. Interaction: Have the two components joined by this connection either worked together

before or been developed together?

� Yes: Interaction faults excluded (Remove 16-18)

� No: Interaction faults included

� N/A: If the current element is a connection, interaction faults should be excluded

(Remove 16-18)

Any faults eliminated by considering these questions should be documented, along with

a justification. For example, the PCA pump used in a particular instantiation of the PCA

Interlock scenario might be one that has been safely used for years, so things like bad

hardware design (fault 6) need not be considered. Similarly, the pump is not a connection,

so its developers do not need to consider interaction faults.

In M-SAFE, this documentation is done in the “Faults Not Considered” section of the

report, which is shown in rows 31-33 of the worksheet in Figure 4.15 and rows 27-33 of the

PCA Interlock example in Figure 4.16. In T-SAFE, this documentation is done with the

EliminatedFaults property, the declaration of which is shown in lines 16-19 of Figure

133

4.21). Note that, as in M-SAFE, multiple faults may be excluded with a single explanation,

as the FaultTypes subproperty is a list.

4.4.2 Documenting Internal Faults

The documentation of internal faults is similar to documenting unsafe external interactions,

as described in Section 4.3.3. The differences are that a) faults, rather than manifestations,

are paired with successor dangers, b) process variable names and values are not documented,

c) mechanisms for design-time detection are considered, and d) additional runtime handling

techniques are available. The first difference is self-explanatory, since this activity is focused

on faults rather than manifestations. Note, though, that in T-SAFE, error sources are used

instead of error paths, since faults occur without being triggered by an error event’s arrival

(see lines 16 and 17 of Figure 4.14). The second difference is also straightforward: the process

model of a component is updated entirely using information arriving from other components;

if the behavior of those components is not considered (as is the case in Activity 2) then a

component’s process model can be ignored. The final two differences merit more discussion,

though.

Specifying Design-Time Detections

While all classes of dangers may be detectable at runtime, some faults can be detected while

a system is still being designed. These are dangers that come about due to problems in an

element’s development, and there are several techniques that can be used to detect them.

Avižienis et al. identify five techniques, broken down into two categories [3]:

� Dynamic Verification: These techniques involve executing the system.

– Symbolic Execution: Symbolically executing a system involves using symbols

rather than concrete values. As system execution progresses, the symbols become

increasingly constrained by the statements that make up the current execution

134

path. The path-specific collection of constraints is referred to as a path condition,

and can be tested at any point to determine if the path is viable or if it violates

certain analyst-specified properties.

– Testing: Perhaps the most common form of detecting problems at design time,

testing consists of simply providing some known inputs to a system and then ver-

ifying that it behaves as expected. While testing can be specialized in a number

of ways (by domain, stage of development, etc.) and is in general quite flexible,

it lacks the analytic power of the other verification techniques. In particular,

arguments for completeness of test coverage can be difficult to make.

� Static Verification: These techniques do not involve system execution, but rather

analysis proceeds on either models or descriptions of a system.

– Model Checking: This involves building a model of a system in some modeling

language, and then verifying certain properties about that model. One challenge

with this approach is ensuring that the model of a system aligns with the system

as it is built.

– Static Analysis: This is an umbrella term for any of a number of techniques

which examine static descriptions of a system. Many static analyses are built

into compiler toolchains to catch relatively simple coding errors.

– Theorem Proving: A more sophisticated technique, theorem proving requires

stating and proving claims about a system. Those statements need to be checked

not only for their provability, but also—like the models used in model checking—

for their adherence to the system’s actual behavior.

Documenting which strategy an analyst thinks is best for detected design-time problems

requires specifying both the detection technique (if applicable) and providing a short nar-

rative description. For example, the best approach to ensure that the PCA Interlock’s app

135

logic is free from built-in bugs (fault 1 in Table 4.1) might be formal verification, since it is

a relatively small piece of software that is vitally important. In M-SAFE, the analyst would

write something like “Formal Verification: Since the app logic should be relatively simple

but needs a very high level of assurance, the core algorithms should be formally verified.”

This should be entered in the Design-time Detection section of the worksheet, which is F38

in Figure 4.15.

Like Activity 1’s specification of runtime error detection and handling, specification of

design-time fault detection in T-SAFE is slightly more involved. As in Activity 1, the

documentation of detectable design-time faults involves specifying an event, in the com-

ponent’s error behavior declaration, which is associated with the fault’s type; see line 25

of Figure 4.14, which specifies that the PumpDeteriorates event is associated with the

Deterioration fault type. The analyst would use the DesignTimeFaultDetection

property specified on lines 5-8 of Figure 4.21 to associate a detection mechanism and nar-

rative explanation with the fault’s occurrence.

Additional Run-Time Handling Techniques

Faults which are detectable at runtime are documented similarly to detectable errors,

except that an analyst can declare an additional technique for rectifying the underlying

fault. Avižienis et al. explain four such “fault handling” techniques [3]:

� Diagnosis: This technique involves identifying and recording the cause of the problem,

and can be difficult to automate.

� Isolation: This involves physically or logically “excluding the components,” which will

make the fault dormant (i.e., extant but harmless).

� Reconfiguration: This involves the swapping in of spare components or the reassign-

ment of “tasks among non-failed components.” Both this technique and the previous

136

1 property set MAP_Error_Properties is
2

3 -- Other properties removed for space
4

5 DesignTimeFaultDetection : record (
6 FaultDetectionApproach : enumeration (StaticAnalysis, TheoremProving,

ModelChecking, SymbolicExecution, Testing);↪

7 Explanation : aadlstring;
8) applies to (all);
9

10 RuntimeFaultHandling : record (
11 FaultHandlingApproach : enumeration (Diagnosis, Isolation,

Reconfiguration, Reinitialization);↪

12 ErrorHandlingApproach : MAP_Error_Properties::ErrorHandlingApproachType;
13 Explanation : aadlstring;
14) applies to (all);
15

16 EliminatedFaults : record (
17 FaultTypes : list of reference({emv2}** error type);
18 Explanation : aadlstring;
19) applies to (all);
20

21 end MAP_Error_Properties;

Figure 4.21: Property types used in Activity 2 of SAFE

one overlap somewhat with compensation-based error handling approaches, since they

rely on redundancy.

� Reinitialization: This technique involves resetting (i.e., “rebooting”) the system, in

the hopes that it is in a valid state after having been restarted.

When addressing a particular fault, an analyst may decide that either fault or error

handling techniques (i.e., those discussed in Section 4.3.3) would be individually preferable,

or that their combined use would be best. In M-SAFE these approaches are documented

using columns H and I in the “Internally Caused Dangers” section of the worksheet in Figure

4.15.

Consider, for example, a situation where the clinician misunderstands the patient’s health

and provides an overly-strong prescription. Since this clinician isn’t modeled (at the current

level of abstraction), this problem would be considered a fault. Its solution might be would

137

be two-fold: First, the app should have a carefully-designed user interface (UI) that would

make such mistakes difficult to commit; this itself a topic of study, see e.g., [98]. Second,

training for use of the PCA Interlock should be periodically re-performed to account for

any incorrect adaptations clinicians may mistakenly make; Leveson writes that “Systems

and organizations continually experience change as adaptations are made in response to

local pressures and short-term productivity and cost goals.” [30] An example of M-SAFE’s

documentation of this fault handling technique is shown in cell I39 of Figure 4.16.

Documentation in T-SAFE is similar to that of the detection mechanisms specified pre-

viously, except that the RuntimeFaultHandling property (which is specified in lines

10-14 of Figure 4.21) is used. Like the detection documentation, the the handling documen-

tation would be applied to the component error behavior events associated with the fault’s

type.

4.5 Assessment

In this section we present the conjectures we make about our hazard analysis techniques,

which are divided into those regarding objective and subjective attributes. The discussion

of objective attributes is designed to orient the reader to other popular hazard analysis

techniques and to position our work relative to them, while the section covering subjective

attributes presents a postulated comparison and ranking of the techniques according to

specific desiderata. We compare our manual and tool-assisted processes to the three hazard

analysis techniques introduced in Section 2.2.2 (FTA, FMEA, and STPA) as well as FMEA

reports that are autogenerated from EMV2 annotations on AADL models (see Section 2.3.3).

4.5.1 Objective Attributes

In this section we explain the cells in Table 4.4 that are annotated with a superscript

number. The numbers reference comments which provide a justification for the annotated

138

Name Errors Faults Phase
Qua[L] /
Qua[N]t Math Detail

[T]op-[D]own /
[B]ottom-[U]p

FMEA P1 P2 PD-DD L/N Y High BU

EMV2 FMEA P1 P2 DD3 L/N N4 High BU

FTA P F PD-DD L/N Y Med/High5 TD

STPA F6 P7 CD8-PD-DD-Oper9 L N Med/High5 TD

M-SAFE F10 F11 PD12-DD L N Med/High5 TD & BU13

T-SAFE F10 F11 DD14 L N Med/High5 TD & BU13

Table 4.4: Summary of objective attributes of major hazard analyses discussed in this
dissertation, with references to explanations in the text of Section 4.5.1. Abbreviations used:
P – Partial, F – Full, PD – Preliminary Design, DD – Detailed Design, CD – Conceptual
Design, Oper – In Operation. Adapted from Table 3.4 of [7, pg. 47]

STPA’s Hazardous Control Action Avižienis et al.’s Service Failure Mode

Not Providing Causes Hazard Halt Failures

Providing Causes Hazard Erratic Service

Wrong Timing/Order Causes Hazard Early/Late Timing Failures

Stopped Too Soon or Applied Too Long Early/Late Timing Failures

Table 4.5: A mapping from STPA’s ways control actions can be hazardous to Avǐzienis et
al.’s service failure modes. Hazardous Control Action terms are from Figure 8.4 in [30, pg.
219], Service Failure Modes are from Fig. 8 in [3, pg. 9]

entry; table entries without numbers are considered to be self-explanatory.

1. FMEA – Full Detection of Errors: FMEA would not typically catch, for example,

component interaction errors.

2. FMEA – Full Detection of Faults: FMEA would not typically catch, for example,

faults in software.

3. EMV2 FMEA – Detailed Design Only: Because EMV2 annotations are added to

AADL system descriptions, which cannot easily be created for preliminary designs, an

EMV2-supported FMEA cannot be done on a preliminary design. Note that this is

139

STPA’s Fault-Related Guideword Avižienis et al.’s Fault Class

Flaws in creation (Controller) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Component failures (Controlled Process) 11, 12, 13, 14, 15

Process changes (Controller)/Incorrect modification or
adaptation (Controller)/Changes over time (Controlled
Process)

19, 20, 21, 29, 30, 31

Table 4.6: A mapping from STPA’s fault-related guidewords to Avǐzienis et al.’s fault
classes. The STPA guidewords are from Figure 8.6 in [30, pg. 223], Avǐzienis et al.’s terms
are from Figure 5 in [3, pg. 6]

mitigated somewhat by the ease with which system models that are built in AADL

can be updated. Additionally, it may be possible to capture a preliminary design in

AADL by using appropriate abstractions.

4. EMV2 FMEA – No Math Required: As EMV2 is tool-supported, it can produce the

estimates of a hazard’s likelihood (and impact, if the necessary annotations for a

FMECA are added) without requiring the analyst to perform the underlying calcula-

tion himself.

5. Several – Medium/High Level of Detail: These hazard analyses can be performed at

either a moderate or high level of detail, depending on which the analyst chooses.

6. STPA – Full Detection of Errors: We believe that the classes of unsafe control ac-

tions identified in STPA’s first step can be argued as equivalent to Avižienis et al.’s

service failure modes using the mapping in Table 4.5. There is an important caveat to

this mapping, though, in that Leveson’s terms are specific to binary control actions.

Extensions to ranged control actions (e.g., value too high or too low) are natural, how-

ever, and guide-phrases for analyzing complex (i.e., aggregate or parametric) control

actions have been documented by Thomas and Leveson [99].

7. STPA – Partial Detection of Faults: While Leveson does a good job of covering the

140

space of potential errors, her guidewords for faults are quite abstract and do not

approach the level of coverage provided by Avižienis et al. STPA’s set of causality

guidewords are not fault specific: i.e., the terms for errors, like “Delayed operation”

are mixed in with terms for faults, like “Flaws in creation.” While STPA’s fault

terms arguably include 22 of Avižienis et al.’s fault classes (see Table 4.6 for the full

mapping), they do so at such a high level of abstraction that actually achieving full

coverage is unlikely. For example, the STPA term “Component failures” might be

argued to cover classes 11-15 of Avižienis et al.’s faults, but it would require consid-

erable analyst skill to look at that term and derive faults from all five fault classes.

See Section 4.5.2 for a full discussion of the difference in difficulty between SAFE and

STPA.

8. STPA – Applicability in Conceptual Design: As it is described in [30], STPA is most

applicable to preliminary and detailed designs, but recent work by Fleming extended

the analysis to conceptual designs [100].

9. STPA – Applicability in Operation: Though we primarily discuss STPA in this disser-

tation, Leveson has also developed Causal Analysis based on STAMP (CAST) which

can be used for post-hoc reasoning [30].

10. SAFE – Full Error Coverage: We use Avižienis et al.’s service failure modes for our

analysis of errors that propagate into an element. The authors argue that there are

two failure domains, content and timing, and that failures can be classified into one or

both of those domains [3]. Since a service failure in a preceding element is equivalent

to an error, we claim complete, though admittedly abstract, coverage of failures.

11. SAFE – Full Fault Coverage: We use a reduced set of Avižienis et al.’s fault classes

for our analysis of root causes [3]. We further supplement these classes with three

more designed to detect faults arising from element interactions, and we claim that

we achieve the best possible coverage of faults using this combined set.

141

12. M-SAFE – Applicability in Preliminary Design: Since the manual version of our pro-

cess only requires names and box-and-line diagrams for system descriptions, it can be

applied to a preliminary design which exists at a more abstract level of specification

than, say, a model built using our subset of AADL.

13. SAFE – Top-Down and Bottom-Up Nature: The new process described in this disserta-

tion contains both top-down and bottom-up steps. Step 0 involves working backwards

from the accidents and hazards that need to be avoided, while step 2 involves taking

faults and considering how they would impact the rest of the system. Step 1 exists

between the two notions, as it involves marrying the top-down notion of successor

dangers with the bottom-up concept of manifestations.

14. T-SAFE – Exclusive Applicability to Detailed Design: As the tool-assisted version of

our process relies on a system model built in AADL, it necessarily requires a detailed

design, since preliminary designs cannot easily be built in AADL. Like the EMV2-

supported FMEA, though (see comment 3), we note that these designs are more easily

updated than manually-specified detailed designs.

4.5.2 Subjective Attributes of Previous Hazard Analyses

Name Analytic Power Time Req. Complexity Skill Req.

FMEA – – * ++ *

EMV2 FMEA – + ++ +

FTA – – * –

STPA – + + –

M-SAFE * * * *

T-SAFE + + * *

Table 4.7: Summary of conjectures regarding subjective attributes of major hazard analyses
discussed in this dissertation

In this section, we establish and explain our arguments regarding the subjective ratings

142

of four attributes of four previously-existing hazard analysis techniques, as summarized in

Table 4.7. The notation used is one of comparisons, where + signifies a relative improvement,

– signifies a relative degradation, and * signifies a rough equivalence9.

� Analytic Power: The degree to which an analyst, following the specified process, is

able to detect both errors and faults in a system.

� Time Required: The amount of time required by an analyst to perform a “complete”

analysis of a system using the specified process.

� Complexity: The cognitive load of the analyst as she performs the analysis.

� Skill Required: Also referred to as difficulty, this is the degree to which analyst skill

with the technique (as opposed to with the system being analyzed) affects the quality

of the analysis.

Failure Mode and Effects Analysis

Failure Mode and Effects Analysis (FMEA)—which is also sometimes known as Failure

Mode, Criticality, and Effects Analysis (FMECA) if the impacts of failures are examined—

is typically performed by working through a worksheet and considering the effect on a system

if its component parts failed in particular ways. As with FTA, there are many versions of

the analysis, and we consider here the process as described by Ericson [7].

� Analytic Power: FMEA excels at discovering and documenting problems resulting

from elements that have known rates and patterns of failure, e.g., mechanical compo-

nents. Unfortunately, it is less applicable to more modern, software-based electrome-

chanical devices as well as the sociotechnical environments in which the systems are

used.

9Note that these comparisons should not be read as value judgements, i.e., FMEA has considerable
analytic power and we are not making any claims about the technique’s overall quality, only the four
specified attributes relative to the other analyses discussed in this dissertation.

143

� Time Required: Performing a FMEA consists of working through a worksheet, and so

the time required is bounded. Additionally, component interactions are not considered

as deeply as in, e.g., STPA or our technique, so system elements can be considered,

to some extent, in isolation.

� Complexity: As a worksheet- and process-based technique, FMEA places relatively

low demands on an analyst’s cognitive load.

� Skill Required: FMEA is fairly straightforward, and so it has a relatively low diffi-

culty, though skill with mathematics is sometimes required to calculate system failure

probabilities from the probabilities of faults in system components.

EMV2 Supported FMEA

The architecture modeling language AADL’s error modeling annex (EMV2) can be used to

automatically generate FMEA-like reports from annotated architectural models (see Section

2.3.3). This yields a number of improvements over a manually performed FMEA, most of

which stem from the architectural integration and automated report generation.

� Analytic Power: Though the analytic power of AADL’s EMV2 is not strictly greater

than that of a manual FMEA, it is in practice because of the ease of keeping an

AADL model and its EMV2 annotations in sync. Since updating a system model

nearly always either automatically updates or breaks the EMV2 annotations (which

generates warnings in the OSATE editor), the risk and effort involved in synchronizing

a model and its analysis is drastically reduced compared to a manual FMEA.

� Time Required: As annotations can be added directly to a system model, and since

report generation is nearly instantaneous, producing the FMEA-like reports using

EMV2 takes considerably less time than other, manual techniques.

� Complexity: The complexity for an EMV2-aided FMEA is roughly equivalent to the

manual process, since the same concepts are involved.

144

� Skill Required: Less expertise on the part of the analyst is required, since the OSATE

(or other AADL) tooling takes care of some of the trickier parts of the analysis (e.g.,

the statistics/mathematics) automatically.

Fault Tree Analysis

As explained in Section 2.2.2, there are a number of ways to perform Fault Tree Analysis

(FTA) with varying levels of rigor. For the purposes of this evaluation, we assume that the

technique used is the one described by Ericson in [7]. That is, there are a variety of nodes

including events, failures, conditions, etc., and that sophisticated statistical analysis can be

performed on the resulting fault tree.

� Analytic Power: Fault-tree analyses can, in the hands of a skilled analyst, find large

numbers of faults and errors, as there is no inbuilt preference for particular classes of

problems. That is, unlike FMEA which is better suited to finding hardware faults, an

FTA can theoretically find nearly any type of problem.

� Time Required: While shallow FTAs can be quickly performed on a preliminary sys-

tem design, the more complete analyses can take considerable time. There may also be

significant rework required when considering several top-level hazards (or “Undesired

Events” in the language of [7]) since trees do not typically share branches. Addi-

tionally, it is up to the judgement of the analyst when the analysis is complete, so

estimating time or progress can be difficult.

� Complexity: The cognitive load required of an analyst performing an FTA is typically

fairly light, as the process is somewhat repetitive and there are well defined construc-

tion rules. More advanced rules are available (see for example Section 11.5.4 of [7]) as

are cut-set generating algorithms (e.g., MOCUS and bottom-up) which can increase

the complexity.

145

� Skill Required: The analytic power of FTAs scales up with the skill of the analyst, so

this technique can be classified as quite difficult. Though Ericson and others provide an

excellent guide, mastering the more advanced gates, cut-set algorithms, and statistical

formulae required are not easy.

System Theoretic Process Analysis

As a relative newcomer to the world of hazard analyses, STPA is still under a great deal

of active research. While the primary text for the technique remains Leveson’s 2011 book,

a number of new studies and techniques have been published since the book’s release that

expand the core process in a number of ways [30, 100, 90, 85, 80]. It was the primary

inspiration for our technique, though, and is arguably the state-of-the-art analysis for many

domains.

� Analytic Power: STPA, like FTA, has considerable analytic power. It has been shown

to uncover more errors, in less time, than FMEA [80]. That said, it does not provide

guidewords that cover the full scope of fault classes treated by Avižienis et al. (see

note 7 in Section 4.5.1).

� Time Required: STPA is, when compared to FTA or FMEA, a quick analysis. The

unsafe control action table, from step one, can be filled out relatively quickly, and

as the process does not involve advanced mathematics and statistics only qualitative

information is required. The technique also has the advantage of being applied at

various levels of abstraction (and even early or late in the system development process,

see notes 8 and 9 in Section 4.5.1), so it can produce valuable results quickly.

� Complexity: STPA is not a terribly complex analysis, though there are some terminol-

ogy and system-theoretic concepts which must be understood. Most of the analysis is

compiled into free-form reports, and the results of steps one and two, even as produced

by Leveson’s students, can vary considerably according to the needs of the system.

146

See, for example, the “Fluidic Controller” in Figure 20 of [80] as compared to the

“TTTPS Control System” in Figure 9.2 of [30], or the tabular step two format used

in Table 11 of [85] and Table 7 of [80] as compared to the annotated control loop style

of Figure 8.7 of [30]).

� Skill Required: STPA’s difficulty is higher than the technique in this dissertation, owing

somewhat to STPA’s low complexity. Though Engineering a Safer World is lengthy

and provides numerous examples, at no point does it lay out a concrete worksheet

or low-level process for the technique, relying instead on numerous examples [30].

Unfortunately, those examples vary according to the system, and so some skill level

with the technique is required to get a high-quality, repeatable result.

4.5.3 Subjective Evaluation of SAFE

In Table 4.7, we claim—relative to STPA, as described in [30]—that our manual process

provides increased analytic power with decreased difficulty at a cost of increased time and

complexity. Our tool assisted process further increases upon the analytic power of the

manual process, and decreases the time required while maintaining complexity and diffi-

culty. Note that we compare our techniques directly to STPA in this section, as a six-way

comparison (additionally involving FTA, FMEA, and EMV2-FMEA) would be impractical.

In summary, we argue that our technique fares well when compared to STPA’s analysis of

the software- and hardware-based elements of socio-technical systems because it is, in several

important ways, less ambiguous. Where STPA has two steps (and derivation of a system’s

“Fundamentals”) given as narrative descriptions, SAFE (as specified in Appendix A) has

three high level activities, which are divided into seven steps, which are further subdivided

into thirty-four individual tasks. These steps specify not only the work that should be

done by an analyst but also the order in which it should be done. Additionally, STPA’s

guidewords are not as specific as those that we derive from Avižienis et al.’s work, nor

does it delineate between errors and faults as cleanly as SAFE. Overall, both the high-level

147

organization of SAFE and the directions pertaining to individual tasks have been designed

to be as unambiguous as possible.

Analytic Power

Our assertion of increased analytic power stems from three improvements over STPA: a com-

paratively firm theoretical grounding, incorporation of Avižienis et al.’s taxonomy, and—in

the tool-supported version of the process—a deep architectural integration.

Theoretical Grounding The theoretical backing of this work is explained more fully in

Chapter 5. There, we present a set of formalisms that take as their foundation Leveson’s

conceptualization of a hazard—that of a system and environment state pairing which will

lead to harm—that we believe are more useful than existing formalizations, e.g., [90]. We

then connected our formalization to two other, pre-existing mathematical systems: Wallace’s

fault propagation and transformation calculus and Shankar’s lazy compositional verification

[35, 84]. Further, the relation between elements in the control structures is specified to

be intransitive interference, and is grounded in Halpern and Pearl’s notion of actual cause

theory (as explained by Leitner) [91, 83, 89]. We use intransitive interference rather than the

important but ultimately unmechanizable system theoretic model of causality described by

Leveson and further expanded upon by Masys, who extensively uses Latour’s Actor-Network

Theory [30, 34, 101]. This enables the step-by-step process described in Chapter 4 which,

when compared to the much more high-level and abstract set of instructions given in [30],

will lead to more complete, repeatable analyses by virtue of having less room for analyst

creativity and inconsistency.

Taxonomy of Secure and Dependable Computing A second reason that we claim our

new process has more analytic power than STPA is because of our incorporation of Avižienis

et al.’s taxonomy. We use several concepts from their work, including fault classes, failure

domains, fault tolerance techniques, and fault tolerance coverage [3]. These cover, and

148

indeed can to some extent map to10, other sets of guidewords, such as those from STPA’s

first and second steps, concepts arising from Dolev and Yao’s saboteur model, and AADL’s

error modeling library [30, 93, 33]. What Avižienis et al.’s work provides, however, is a

clean delineation between internally and externally caused errors which correspond cleanly

to steps one and two of the process described in this dissertation. This correspondence

provides a degree of completeness not found in the other sets of guidewords: AADL’s EM

annex and Dolev and Yao’s work are error-only, while Leveson’s second-step terms are highly

abstract and include both faults and errors. Avižienis et al.’s work also incorporates, as first

class citizens, fault classes relating to security, which begins to bridge the gap between safety

and security analyses (itself a significant challenge, see e.g., [102]).

Architectural Integration The third factor that increases the analytic power of the

tool supported version of the hazard analysis is its deep architectural integration. While

manual hazard analyses can be quite powerful, they are done without the considerable

assistance made possible by integrated development environments, e.g., code completion,

type checking, etc. Additionally, integrated hazard analyses like FMEA with EMV2 and T-

SAFE are much easier to keep synchronized with the model of the system being analyzed,

since there is only one artifact to keep updated. In fact, Feiler has used the phrase “single

source of truth” to refer to an AADL-based project model repository [66]. What’s more, the

subset of AADL used to construct the system model that the hazard analysis integrates with

can be used, as described in Section 3.4, for code generation, virtually guaranteeing that the

system model operated on by the analysis is in sync with the system as constructed. When

this is compared to SAFE’s manual process or STPA, which rely on tools like spreadsheet

software or whiteboards, the advantages of architectural integration become apparent.

10See, for example, Table 4.6 which gives a mapping from STPA’s fault-related causality guidewords to
some of Avižienis et al.’s fault classes

149

Skill Required

SAFE requires less analyst skill than STPA in order to achieve quality results for two reasons.

First, we have provided a very specific, step-by-step process; and second, the guidewords

used can be further refined by domain experts to tailor the analysis to a particular class of

system.

Specific Process The specific process we described in Chapter 4 (and fully specified in

Appendix A) provides a fairly rigid set of steps that constrain an analyst’s possible actions

to a small (typically single) number of next steps. This was done to reduce the creativity

and skill required by the technique so that it is less difficult. While systems engineering

knowledge, skill with the technique, and creativity are still necessary, it is to a significantly

reduced degree as compared to STPA. The flexible formatting of STPA’s documentation

can be quite useful to a skilled analyst, but can also greatly impede understanding by those

who are not experts.

Guideword Refinement As described in Section 4.1.3, the fault guidewords used in step

two of SAFE can be tailored by domain experts to provide greater specificity to an analyst

who is considering faults in an element. This might be done by, e.g., a standardization body

like AAMI or IEC as a way to “bake” domain knowledge into the process. This goes beyond

reducing skill required with the hazard analysis technique and actually reduces, to a small

degree, the amount of domain expertise an analyst would need to perform his work.

Time Required

Compared to STPA, the manual version of our process can take more or less time. More

analyst time is required as a result of the depth of the analysis, but this is remedied, to a

varying extent, by: analyzing only externally caused dangers (i.e., not considering faults),

parallelizing the process, and—in the tool-supported version of the process—automated

150

report generation.

Thoroughness One of STPA’s great strengths is its myriad aspects of flexibility, not the

least of which is its ability to operate smoothly at a number of different levels of abstraction.

Part of this ease comes from the open-ended formatting of the documentation generated by

the first and second steps—an analyst is free to write as little or as much as she would like

about a given component, hazard, or control action. This lets her focus her work exactly

where she would like, and it means there is very little time spent analyzing irrelevant faults

or parts of the system. The drawback to this flexibility, though, is an increase in difficulty

and a reduction in the process’s repeatability. We have prioritized these traits over the time

required, though, and so SAFE takes more time as a result.

One remedy to this situation is that the second step to our analysis is severable, though

the fault-finding benefits would of course not be realized. Still, the first step alone is a

powerful process, and results in what are essentially “contracts” for each element (in the

spirit of Meyer’s design by contract—see, e.g., [103]). Skipping the second step speeds up

the analysis considerably, and the analysis of any or all components can be returned to at

a future time if desired.

Parallelization One unique feature of our analysis is its step towards compositional-

ity which can enable several analysts to work in parallel. While the process is not fully

compositional—and indeed, safety analyses may never be—only the first part of the analy-

sis must be performed before individual elements can be analyzed separately. Specifically,

all of step 0 and the first part of step 1 must be done either on the system as a whole, or in

a backwards-moving linear process. The results of performing step 1.1 on a given element,

though, can be handed off to a different analyst without damaging the quality of the results

in the final report. Thus, if time is critical and there are multiple analysts, significant time

savings can be realized.

151

Report Generation The increased time potentially required by our process can be fur-

ther mitigated, however, by the report generation capabilities utilized in the tool-supported

version of our process: once the annotations are in place, producing the report is nearly in-

stantaneous. Though there is an argument to be made that the AADL system descriptions

and our annotations are unwieldy when compared to the hand-drawn system diagrams and

manually formatted tables used by STPA, the true power of automatic report generation is

shown when a report needs to be modified or updated. Small tweaks to a system’s design

can ripple through an analysis requiring a number of changes in disparate places in the

full report. Finding all of these changes manually is at best time consuming, and at worst

so difficult as to desynchronize the analysis from the system being analyzed—a significant

safety risk. With automated report generation, though, these changes are either automati-

cally propagated throughout the report or revealed as automatically-detected syntax errors,

e.g., when annotations apply to no-longer-extant system elements. Thus, the system being

analyzed and the analysis itself are always kept synchronized.

Complexity

STPA has its own ontology which an analyst must understand before competently perform-

ing an analysis. We recognize that our process builds on that with new terminology (e.g.,

element, link, danger, etc.), relationships (e.g., successor, predecessor, etc.), and ways of

looking at a system (e.g., the controlled process as a component that exists partially inside

and partially outside a system’s boundary). These additional concepts must be learned,

understood, and kept in mind by an analyst. This increases the cognitive load placed on

an analyst relative to STPA, though we have mitigated it to some extent by providing a

thorough, step-by-step process description and set of worksheets.

152

4.5.4 Threats to Validity

Though we have attempted to be impartial in our analysis, and wherever possible based

our work on well-regarded, pre-existing literature, there are three not-insignificant threats

to the validity of the evaluation in this section: the first two are threats to internal validity,

while the third is a threat to external validity. First, we have created SAFE and our efforts

to be impartial may not have been enough, leading to a biased analysis. Second, we have

based our evaluation of STPA on the publications available which are almost exclusively

from Leveson’s students. It is possible that their evaluations have been influenced by their

proximity to the creator of the process. Third, Table 3.4 in Ericson’s [7]—from which our

Table 4.4 is derived—is not explained directly in the text. Thus, we have had to make some

inferences based on our understanding of the techniques listed. Further, we adapted the

table significantly, and it is possible that we have misconstrued Ericson’s intent in doing

so.

153

Chapter 5

Theoretical Foundations

5.1 Introduction

In this section, we sketch a generalized notion of hazard that can support the device- and

app-based MAP vision of systems development—where a component may at one point be a

standalone system with its own notion of harm, but may at a later time be a subcomponent

that contributes to a harm in a broader system. This generalized concept informs the full

hazard analysis approach in Chapter 4 that (if developed further) would enable analysts to

reuse significant portions of a component’s hazard analysis when determining the safety of

a system of which it later becomes a part.

We believe that the appropriate starting point for such a development has appeared

both in the medical standardization literature (i.e., IEC 80001) and in modern hazard

analyses (i.e., STPA) [32, 30]. This starting point is the idea is that the occurrence of

harm is a twofold notion: not only must a system be in a particular, worst-case state,

but so too must its environment. Leveson uses the example of a train’s doors: they are

only in a hazardous state if they are open (system state: doors open) when the train is

moving (environment state: train moving). Though this idea is a straightforward one,

formalizations of system safety do not incorporate it; both the system safety and formal

154

methods communities typically use their own, single-level concept of hazard. System safety

standards (e.g., IEC 60601, IEC 61508 and ISO 14971 [49, 46, 31]) typically define a hazard

as a “potential source of harm,” though Leveson notes that “. . . most every system state

has the potential to do harm or can lead to an accident” [30, p. 184].

In the formal methods community, however, safety properties are typically explained as

system states that should always be avoided. Even though the definitions used are very

precise, the concept named “safety” is rarely linked to an explicit concept of hazard or

an observable interaction between a system and its environment that causes harm. Thus,

many of the rigorous mathematical concepts from that domain cannot be directly applied

to support automation of—or rigorous reasoning about—safety assessment steps in system

engineering. This is not to say that we believe hazard analysis can be completely mechanized,

but rather that providing mathematically founded definitions is a prerequisite to improved

automation, precision, and clearer methodologies.

5.1.1 Hierarchical Depth, Component Role, and Undesirability

We take as this chapter’s goal, then, to formalize the definition of hazard from Leveson’s

Engineering a Safer World in order to develop a vocabulary and reference model that relate

an entity to its hierarchical environment. It is our hope that in doing so we can provide

a) a clearer statement of hazard-related concepts in a hierarchical systems context, b) a

basis for greater automation (which may come as a bridge between the system safety and

formal methods communities), and c) allow reuse of risk management assets in order to

enable compositional approaches to safety assessment like the one described in Chapter

4. Leveson’s definition is “[a] system state. . . that, together with a particular set of worst-

case environmental conditions, will lead to an accident.” [30] It is not within the scope

of this work to defend the validity of this definition, but as it has been proven through

Leveson’s work and similar notions appear in some safety standards, we take it as axiomatic.

This definition gives us a clear partition between the system and its environment, and by

155

making explicit the environment’s role, it associates a notion of harm with some event that

crosses the system boundary. This definition works well for components that exist at the

penultimate level of a system’s hierarchy—the top-level sensors, controllers, and actuators

that directly sense or modify the state of the environment. But it is unsatisfactory for lower

levels: it is likely that, for example, our system’s controller component is itself composed

of sub-sensors, -actuators, and -controllers that all interact with the component’s local

environment, but not the top-level system environment (i.e., all these sub-sensors may do is

“sense” messages arriving on the network, rather than directly monitoring some aspect of

the controlled process).

We cannot consider these subcomponents in the context of the top-level environment or

we will lose the ability to characterize a component’s properties using only local concepts—

and reasoning locally about a component is the key to global compositional reasoning.

What, then, can we know about a component without considering the full system of which

it is a part? Rather than marry our components tightly to a specific controlled process, we

recognize that components view the state of the system through the lens of their role: an

actuator’s view of the system state is simply “should actuate” or “should not actuate1.” As

part of this work, we have focused on five such roles. First, a special role, top, that includes

the system and its environment, and four that the top-level component decomposes into

(which come from STPA) [30]: sensor, actuator, controller, and controlled process. Consider

the train speed sensor from Leveson’s example: if it fails to correctly inform the door

controller that the train is moving, that will clearly contribute to the previously discussed

hazard. But this same sensor might be used in a different application that requires knowledge

of a train’s motion, and—if certain conditions are met—it stands to reason that some of

the original safety analysis may be reusable. We formalize this intuition by introducing a

generalization of Leveson’s hazard, which we term undesirability.

Definition 1: Undesirability—A component state that, together with a particular set

1In [30], Leveson gives a number of hazard identification guidewords; ultimately, though, they all condense
down to “actuated when inappropriate” and “failed to actuate when necessary.”

156

of worst-case conditions of its environment, will produce an unwanted, observable effect.

The foundational issues addressed by this definition are that undesirability manifests as

a) a pair of one component state and one state of its environment that is b) observable (i.e.,

the component is somehow affecting its environment) and c) unwanted. In fact, a hazard

can be seen as a special case of this definition, where our component is the conventional

system, the accident (i.e., harm) is the unwanted effect, and the observer is the controlled

process. In this work, we have developed formalisms that result from the natural progression

of this thinking. First, we allow reasoning about what observable, abstract system states a

component can be in. Second, we allow the underlying notions of undesirability to be linked

to a component’s interaction points (i.e., the ways in which the component can affect its

environment via communication, energy dissipation, etc.). Third, we discuss how these links

can drive analysis of a) component- and system-level safety using formalisms from the formal

methods community, and b) impacts of internal faults or externally-produced errors. Then,

to the extent that these abstractions are generic (and subject to underlying assumptions),

the analysis is re-usable: an actuator which responds to external commands need not have

its safety-related aspects re-examined if only the source of the commands change. That is,

while we do not claim to have a fully compositional process for system safety (nor do we

claim that such a concept is even possible), we believe that the work in this chapter is an

important step toward supporting re-use of component-level safety-related reasoning.

5.2 Process

In this section we explain specifically how the compositional aspects of our hazard analysis

process from Chapter 4 work. Table 5.1 has examples of the results of these steps having been

applied to the PCA Interlock scenario. Note, however, that we only discuss the SpO2 sensor

(leaving out other possible physiological parameters like Respiratory Rate and ETCO2).

These steps would be repeated at various levels of the system hierarchy, but for discussion

157

Concrete	

States	

Abstract	

States	

Abstrac.on	

Func.on	

Top	

Undesirability	

Interac.on	

Points	

Sensor	
 Actuator	

Controller	
 System	
 Boundary	

Controlled	

Process	

Figure 5.1: Semantic objects in our formalism, labels used in our definitions are shown in
Figure 5.2

we arbitrarily chose a single component of each role and traced them though the full process.

1. For the purpose of these formalizations, we term the current element under analysis

m. The important aspect of this step, for the formalisms presented here, is to find a

delineation between sub-elements inside an element’s boundary and those outside of

it, i.e., those of its environment. As a result of this step, an analyst should be able to

identify using Definition 2 the component’s name (m), set of concrete states (S), role

(r), interaction points (I), and if applicable subcomponents (Sub).

2. When given a state of component m and a state of its environment, an analyst will

determine whether or not the pairing is both wanted and observable according to

158

Ŝu
rm

Sr
m

u

Abs
i ∈ Iout

m

r

Sub

Ŝu
m

Sm

n x

Figure 5.2: Labels used by our formalism, descriptive labels are shown in Figure 5.1

some notion of undesirability u using Definition 3: Concrete Undesirability. This

corresponds to Definition 1: Undesirability from Section 5.1.1. Note that u is a not a

state or set of states, but rather a concept which we use to index our later definitions.

There are two potential sources for this notion of undesirability, depending on if an

analyst is working with a component in isolation (i.e., without a surrounding system

context) or one that is part of a full system.

(a) For isolated components, our analyst would anticipate the use of her device and

identify a corresponding harm, i.e., an analgesic pump manufacturer would antic-

ipate that overadministration would be a potential source of harm. This is similar

to how device manufacturers currently have in mind an intended use when devel-

159

Name Sensor Controller Actuator Process

Definition 2: Component

m Pulse Oximeter Interlock App PCA Pump Patient

S {. . . } {. . . } {. . . } {. . . }
r Sensor Controller Actuator Process

I {(Blood, in),
(SpO2, out)}

{(SpO2, in),
(PumpCmd, out)}

{(PumpCmd, in),
(Analgesic, out)}

{(Analgesic, in),
(Blood, out)}

Sub {BloodMonitor,
SpO2Calc,
SpO2Send}

{SpO2Monitor,
PumpCmdLogic,

CmdSend}

{CmdMonitor,
PumpLogic,
PumpMotor}

N/A

Definition 3: Concrete Undesirability

u Overestimating
patient health

Enabling the pump
erroneously

Pumping when unsafe Overadmin. of
Analgesic

Definition 5: Abstraction

Ŝm
u {1%, 2%, . . . } {CmdPumpEnable,

CmdPumpDisable}
{GiveDrug,
NoDrug}

{Healthy,
Risk,

Overdose}

Ŝrm
u {1%, 2%, . . . } {ShldEnabPump,

ShldntEnabPump}
{ShldGiveDrug,
ShldntGiveDrug}

N/A

Definition 6: Abstract Undesirability

n 95% PumpEnable GiveDrug N/A

Sm
u,n {94%,93%, . . .} {ShldntEnabPump} {ShldntGiveDrug}

Smu,n {95%,96%, . . .} {ShldEnabPump} {ShldGiveDrug}

Definition 8: Avoidance

Imu {Blood} {SpO2} {PumpCmd} N/A

Table 5.1: Examples of the formalisms applied to components of the PCA Interlock scenario

oping a particular device, see the discussion of ISO 14971 in Section 2.2.5. Thus,

for isolated components, u is a violation of one of the component’s safety-related

functional goals and in the language of SAFE is a successor danger.

(b) For a full system, our analyst would identify a notion of harm, which is equivalent

to an Accident in SAFE or STPA, or an Unintended Consequence in IEC 80001

[30, 32]. Then, they would “push down” that top-level notion into individual

160

elements. In the manual version of SAFE, this is done when the analyst imports

the Successor Dangers from a successor component, see Section 4.3.1. For exam-

ple, in the PCA interlock scenario, the system is designed to avoid an overdose.

Thus, the PCA pump running when the patient is at risk of an overdose would

be the actuator-specific version of that harm (see Table 5.1 for more examples).

Unlike in (a), here u is a system-level notion, and each subcomponent must take

into account the behavioral aspects of the rest of the system—this is similar to

how device manufacturers judge whether or not a particular software or hardware

subcomponent is fit for use in a given device.

3. Using the relation established in Definition 3, we now establish an equivalence relation

using Definition 4: Distinguishability that allows us to group the states of either

an element or its environment. These groups can then be abstracted into a set of

equivalence classes using Definition 5: Abstraction. This is simply a formalization of

the implicit, intuitive step that analysts perform now in many hazard analyses when

they create a mental model of how their system interacts with a notion of harm. STPA

uses the term “Process Model” for this concept, and we re-use the term, requiring the

creation of a process model for controller components in SAFE (see Section 4.3.1).

Consider again Leveson’s moving train example from [30]. Rather than differentiate

between cases where the train’s doors are 24 or 25 inches apart, the doors are said

to be “open” and the states are equivalent to the notion of a passenger falling out.

Similarly, regardless of if the train is moving at 60 or 61 miles per hour, we simply

say the train is “moving” (and these names are what we mean by representatives of

the equivalence classes identified in Definition 5). Even in more traditional hazard

analyses (e.g., FTA or FMEA), huge numbers of concrete states are grouped together

by their observable effect on the fault, failure, or safety problem being considered (see,

e.g., [7]). We believe that analysts will benefit from formal guidelines that speak to

the appropriateness of their mental models, and that this formalization is necessary

161

before suitable tooling can be developed.

4. For each abstract state of the component, use Definition 6: Abstract Undesirability

to consider which states of the component’s environment (as viewed through the com-

ponent’s role) are undesirable. That is, given our definition of undesirability from

Section 5.1.1, what are the “worst case conditions” of our component’s environment

associated with this system state and notion of unwanted, observable behavior? If our

analyst is working with a full system, this step is fairly straightforward: it is undesir-

able for the pump to have a nonzero ticket duration when the patient cannot tolerate

more analgesic (i.e., the environment is in the abstract state “the pump should not

run”). Similarly, because higher SpO2 means that our patient’s respiratory status

is healthier, it is undesirable for the pulse oximeter to overstate the patient’s actual

blood-oxygenation level—understating the value may be unwanted for other reasons

(e.g., avoiding underinfusion), but in this example we focus on overinfusion. If our

analyst is working with a component in isolation, though, this step requires anticipat-

ing a class of harm and considering how the component’s observable behavior could

contribute to that harm. Pairs of the form (abstract component state, undesirable ab-

stract environment state) that exist at the penultimate level of the system hierarchy

are equivalent to the system’s hazards.

5. Finally, determine which interaction points (typically an element’s ports) carry in-

formation about the component’s environment by using Definition 7: Environmental

Awareness, and verify that it is possible for the component to “know” when it is in

any potentially undesirable state of its environment using Definition 8: Avoidance.

In order for a component to meet its safety-related goals, it is necessary2 for it to be

informed of the state of its environment so it can avoid the specified notion of unde-

sirability; here we ask the analyst to identify which incoming interaction points carry

2Assuming correct behavior and freedom from side-channel interference; Section 5.5 discusses a calculus
for when this assumption is not met

162

environmental information relevant to u. This is equivalent to identifying what the

component requires from the environment, a common step in requirements-gathering

methodologies, e.g., “2.2.4 ‘Choose Monitored Variables’ ” in [104] or determining the

members of the vector
˜
it in [94].

Having completed this process, our analyst will know the subset of her component’s

interaction points that need to be connected in a fully instantiated system in order to avoid

u. That information can then be used to either argue that a composed system (in which

every component has been similarly analyzed) is safe (Section 5.4), or to consider what

happens when the required information is not provided (Section 5.5). After this process has

been completed once, the resulting requirements for avoidance of u (i.e., Imu) can be used to

argue that a component’s safety-related goals are met when it is reused in other systems.

5.3 Formalisms

Our process relies on seven formalisms, which we now document and explain. An instan-

tiation of the architecture from Figure 2.3 corresponding to the PCA interlock app from

Section 2.1.5 is shown in Table 5.1.

Definition 2: Component—As discussed in step one of the process, we define a compo-

nent as a five-tuple, (m,S, r, I, Sub) where:

� m is a unique identifier

� S is the set of concrete states that the component can be in

� r ∈ {sensor, controller, controlledprocess, actuator, top} is the components role

� I ∈ (name, dir) is the set of interaction points that the component uses to communicate

with other components in its environment

– name is a unique identifier for the interaction point

163

– dir ∈ in, out is a direction

� Sub is the set of subcomponents that this component decomposes into

We write Imin and Imout to denote the set of m’s interaction points where dir = in or

out, respectively. We denote the concrete states of m as Sm, and we write the concrete

environmental states of m as Srm , which reflects our findings that a component’s view of its

environment role-specific.

Definition 3: Concrete Undesirability—Given a component m, n ∈ Sm (a concrete

state of m), x ∈ Srm (a concrete state of m’s environment), and u (a notion of undesirability);

we define the relation (using a double-struck turnstile: ⊫ to denote undesirability) (n,x) ⊫

u, where:

� (n,x) ⊫ u signifies that the observable aspects of n are undesirable with regards to u

when m is in state n and its environment is in state x

� (n,x) ⊯ u signifies that the observable aspects of n are not undesirable with regards

to u when m is in state n and its environment is in state x

When this relation holds, it means that m is observably undesirable according to u

when it is in state n and its environment is in state x; thus, this definition represents a

formalization of Definition 1.

Definition 4: Distinguishability—As discussed in step three of the process, we want

to—when given two concrete states (which we term n1 and n2 if they are states of a com-

ponent and x1 and x2 if they are states of a component’s environment)—be able to say if

the states are equivalent to one another according to u. That is, we define the equivalence

relation ∼u where:

� n1, n2 ∈ Sm ∶ n1 ∼u n2 ⇐⇒ ∀x ∈ Srm , (((n1, x) ⊫ u) ∧ ((n2, x) ⊫ u)) ∨ (((n1, x) ⊯

u) ∧ ((n2, x) ⊯ u))

164

� x1, x2 ∈ Srm ∶ x1 ∼u x2 ⇐⇒ ∀n ∈ Sm, (((n,x1) ⊫ u) ∧ ((n,x2) ⊫ u)) ∨ (((n,x1) ⊯

u) ∧ ((n,x2) ⊯ u))

Intuitively, the first relation holds if two component states produce the same result under

⊫ for all environmental states of u (that is, the states are indistinguishable to u). Similarly,

the second relation holds if two environmental states produce the same result under ⊫ for

all component states.

Definition 5: Abstraction—As discussed in step four of the process, given a component

m, and a notion of undesirability u, we (using the notation for a collection of equivalence

classes of S/∼u from, e.g., Beachy and Blair [105]) partition the concrete states of the

component and its environment into a set of representative abstract states, which we denote

with a ˆ. That is, Abs(m,u) = (Ŝm
u , Ŝrm

u), where:

� Ŝm
u = Sm/∼u

� Ŝrm
u = Srm/∼u

For convenience, we often want to speak of individual (representative) abstract states,

even though Ŝm
u and Ŝrm

u are sets of equivalence classes. When we write n ∈ Ŝm
u , we mean

that n is a representative of the equivalence class [n] ∈ Ŝm
u . For example, for the pulse

oximeter, we write “1%” as the canonical representative of the equivalence class of concrete

sensor readings that would be reported to the clinician through a pulse oximeter’s display

panel as 1%. On the other hand, the abstract states for the pump (relative to the notion

of pumping when unsafe) are GiveDrug, which abstracts all the states where the pump is

running, and NoDrug, which abstracts the states where it is not pumping. Examples of

this notation (and this definition) are in Table 5.1.

Definition 6: Abstract Undesirability—Corresponding to process step four, given an

abstract state n of component m and a notion of undesirability u, we (using the convention

that a doublestruck letter (e.g., S) signifies desirability while a boldface letter (e.g., S)

signifies undesirability), define Undes(n) = (Ŝm
u , Ŝm

u) where:

165

� Ŝm
u,n = {x ∈ Ŝrm

u ∣(n,x) ⊫ u}

� Ŝm
u,n = {x ∈ Ŝrm

u ∣(n,x) ⊯ u}

This relation uses ⊫ to split (according to u) the abstract environmental states of com-

ponent m (when it is in state n) into two subsets: those that are undesirable (Ŝm
u,n) and

those that are not (Ŝm
u,n). For example, given the abstract pulse oximeter state of 95%, and

wanting to avoid overestimating the patient’s respiratory health, any environmental state

where the patient’s true SpO2 is below 95% would be undesirable. Similarly, if the pump is

running (GiveDrug), it is clearly undesirable for the patient to be in such a state that more

analgesic will lead to an overdose (ShldntGiveDrug). Table 5.1 gives examples of Ŝm
u,n and

Ŝm
u,n for some components of the PCA Interlock scenario.

Abstraction functions necessarily destroy information about their input in order to pro-

duce their (simplified) outputs. The end result of definitions 5 and 6 is a collection of

abstract states, in Ŝm
u,n and Ŝm

u,n, that preserve the undesirability (or its absence) from the

concrete states of m relative to u. That is, these functions preserve only whether or not a

particular component state is undesirable relative to some notion that the analyst wants to

avoid. If an analyst were to compare a real-world system to the output of Definition 6, she

would note that the only correspondence between the two would be the undesirability of

the system’s component’s states relative to u.

Definition 7: Environmental Awareness—Given a subset of component m’s incoming

interaction points J ⊆ Imin and a subset of the concrete states of m’s environment X ⊆ Srm ,

we define the relation J ⇛X, where:

� J ⇛ X signifies that m will know when it is in any state x ∈ X if every i ∈ J is

connected when the system is instantiated.

� J ô X signifies that m will not know when it is in one or more x ∈ X even if every

i ∈ J is connected when the system is instantiated.

166

Intuitively, this relation describes which interaction points carry information that can

inform the component what state its environment is in. J is a set of input interaction

points (e.g., “SpO2”) and X is a set of environmental states (e.g., “Patient’s blood-oxygen

saturation is 98%”).

Definition 8: Avoidance—As discussed in the final step of the process, given a compo-

nent m and a notion of undesirability u, we define Avoid(m,u) = Imu , where:

� Imu = {J ∈ Imin ∣∀n ∈ Ŝm
u , J ⇛ Ŝrm

u,n}

This definition leverages the set of undesirable abstract states (Ŝm
u,n) from Definition 6

and the relation (⇛) from Definition 7 to derive the set of input interaction points necessary

to avoid a particular notion of undesirability. The final row of Table 5.1 has examples of

its application to the components of the PCA interlock scenario. For example, in order

for the pulse oximeter to avoid overestimating the patient’s respiratory health, a system

composition would need to provide the device with access to the patient’s blood. Similarly,

in order for the PCA pump to avoid running when it should not, it must have access to

pump commands from a controller.

5.4 Compositionality

In this section, we outline a preliminary avenue of investigation into how the definitions

we have previously established might be used as a bridge between the hazard analysis and

formal methods communities. Recall from Section 5.1 that the two communities use the

term “safety” in different ways: it is used by practitioners of formal methods to refer to

avoidance of a particular system state in all possible executions of a system, and by hazard

analysts to refer to the more general concept of the absence of harm.

Here, we sketch a correspondence by showing how our formalisms from Section 5.3, which

is derived from the hazard analysis community’s definition of hazard, can be used in a formal

167

methods context. The context we have chosen to use is Shankar’s “Lazy Compositional Ver-

ification,” which is a compositional verification technique described in [84]. There are other

compositional verification techniques, most notably Assume-Guarantee reasoning, which we

could have used, but we found lazy compositional verification particularly well suited to

providing “a useful decomposition of the verification task” [106, 107, 84]. We note that

Shankar’s work has been used in formalizing other compositional domains, e.g., the Multi-

ple Independent Levels of Security (MILS) project [108]. The sketched correspondence has

four steps:

1. Establish a “baseline” system: First we describe a system containing two elements, a

hypothetical “SafePCA” device and a patient.

2. Decompose one component into two subcomponents: Then, we decompose the SafePCA

device into an application and a standard PCA pump.

3. Prove that the subcomponents collectively refine the original: Next, we show that the

system comprised of the patient, application and standard PCA pump is equivalent

to the baseline system.

4. Further refine one subcomponent with an implementation: Finally, we further refine

the application—from a specification down to an implementation—and show that this

refinement is valid.

In this section, we make the following simplifying assumptions:

� Communication is via shared variables: In many MAP implementations, including the

MDCF, communication takes place via ports and channels. However, for the purpose

of this section, we model communication via shared variables.

� Elements behave correctly: In the real world, of course, components and connections

are fallible. However, our goal in showing the safe decomposition of a system is not to

168

Pa#ent	

SafePCA	
 Device	
 physio	
 drug	

Figure 5.3: A hypothetical “SafePCA Device” in its environment, derived from Figure 3
in [84]

consider behavior in the presence of faults, but rather the validity of the decomposition.

We discuss a formalism for modeling systems in the presence of incorrect behavior in

Section 5.5.

� There is no platform: The notion of a platform, while critical to the MAP vision, is

elided here for simplicity’s sake: components communicate directly with one another.

� We use the abstract states of the systems directly: In order to emphasize the composi-

tional aspects, we have de-emphasized the clinical detail of our system by replacing the

specific parameters consumed and produced by each component (e.g., SpO2, ETCO2,

pump tickets, etc.) with aggregate parameters.

� We consider only ordering, not timing: The formalisms in this chapter do not include

a notion of time, so our invariants are stated in terms of ordering.

5.4.1 A Baseline System

Here we introduce a system designed to roughly correspond to the PCA interlock scenario

discussed in Section 2.1.5. The scenario has been simplified somewhat, though. Instead of an

app and a PCA pump, we introduce a combination component referred to as a “SafePCA”

169

device that consumes our physiological parameter and administers doses of analgesic when

safe (see Figure 5.3. Similarly, instead of sensors and a patient, we have one component

titled “Patient,” that consumes doses of analgesic and produces physiological values directly.

Unlike the system described by Arney et al. in [26], our pump either administers a dose each

“step” or it doesn’t; we note that this can be thought of as a ticket-based system where the

ticket length is invariably the duration of the system’s most fine-grained notion of time, and

tickets are always consumed when available.

Preliminaries

Both the baseline system described here and its decomposition (described below) use two

variables, physio and drug, as well as queues recording their history. These variables use the

equivalence classes produced by Definition 5: Abstraction where m = SafePCA and Patient

and u = overdose (which are reprinted here from Table 5.1). Additionally, we note that

the SafePCA device really acts as both an actuator and a controller, so we could use either

ŜActuator
overdose = {ShldGiveDrug,ShldntGiveDrug} or ŜController

overdose = {ShldEnabPump,ShldntEnabPump}.

As they are equivalent there is no reason to use or the other, and so we arbitrarily choose

the former.

� ŜSafePCA
overdose = {GiveDrug,NoDrug}

� ŜActuator
overdose = {ShldGiveDrug,ShldntGiveDrug}

� ŜPatient
overdose = {Healthy,Risk,Overdose}

So the variables and their possible values are:

� physio: Aggregate physiological value, physio ∈ {Healthy,Risk,Overdosed}

� physioh: Queue of physiological values

� drug Whether or not the pump administers analgesic, drug ∈ {GiveDrug,NoDrug}

� drugh Queue of administered doses

170

SafePCA Description

We first focus specifically on the hypothetical SafePCA device. As an objective, we would

like to be able to prove that the device avoids overdose given correct input. From the prelim-

inaries, we know that the device will take in physiological values and produce doses of anal-

gesic, i.e., ISafePCA
in = physio and ISafePCA

out = drug. Using these interaction points as the ob-

servable aspects of the device and its environment in Definition 3, we get: (Dose,PhysioV al) ⊫

overdose ⇐⇒ (Dose = GiveDrug ∧ PhysioV al ∈ {Risk,Overdose}). That is, given a dose

and a physiological value, the pairing of the two is undesirable with regards to an overdose

if and only if the SafePCA device is running and the patient is either at risk of, or already

suffering from, an overdose. In more natural language, this might be stated as the pump is

administering analgesic while the patient is showing signs of respiratory distress—certainly

an undesirable situation.

The Next-State relation In Shankar’s [84], elements are defined as asynchronous tran-

sition systems, which are expressed as triples of the form ⟨Σ; I,N⟩ where Σ is a state type

(and is typically elided, we follow this convention here), I is an initial state or set of states,

and N is a next-state relation. For the SafePCA device, we define N as the function run,

which determines whether or not it is appropriate to allow a dose of analgesic if the previous

ticket has been consumed:

run ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

drug = �

∧physio′ = physio

∧drug′ = p2d(physio)

∧physioh′ = physioh

∧drugh′ = enqueue(p2d(physio), drugh)

Note that incoming values are written as variableName, while outgoing values are de-

171

noted with an apostrophe, i.e., variableName′. Thus, any expressions with a left-hand value

of an incoming variable should be read as a guard on the relation, while expressions with

an outgoing variable on the left-hand side are the results of the transition having occurred.

run relies on the helper function p2d(physio) which uses its parameter (a physiological

reading) to determine whether or not a dose of analgesic should be allowed:

p2d(PhysioV al) ≜

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

PhysioV al =Healthy ∶ GiveDrug

PhysioV al ∈ {Risk,Overdose} ∶ NoDrug

The Initial State The SafePCA device does not issue a dose of analgesic at first, and ini-

tializes the history of doses initSafePCA ≜ (drug = NoDrug∧drugh = enqueue(NoDrug, empty))

These functions then combine to the full specification of the SafePCA device: SafePCASpec ≜

⟨initSafePCA, run⟩.

Avoidance of Undesirability We now want to establish that this component will avoid

overdosing the patient. This argument is established by two claims: first, that the SafePCA

pump has the necessary awareness of its environment (i.e., it upholds Definition 8: Avoid-

ance), and then that, by using the environmental information in its next-state relation, it

avoids undesirability (i.e., it upholds Definition 3: Concrete Undesirability).

Claim 1. ISafePCA
in ⊆ ISafePCA

overdose

Proof Sketch. From Definition 5: Abstraction, we know that Abs(SafePCA, overdose) =

(ŜSafePCA
overdose = {GiveDrug,NoDrug}, Ŝactuator

overdose = {ShldGiveDrug,ShldntGiveDrug}). We

establish this claim in two cases, one for each state in ŜSafePCA
overdose .

1. NoDrug: From Definition 6: Abstract Undesirability, we know that ŜSafePCA
overdose,NoDrug =

∅, i.e., that if the SafePCA device isn’t administering analgesic, it is never at risk of

overdosing the patient. Thus, this case is trivial: the device requires no information

about the patient since this state is always not undesirable.

172

2. GiveDrug: From Definition 6, we know that ŜSafePCA
overdose,GiveDrug = {ShldntGiveDrug},

i.e., if the SafePCA device administers a dose when it should not, the patient will be

overdosed. The device should not administer a dose when physio ∈ {Risk,Overdose},

so we need to find J ⊆ ISafePCA
in ⇛ ShldntGiveDrug, i.e., some subset of the incoming

interaction points to the element should carry either physio itself or other values that

would enable the calculation of physio. As the SafePCA device has only one incoming

interaction point which carries physio, this requirement is satisfied.

Claim 2. (Dose,PhysioV al) ⊫ overdose⇐⇒ (Dose = GiveDrug∧PhysioV al ∈ {Risk,Overdose})

Proof Sketch. We establish this claim by contradiction. We assume that there is a SafePCA-

caused overdose, which means that the device administers analgesic (dose = GiveDrug)

while the patient’s health is in a deteriorated state (physio ∈ {Risk,Overdose}). From

inspection of the next-state relation, we see that dose is the result of evaluating p2d with

some physiological value as input. Thus, our assumption implies that p2d(PhysioV al ∈

{Risk,Overdose})
?
= GiveDrug, which by inspecting the definition of p2d and substituting

the actual for the formal parameter leads to Risk
?
= Healthy ∨Overdose

?
= Healthy, which

is clearly false and we have arrived at a contradiction.

Patient Description

The SafePCA device operates in the context of its environment, which we term the “Patient.”

While in the real world no patient provides machine-readable physiological values, Shankar’s

logic allows each element to specify its environment as an abstract component that can be

refined lazily, i.e., at a later time.

The Next-State relation As environments are simply abstract components, they too

are specified via next-state relations and initial states. Note that, in order to avoid overcon-

173

straining the environment the SafePCA device operates in, we do not specify any particular

pharmacokinetics (i.e., the patient’s physio value need not depend on the administration of

analgesic).

metabolize ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

drug ≠ �

∧drug′ = �

∧physioh′ = enqueue(physio′ ∈ {Healthy,Risk,Overdose}, physioh)

∧drugh′ = drugh

Initial state We assume the patient is initially at risk of overdose: initPatient ≜ (physio =

Risk ∧ physioh = enqueue(Risk, empty)).

Thus the full specification of the SafePCA device’s environment is ⟨initPatient,metabolize⟩.

Analysis

We now establish an invariant on the system composed of our SafePCA device and pa-

tient: that drugh is equal to the result of applying p2d on each element of physioh. Using

Shankar’s notation from [84], the closed (i.e., no non-specified environmental transitions

allowed) interpretation of some element P in the context of its environment E is written as

⟦P //E⟧. We also adopt a notation where an overbar denotes a truncate if necessary to equal-

ize the lengths of the queues3. Further, if the overbar is annotated with a function-name

superscript, then that function is applied to each element of the supplied queue, i.e.:

drugh = physioh
p2d

≜

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∣physioh∣ = ∣drugh∣ ∶ drugh = {x ∈ physioh∣p2d(x)}

∣physioh∣ = ∣drugh∣ − 1 ∶ drugh = {x ∈ dropLast(physioh)∣p2d(x)}

3We note that this is intuitively similar to Shankar’s use of the overbar in [84].

174

Claim 3. ⟦SafePCASpec//PatientSpec⟧ ⊧ invariant drugh = physioh
p2d

Proof Sketch. We establish this claim by induction on the length of drugh, denoted ∣drugh∣.

Note that the specification of the SafePCA device and its environment disallow either to

run twice in succession: run writes to drug but requires it to be cleared before it executes

again, and metabolize clears drug but requires it to have a value before it executes again.

Base Case (∣drugh∣ = 0): This case, which compares two empty queues, is trivially true.

Inductive Case (∣drugh∣ = n > 0): Here we split this case into two subcases, depending

on the nth value of drugh:

� NoDrug: If the nth value of drugh is NoDrug, then the nth value of physioh is, by

inspection of p2d, an element of the set {Risk,Overdose}. Applying p2d to such a

value will produce NoDrug, and the case is complete.

� GiveDrug: This case is virtually identical to the previous case: the nth value of

drugh was produced by p2d, and so its equalling GiveDrug implies that the nth value

of physioh is Healthy. The result of applying p2d to such a value will necessarily

produce GiveDrug.

5.4.2 Compositional Approach: App

In the actual PCA interlock scenario, there is no SafePCA device—instead there is some

app logic and a standard PCA pump. In this and the next section, we decompose the

SafePCA device into these two components (see Figure 5.4 for the app’s view of itself in

its environment). Then, in Section 5.4.4 we will show that the app logic and a basic PCA

pump together uphold the same system-level invariant as the SafePCA device.

175

App	
 Logic	
 physio	
 cmd	

App	
 Environment	

Figure 5.4: The app logic in its environment, derived from Figure 4 in [84]

Preliminaries

These components use the two communication and two history variables used by the SafePCA

device, and use an additional variable to communicate pump commands from the app to the

pump. The values of this command variable can be, according to Definition 5: Abstraction

either CmdPumpEnable or CmdPumpDisable.

� cmd: Command to either enable or disable the pump cmd ∈ {CmdPumpEnable,CmdPumpDisable}

� cmdh Queue of pump commands

App Description

While the high-level safety goal of the app-and-pump system remains the same as the

SafePCA device—to avoid overdosing the patient—the actual undesirability relation (from

Definition 3) of the app is in terms of commands to the pump instead of doses of analgesic

administered: (AppState,PhysioV al) ⊫ overdose ⇐⇒ (AppState = CmdPumpEnable ∧

PhysioV al ≤ 25). This is because the app logic cannot overdose the patient by itself, only

send commands that, if followed by a PCA pump, will cause an overdose.

176

The Next-State relation Once again we specify the next-state relation and initial state.

These are almost identical to the relations used by the SafePCA device, except with com-

mands produced instead of doses of analgesic.

execute ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

physio ≠ �

∧cmd′ = p2c(physio)

∧physio′ = �

∧physioh′ = physioh

∧cmdh′ = cmdh

execute uses the helper function p2c(physio) which converts a physiological value into

a safe pump command:

p2c(PhysioV al) ≜

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

PhysioV al =Healthy ∶ CmdPumpEnable

PhysioV al ∈ {Risk,Overdose} ∶ CmdPumpDisable

The Initial State The app logic starts out by assuming that the patient is not well

enough to receive a dose: initApp ≜ physio = Risk. Thus the full specification of the app is

the combination of the initial state and the next-state relation: ⟨initApp, execute⟩.

Avoidance of Undesirability The claims and proofs for the app’s avoidance of undesir-

ability are virtually identical to the claims and proofs for the SafePCA device, and are not

restated here.

App Environment Description

As the app logic is similar to the SafePCA device, so too are its environmental constraints.

The app environment’s next-state relation and initial state are:

177

Next-State Relation

process ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

physio = �

∧cmdh′ = enqueue(cmd, cmdh)

∧cmd′ = �

∧physioh′ = enqueue(physio′ ∈ {Healthy,Risk,Overdose}, physioh)

initEnv ≜ (physioh = enqueue(Risk, empty), cmdh = empty)

Thus, the full specification of the app’s environment is ⟨initEnv, process⟩.

Analysis

The invariant for the app logic is, once again, virtually identical to the invariant for the

SafePCA device: ⟦AppSpec//AppEnvSpec⟧ ⊧ invariant cmdh = physioh
p2c

. The proof of

the invariant is also virtually identical, with cmdh and p2c instead of drugh and p2d. Ad-

ditionally, the variable that disallows two sequential executions of either execute or process

is physio.

5.4.3 Compositional Approach: Pump

Now we examine the second component in the SafePCA’s decomposition: a PCA pump.

This component takes in commands (as produced by the app logic) and produces doses of

analgesic when commanded to (see Figure 5.5). As an actuator, it has a fairly straight-

forward notion of undesirability: the pump should not run when it is commanded not

to: (PumpState,CmdState) ⊫ overdose ⇐⇒ (PumpState = GiveDrug ∧ CmdState =

CmdPumpDisable).

178

PCA	
 Pump	
 cmd	
 drug	

Pump	
 Environment	

Figure 5.5: A basic PCA pump in its environment, derived from Figure 4 in [84]

Pump Description

The pump’s next-state relation checks to make sure that there is a command and that the

last dose or non-dose of drug has been consumed by the environment. Then, it converts the

current command into a dose or non-dose of analgesic.

Next-state relation

deliver ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

drug = �

∧cmd ≠ �

∧drug′ = c2d(cmd)

The pump uses an auxiliary function, c2d, to convert pump commands into doses (or

non-doses) of analgesic:

c2d(CmdState) ≜

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

CmdState = CmdPumpDisable ∶ NoDrug

CmdState = CmdPumpEnable ∶ GiveDrug

Initial state Initially, the pump administers a non-dose: initPump ≜ (drug = NoDrug).

Thus the full pump specification is: ⟨initPump, deliver⟩.

179

Avoidance of Undesirability The claims and proofs for the app’s avoidance of undesir-

ability are virtually identical to the claims and proofs for the SafePCA device, and are not

restated here.

Pump Environment Description

The pump’s environment specification is less straightforward than those discussed previ-

ously. It is an abstract component that consumes the drug that was administered, and then

produces another command. The environment does not dictate which command should be

issued (i.e., there is no modeling of the patient’s pharmacokinetics), which makes sense as

we are using a general purpose PCA pump that simply runs when commanded to do so.

Next-state relation

receive ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

drug ≠ �

∧drugh′ = enqueue(drug, drugh)

∧cmd′ = CmdPumpEnable ∨CmdPumpDisable

∧cmdh′ = enqueue(cmd, cmdh)

Initial state The pump’s environment begins by initializing the queues, and recording

an initial non-dose in the command history (though note that we do not set a value for

cmd since it is not read before its first write): initPumpEnv ≜ (drugh = empty ∧ cmdh =

enqueue(CmdPumpDisable, empty)). Thus the full specification of the pump’s environ-

ment is: ⟨initPumpEnv, receive⟩.

Analysis

The invariant for the pump is similar to those already established, that: ⟦PumpSpec//PumpEnvSpec⟧ ⊧

invariant drugh = cmdh
c2d

. The pump’s logic has two guard variables, drug and cmd,

180

Pa#ent	

physio	
 drug	
 PCA	
 Pump	
 cmd	
 App	
 Logic	

Figure 5.6: The app logic and pump in their combined environment, derived from Figure
4 in [84]

which must be unset and set (respectively) for the pump to run, and we note that the rela-

tionship between these two elements is more complex than the app or SafePCA device and

their respective environments. While drug is always unset by the environment, cmd cannot

actually be unset by the pump’s environment. This guard exists, though, to ensure that any

other environment avoids calling the pump without a valid command. Each pump action

is still necessarily followed by a single environment action, though, so the proof strategy

remains virtually identical.

5.4.4 Analyzing the Composed System

Now we consider the combination of the app logic and pca pump components shown graph-

ically in Figure 5.6. We first want to establish that the combination of the two upholds the

same invariant as the SafePCA device from Section 5.4.1 and then we must prove that their

combination (referred to as the open co-imposition of the components) is not inconsistent.

That is, we show that it is actually possible to create an environment that simultaneously

meets the requirements of the app logic and the pump.

181

Establishing the Invariant

Having already shown that ⟦SafePCASpec//PatientSpec⟧ ⊧ invariant drugh = physioh
p2d

,

we would like to re-establish it in the context of the composition of our app logic and ba-

sic pca pump. We will abbreviate each component in its environment, following Shankar’s

conventions, to ⟦Ae⟧ and ⟦P e⟧ where ⟦Ae⟧ = ⟦AppSpec//AppEnvSpec⟧ and similarly ⟦P e⟧ =

⟦PumpSpec//PumpEnvSpec⟧.

We cannot prove ⊧ ⟦(AppSpec∣∣PumpSpec)//(AppEnv ∧ PumpEnv) ⊃ Ae because the

specification of AppSpec is not strong enough to be used to prove PumpEnv (as, e.g.,

AppSpec places no restrictions on drug) and PumpSpec is similarly too weak to prove

AppEnv (as, e.g., PumpSpec places no restrictions on physio). Thus, we cannot use the

invariants established for the app and the pump as global invariants of the composed system.

However, as Shankar points out in a similar example, we can use the open co-imposition

of the two systems. The computations of the open co-imposition of some programs P1 and

P2 with their respective environments E1 and E2 “contain actions corresponding to a) P1

but respecting E2, b) P2 but respecting E1, and c) Environment actions respecting E1 and

E2.” We conclude from his second theorem that the open co-imposition of the two systems:

⟦Ae × P e⟧ = ⟦((AppSpec ∧ PumpEnvSpec)∣∣(PumpSpec ∧AppEnvSpec))//(AppEnvSpec ∧

PumpEnvSpec)⟧ implies the conjunction of their invariants: ⟦Ae×P e⟧ ⊃ ⟦Ae⟧∧⟦P e⟧, which

is strong enough for us to re-establish the original invariant in the system composed of the

app logic and pump.

Claim 4. ⟦Ae × P e⟧ ⊧ invariant drugh = physioh
p2d

.

Proof Sketch. This claim is proved with fundamental mathematical properties and Shankar’s

second theorem. We begin with the two invariants:

1. ⟦Ae × P e⟧ ⊧ invariant cmdh = physioh
p2c

2. ⟦Ae × P e⟧ ⊧ invariant drugh = cmdh
c2d

182

Shankar’s second theorem states (in part) that: ⊧ ⟦P e
1 ×P

2
2 ⟧ ⊃ ⟦P e

1 ⟧. Shankar also states

that the open co-imposition operator commutative, so we know that ⊧ ⟦P e
1 × P 2

2 ⟧ ⊃ ⟦P e
2 ⟧ as

well. The conjunction of the invariants, then, is:

cmdh = physioh
p2c

∧ drugh = cmdh
c2d

Which by substitution can be reduced to:

drugh = physioh
p2c

c2d

By inspection of p2c, c2d, and p2d, we can see that ∀PhysioV al, c2d(p2c(PhysioV al)) =

p2d(PhysioV al), and so, after simplification, we are left with the desired invariant.

Establishing Consistency

Consistency may seem intuitive in this case, which is clear from the clear correlation be-

tween the observable states of the controller (i.e., {CmdPumpEnable,CmdPumpDisable})

and those of the pump’s environment ({ShldGiveDrug,ShldntGiveDrug}). However, the

details are complex enough that an explicit proof is necessary.

The full expansion of the open co-imposition of our app and pca pump contains three

terms (see above). The third term is the conjunction of the environment actions of the

two systems, and we note that it is possible to create an abstract component that enforces

the specifications of both the app and the pump’s environments that does not contain a

contradiction. This is only due to the careful specification of the environments, though, and

does not follow naturally from the equivalent observable states.

Claim 5. AppSpec ∧EnvSpec /Ô⇒ �

Proof Sketch. We establish this claim by contradiction. We assume that AppSpec∧EnvSpecÔ⇒

�, but we show a new environment component, MetaEnv, that complies with the specifi-

cations of both AppEnv and PumpEnv, contradicting the premise.

183

MetaEnv ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

physio = �

∧drug ≠ �

∧cmdh′ = enqueue(cmd, cmdh)

∧cmd′ = �

∧physioh′ = enqueue(physio′ ∈ {Healthy,Risk,Overdosed}, physioh)

∧drugh′ = enqueue(drug, drugh)

∧drug = �

InitMeta ≜ (physioh = enqueue(Risk, empty)∧

drugh = empty ∧ cmdh = enqueue(CmdPumpDisable, empty))

physio and physioh are only written to or read from by the app logic’s environment.

Similarly, the pump’s environment modifies drug and drugh, but the app’s doesn’t. Thus,

their conjunction is trivial. cmdh is written to in the same way by both the app and the

environment so its conjunction is similarly trivial. cmd, however, is something of a special

case: the conjunction of the app and the pump’s expressions is cmd′ = (CmdPumpDisable∨

CmdPumpEnable) ∧ � which simplifies to cmd′ = �.

It is possible for specifications to be inconsistent, however. This would happen in the

PCA interlock scenario, for example, if the app and pump’s environment specifications were

less carefully crafted, e.g., if the pump’s environment always set the value of cmd, then the

resulting conjunction would be unsatisfiable. The potential for inconsistency, though, does

not lead to a proof rule to ensure consistency. Shankar writes that “since specifications

184

can be partial, it makes sense to conjoin the environment constraints to the component

specification rather than discharge them as proof obligations.” He then goes on to explain

that “a more detailed implementation will have to satisfy the higher-level specification of the

component as well as the constraints on the component imposed by the other components in

the combined system.” We note that while we do not expect analysts to typically perform

this style of reasoning by hand, the existence of multiple levels of refinement is even more

rare as the typical refinement path will be simply from specification (derived from some

system model) to implementation, obviating the need for intermediate consistency checks.

What’s more, decompositions are typically checked lazily when using Shankar’s style of

reasoning. As he explains, this is because lazy compositional verification is more appropri-

ate “for compositional verification where the point is to achieve a useful decomposition of

the verification task,” which aligns quite well with the goals we set out with when finding

a decomposition technique. That is, we had hoped the hazard analysis process described

in this work would allow us to move towards a compositional approach to hazard analysis

rather than (the admittedly similar topic of) a specification technique for safety-critical

components. Shankar also notes that “assume-guarantee specifications are more appropri-

ate for writing blackbox characterizations of open components” than lazy compositional

verification [84].

5.4.5 Refining a Component

In Sections 5.4.2 and 5.4.3 we have discussed decomposing one component specification into

two subcomponents. A similar notion is that of refinement, where one component can be

shown to exhibit all the observable properties of another. A common refinement pattern

is showing that an implementation (P) refines a specification (Q): ⊧ ⟦P ⟧ ⊃ ⟦Q⟧. In this

section we present an implementation of the app logic conforms to the specification from

Section 5.4.2. The implementation is written in java, and presented here in Figures 5.7 –

5.10.

185

1 import java.util.ArrayDeque;
2 import java.util.Random;
3

4 public class AppInEnvironment {
5

6 private enum CmdType { DOSE, NODOSE, UNSET };
7

8 private Integer physio;
9 private ArrayDeque<Integer> physioh;

10 private CmdType cmd;
11 private ArrayDeque<CmdType> cmdh;
12 private Object sync = new Object(); // Used for atomic regions
13 private AppLogic app; // The app logic itself
14 private AppEnvironment env; // The environment’s logic
15 private Thread appThd, envThd; // Threads for running app and env
16 private Random r = new Random(); // Used for bounded random physiovals
17

18 public static void main(String[] args) throws Exception {
19 AppInEnvironment aie = new AppInEnvironment();
20 Thread.sleep(5000); // Let the threads run for a while
21 aie.app.keepRunning = false; // Turn off the app
22 aie.env.keepRunning = false; // Turn off the environment
23 verifyInvariant(aie); // Check our invariant
24 }
25

26 public AppInEnvironment() {
27 app = new AppLogic(); // Create app object
28 env = new AppEnvironment(); // Create env object
29 app.init(); // Enforce app’s initialization predicate
30 env.init(); // Enforce env’s initialization predicate
31 appThd = new Thread(app);
32 envThd = new Thread(env);
33 appThd.start(); // Start the app in its own thread
34 envThd.start(); // Start the env in its own thread
35 }
36

37 private static CmdType p2c(int physioVal) {
38 if (physioVal > 50)
39 return CmdType.DOSE;
40 else
41 return CmdType.NODOSE;
42 }

Figure 5.7: An implementation of the preliminaries and setup code that enable an imple-
mentation of the specification in Section 5.4.2

App Logic Implementation

The setup logic, shown in Figure 5.7, consists of the entry point into the logic (main(String[] args)),

186

44 private static void verifyInvariant(AppInEnvironment aie) throws Exception{
45 // Wait for the threads to terminate
46 while (aie.appThd.isAlive() || aie.envThd.isAlive()) {
47 Thread.sleep(100);
48 }
49

50 // Verify that the queues are roughly the same size
51 if (aie.physioh.size() > aie.cmdh.size() + 1
52 || aie.physioh.size() < aie.cmdh.size() - 1) {
53 assert false : "Queue size difference > 1!";
54 } else if (aie.physioh.size() != aie.cmdh.size()) {
55 // Truncate the last physio value if necessary
56 if (aie.physioh.size() > aie.cmdh.size()) {
57 aie.physioh.removeLast();
58 } else {
59 assert false : "More commands than physiological values!";
60 }
61 }
62

63 // Check the invariant, bail out if there’s a mismatch
64 while(!aie.physioh.isEmpty()){
65 if (p2c(aie.physioh.remove()) != aie.cmdh.remove()) {
66 assert false : "Invariant violated!";
67 }
68 }
69 }

Figure 5.8: Java code to check that the invariant from Section 5.4.2 is maintained by the
implementation

a constructor, and the implementation of p2c.

The invariant is checked by verifyInvariant(AppInEnvironment aie) in Fig-

ure 5.8, which uses Java assert expressions. Note that the truncate function, denoted

in Sections 5.4.1 – 5.4.3 by an overbar, is performed by lines 56-57. Of the three assert

expressions, the first two are fail-fast checks for serious problems, while the third assert,

on lines 64-68, is the actual implementation of cmdh = physioh
p2c

.

The app logic itself is shown in Figure 5.9. The initialization predicate, initApp, is

encoded in init(), and execute in run(). The environment logic is shown in Figure 5.10,

and its initialization predicate and next-state relation are implemented in a similar style to

the app.

187

71 private class AppLogic implements Runnable {
72 public boolean keepRunning = true; // Flag to terminate execution
73

74 public void init() {
75 physio = 25; // Assume the patient isn’t in great shape to start
76 }
77

78 @Override
79 public void run() {
80 while (keepRunning) { // Check that we haven’t been told to stop
81 synchronized (sync) { // Enter atomic region
82 if(physio != null){
83 cmd = p2c(physio); // Get the appropriate command
84 physio = null; // Mark the physio value as consumed
85 }
86 } // Leave atomic region, but stay in the loop
87 }
88 }
89 }

Figure 5.9: An implementation of the app logic that refines the specification from Section
5.4.2

We verified, to the exhaustion of 8 GiB of memory and more than 48 hours, our im-

plementation’s correctness using the Java Pathfinder (JPF) tool [109]. We verified that

the program is free of both deadlocks and uncaught exceptions (including the assertions

used in our invariant-enforcement method, see Figure 5.8). We created and verified similar

implementations of the pump and combined app-pump system as well as their respective

environments.

Verifying the Refinement

We would like to claim that our implementation, and in particular the java implementation

of execute from Figure 5.9, is valid. In order to establish this claim, we will use Shankar’s

third theorem, which is:

188

91 private class AppEnvironment implements Runnable {
92 public boolean keepRunning = true; // Flag to terminate execution
93

94 public void init() {
95 physioh = new ArrayDeque<Integer>(); // Initialize queue
96 physioh.add(25); // Record initial patient state
97 cmdh = new ArrayDeque<CmdType>(); // Initialize queue
98 }
99

100 @Override
101 public void run() {
102 while (keepRunning) { // Check that we haven’t been told to stop
103 synchronized (sync) { // Enter atomic region
104 if(physio == null){
105 cmdh.add(cmd);
106 cmd = CmdType.UNSET;
107 physio = r.nextInt(99) + 1; // Generate int 0 < x < 101
108 physioh.add(physio); // Record the generated val
109 }
110 } // Leave atomic region, but stay in the loop
111 }
112 }
113 }

Figure 5.10: An implementation of the environment that refines the specification from
Section 5.4.2

⟦P ⟧ ⊧ invariant r

⟦Q⟧ ⊧ invariant p

⊢ p(s) ∧ r(s, s′) ∧NP (s, s
′) ⊃ NQ(s, s

′)

⊢ IP (s) ⊃ IQ(s)

⊧ ⟦P ⟧ ⊃ ⟦Q⟧

Here, P = AppInEnvironment.java and Q = (AppSpec//AppEnvSpec). While Shankar’s

theorem allows us to use invariants p and r, since our implementation is so directly based

on the specification, they end up not being necessary, so we can simply use ⊺. After sim-

plification, then, we must show that the next-state relation of P (i.e., run(), from lines

189

80-92 of Figure 5.9) implies execute. It’s straightforward to see that it does, though, based

on inspection of the two relations. Similarly, we must show that the initialization predicate

of the implementation implies that of the specification, but again, this is shown by simple

inspection.

We note that there is a corollary of Shankar’s third theorem which allows one to show

that ⟦P ∣∣Q⟧ ⊃ ⟦(P ∧ E)∣∣Q⟧. This requires only a global invariant on the ⟦(P ∧ E)∣∣Q⟧

term, and can be used to remove the conjoined environments resulting from the open

co-imposition operator. That is, had we needed to simplify ⟦Ae × P e⟧ = ⟦((AppSpec ∧

PumpEnvSpec)∣∣(PumpSpec∧AppEnvSpec))//(AppEnvSpec∧PumpEnvSpec)⟧ to ⟦(AppSpec∣∣PumpSpec)//(AppEnvSpec∧

PumpEnvSpec)⟧ in order to prove Claim 4, we could have used this corollary.

5.5 Fault Propagation and Transformation

In the previous section, we argued that if some components’ specifications can be proven to

collectively uphold some invariant, then that invariant can be relied upon. This overlooks

the obvious problem, though, of the variability of the real world: components fail in myriad

ways, and then those failures propagate throughout the system. As discussed in Section

2.2.3, Wallace has proposed the Fault Propagation and Transformation Calculus (FPTC)

to reason about these situations and the systemic effects of individual element failure. This

section first presents a brief example of the FPTC applied to the PCA Interlock scenario, and

then discusses differences between our approach and Wallace’s. We conclude by discussing

the differences and similarities between Abstract Undesirability from Definition 6 (i.e., Ŝc
u,n)

and some of the error sets produced by the FPTC, and use that discussion to motivate a

vocabulary that enables precise discussions of important contrasts between the techniques.

190

Pa#ent	

{unsafeDrug	
 -­‐>	
 *}	

SafePCA	
 Device	

{high	
 -­‐>	
 unsafeDrug,	

low	
 -­‐>	
 *}	

Physio	

{*	
 -­‐>	
 low,	

*	
 -­‐>	
 high}	

Drug	

[*]	

[*]	
 [*]	

[*]	

Figure 5.11: The SafePCA device and environment from Figure 5.3, extended and refor-
matted to align with Wallace’s FPTC. Components are shown as squares, connections as
ovals, and the arrows represent the links between components.

5.5.1 Example System

Figure 5.11 shows the SafePCA and patient from Figure 5.3 after they have been reformatted

to align with Wallace’s FPTC. This reformatting involves two main steps: First, connections

are elevated to the same level as components (a concept discussed in more depth in Section

4.1.5). Then, each element and link is annotated with its failure-related behavior(s). The

full syntax of FPTC is not germane to this work, but the behaviors used in elements in

Figure 5.11 can be summarized as {LHS → RHS}, where a) the Left-Hand Side (LHS) and

Right-Hand Side (RHS) values are specific notions of failure; b) → signifies production, i.e.,

if the component is given the errors listed in the LHS it may produce the errors listed in

the RHS; and c) ∗, a special behavior which signifies “no failure.”

Thus, the behavior of each component in Figure 5.11 should be interpreted as follows:

� Patient: If the patient receives too much drug, they consume it. This does not mean

they are unaffected by the failure (indeed, they may be injured or killed), but rather

that the error’s arrival will not cause the patient to exhibit any other erroneous be-

havior.

191

� Physio: The physiological readings from the patient may not be transferred between

components reliably; i.e., they can be modified to be lower or higher than the actual

values. Note that “low” and “high” refer to the reported value’s relation to the true

quantity, rather than the physiological values themselves.

� SafePCA Device: The SafePCA device may “transform” incoming “high” errors into

“unsafeDrug” errors, and will consume “low” errors. This aligns with our intuition:

if such a device is provided with overly optimistic readings of a patient’s health, then

it might run when unsafe. If it is given pessimistic values, which would indicate the

patient is less healthy than he actually is, then there is no risk of an overdose.

� Drug: The connection between the SafePCA device and patient has no logic, so it

simply propagates whatever errors come into it.

The links in Figure 5.11 are annotated with sets containing only ∗, denoting that the

system is initialized to include only correct behaviors. From there, Wallace’s fixpoint algo-

rithm specifies that possible errors are repeatedly added to each outgoing set until the graph

is “stabilized.” That is, error “tokens” are added to an element’s outgoing link according

to the RHS of the element’s behavior specification if (and only if) the element’s LHS is

completely satisfiable given the error tokens on the incoming link.

Which element is selected for evaluation is non-deterministic, though our example from

Figure 5.11 is small enough that there is only one possible first step. That step is shown

in Figure 5.12. It shows the physiological sensor’s production of both improperly high and

low values, which illustrates that the FPTC does not determine actual values—since it is

impossible for a value to be both too high and too low at the same time—but rather possible

errors on outputs.

The improperly high physiological readings will then be transformed by the SafePCA de-

vice into unsafe doses of analgesic, or the “unsafeDrug” error. That error will be propagated

by the Drug connection, which—since it has no explicitly declared behavior—propagates

192

Pa#ent	

{unsafeDrug	
 -­‐>	
 *}	

SafePCA	
 Device	

{high	
 -­‐>	
 unsafeDrug,	

low	
 -­‐>	
 *}	

Physio	

{*	
 -­‐>	
 low,	

*	
 -­‐>	
 high}	

Drug	

[*,	
 low,	
 high]	

[*]	
 [*]	

[*]	

Figure 5.12: The first step of FPTC on the system from Figure 5.11. The only element
that had incoming tokens matching its LHS was the physio connection, so tokens matching
its behavior’s RHSs have been produced on its outgoing link.

all incoming errors without transformation. The resulting final, stabilized graph is shown

in Figure 5.13. Though this system is quite small, is intended to provide a straightforward

example of how Wallace’s FPTC can be used to determine whether or not a particular error

can propagate into, or be propagated out of, a given element.

5.5.2 Differences Found

Though both Wallace’s FPTC and SAFE enable component-based arguments for a system’s

safety, they have three important differences. The first is specific to the formalisms in this

chapter, while the second and third are differences between SAFE, as a human-targeted

process, and the FPTC, as a calculus composed of a syntax and semantics.

1. Two-Part Notion of Undesirability: All of our formalisms center around the two-part

concept of undesirability specified in Definition 1. Wallace’s formalisms, on the other

hand, use the traditional single-state concept with no explicit recognition of the role

of an element’s environment in a system’s overall safety.

2. Analysis Direction: The FPTC is a forwards-moving, fixpoint-based analysis that may

193

Pa#ent	

{unsafeDrug	
 -­‐>	
 *}	

SafePCA	
 Device	

{high	
 -­‐>	
 unsafeDrug,	

low	
 -­‐>	
 *}	

Physio	

{*	
 -­‐>	
 low,	

*	
 -­‐>	
 high}	

Drug	

[*,	
 low,	
 high]	

[*,	
 unsafeDrug]	
 [*]	

[*,	
 unsafeDrug]	

Figure 5.13: The final version of the FPTC graph first shown in Figure 5.11. The high
token has been transformed by the SafePCA device into an unsafeDrug error, which is
then propagated into the patient.

evaluate an element’s behavioral specification a number of times as new errors get

added to links. This has the result of identifying only those errors that are actually

possible given behavioral descriptions for each system element. SAFE, however, is

a backwards-moving process that considers each element only once. Additionally,

because it uses our formalisms’ notion of undesirability, SAFE is not a true “bottom-

up” analysis like the FPTC. Rather, its activities are scoped by the goals of the analyst,

which can eliminate consideration faults and errors in a “top-down” style. Ultimately,

SAFE is a blend of the two styles of analysis4.

3. Additional Annotations: SAFE enables the specification of a number of annotations

beyond error propagations, including human-readable explanations, system and envi-

ronment state explanations, and detection and mitigation mechanisms. These are not

included in the FPTC syntax, though we note that extensions supporting the ideas

behind some of these annotations exist. For example, Gallina and Punnekkat’s FI4FA

extends Wallace’s FPTC to include mitigation techniques based on transactions. [111]

4There is a similarity, in this regard, between SAFE and Papadopoulos and McDermid’s HiP-HOPS
technique. [110]

194

5.5.3 Methodological Discussion and Vocabulary

Differences aside, it seems—intuitively—like there should be some rough equivalence be-

tween the FTPC and SAFE/our formalisms in this chapter. That is, both attempt to an-

swer the question “What errors can some particular element cause, and what errors might it

receive from other system elements?” In SAFE, this question is explicitly addressed by Ac-

tivity 1. Wallace, however, presents only a syntax and semantics that can aid in simulating

a compositional system as an annotated, directed graph. Once Wallace’s fixpoint algorithm

has stabilized on the graph, information about a particular element can be determined by

looking at its “in” and “out” sets.

Methodological Differences

That said, a particular component’s SAFE-calculated successor dangers5 and its FPTC-

calculated “out” set are not equivalent. The former is narrowly focused on the avoidance

of particular notions of harm (i.e., undesirability), while the latter is not. Additionally,

due to the unification step in the FPTC’s semantics, a component’s “out” set will not

include errors resulting from impossible behaviors: if the error that triggers a particular

transformation rule can never arrive at a given component (i.e., the LHS is unsatisfiable),

then the error tokens that would be produced by that behavior (i.e., the RHS) will never be

propagated. Comparing the benefits and costs of the two methods is less straightforward

than might initially be assumed, however, because FPTC and SAFE derive most of their

value from different modeling activities. In both techniques, there are essentially two, high-

level processes that must be performed:

1. Modeling: Both analysis techniques operate on models of a system, rather than the

system itself. This first step involves creating the values and relations used in the par-

5We use terms from Chapter 4 in this section, but we note that a component’s successor dangers can
be thought of as the collection of element- and environment-state pairings of a particular component, i.e.,
(n ∈ Ŝc

u, x ∈ Ŝ
c
u,n).

195

ticular analysis, i.e., elements, their connection topology, error transformation rules,

etc.

2. Performance: Once suitable models are in place, the analysis itself can proceed. That

can mean calculating the formalisms used in this chapter, or the FPTC’s “in” and

“out” sets. That is, this step involves the actual execution of the algorithms and

calculation of sets, values, and other outputs.

Clearly the second step—performance—is fairly prescriptive in both our formalisms and

the FPTC. The first step, however, is implicit in Wallace’s work, but is vital to producing

useful, succinct output. Fully modeling a component’s behavior using simple transformation

rules is likely to be a time-consuming, error-prone task. Modeling only the “relevant” rules

is much more feasible, but a not insignificant challenge lies in determining the relevancy of

any particular transformation rule.

SAFE uses a very similar structure for specifying element behavior as the FPTC, where

manifestations (and any co-occurring dangers) form the LHS of a component’s particular

tranformation rule, while the successor danger forms the RHS. As a top-down approach, the

methodology proposed in this dissertation leads analysts to avoid modeling irrelevant rules.

Both SAFE and the formalisms in this chapter start with a notion to be avoided—safety

constraint violations in SAFE and the equivalent notion of undesirability in this chapter—

and work backwards. Thus, errors that would not contribute to these notions would not be

discovered or documented, and would not clutter up the resulting system model.

Whether or not these errors are truly irrelevant can be difficult to know at system design

time, though. Since behaviors that are irrelevant to one safety constraint may be necessary

to discover errors that could lead to the violation of a different one, an argument can be made

for modeling as much of an element’s error-related behavior as possible. This is particularly

true in cases where the top-level system safety goals are unknown, or are at least difficult

to forecast with an acceptable level of certainty.

196

A Vocabulary for Comparing Hazard Analysis Assessment Techniques

Ultimately, we cannot draw any firm conclusions on the various differences between SAFE

and the FPTC. However, there are a number of terms that we believe are important to future

discussions in this area, and so present a vocabulary which will allow for clearer distinctions

to be made between SAFE, the FPTC, and other safety-argumentation strategies. There

are four key concepts; each exists as a spectrum between two extremes.

1. Top-Down versus Bottom-Up Styles: This concept speaks to the direction that the

analysis moves in, which is also sometimes phrased as “cause to effect” and “effect

to cause,” as in, e.g., the HiP-HOPS work [110]. A top-down analysis, like FTA,

STPA, or SAFE, starts with a notion of what the analyst would like to avoid: e.g., an

undesirable event’s occurrence, the violation of a safety constraint, etc. A bottom-up

analysis, on the other hand, considers first the ways that a particular element can fail

and then the effects of those failures on the rest of the system. Top-down analyses

typically move backwards through a system, while bottom-up analyses, like FMEA or

the FPTC, are forwards-moving.

2. Irrelevant versus Impossible Errors: An error that is potentially exhibited by a par-

ticular element may not affect the desired qualities of a system. The error might

impact some irrelevant system characteristic (i.e., performance in a non-realtime do-

main) or its occurrence might be impossible in a real-world version of the system.

Top-down analyses like SAFE excel at detecting the first class of errors, since they

begin with activities that scope the analysis to problems the analyst would like to

focus on. Bottom-up analyses like the FPTC excel at focusing on errors that can

actually occur, though, since the inputs to an element are known when its analysis

begins. Thus, output errors requiring infeasible inputs can be safely disregarded, since

their occurrence is impossible.

3. Causal versus Caused Errors: There are essentially two sets of errors that are relevant

197

to a particular element: those that arrive at the element (i.e., manifestations in SAFE,

the FPTC’s “in” set) and those that propagate out of it (i.e., successor dangers in

SAFE, the FPTC’s “out” set). We term the former causal errors and the latter caused.

This distinction exists in most architecture-centric safety argumentation strategies. It

also exists in some techniques from the formal methods community: we note the

correspondence between causal/caused errors and backwards/forwards slicing of an

element’s impact in a system’s control- or data-flow dependency graph.

4. Modeling versus Performance Activities: As discussed in the first part of Section 5.5.3,

all safety argumentation strategies have two high-level parts. Often, one of these parts

is implicit, i.e., in the FPTC, system modeling is not discussed; in STPA, there is little

discussion of how exactly to determine the effects of errors in a given system element.

5.6 Gaps in the Analysis

While we believe that the work in this chapter is illustrative of a potentially fruitful ap-

proach to reconciling the work of the hazard analysis and formal methods communities,

we recognize that by no means does it completely work out the foundations necessary for

such an undertaking. Three tasks stand out as being necessary to enable the full use of the

material in this section:

1. A Full, Coherent Formalization: In order to speak concretely about a system, we

would need a full, end-to-end formalization in place. We believe that our current

collection of definitions from Section 5.3 is potentially useful, but we recognize that

its utility is distributed throughout a number of definitions rather than realized in a

single cogent theory.

2. A Model of Computation: As part of 1., our formalizations particularly require a model

of computation. We note that in Section 5.4 we used asynchronous transition systems

198

(as that was the model of computation used by Shankar [84]) but more investigation

is needed to determine if that model is the most appropriate for the formalisms from

Section 5.3.

3. Justifications for / Reconciliations of Previous Assumptions: In the introduction to

Section 5.4, we noted a number of simplifying assumptions. While we believe that

those assumptions were warranted for our purposes, a full formalization would need

to either justify them or obviate their necessity.

(a) A Fully Formalized Platform: As MAP apps rely heavily on the guarantees pro-

vided by the platform itself, formalizing its behaviors is required. An ideal for-

malization would be one that does not have to be tightly integrated with an app’s

specification, so that properties of the composed system’s behavior on different

platforms could be more easily verified.

(b) Notions of Timing: As we discussed in the introduction to Section 5.4, our for-

malization there did not include a notion of timing. Properties of real-world

MAP apps are typically stated as timings, however (see, e.g., the quality-of-

service properties in Table 3.2) so an ideal formalization would be in a logic that

supports notions of timing, e.g., timed finite automata. [112]

(c) Communication via Shared Variables: In Section 5.4, we adopted the model of

communication used by Shankar, which is via shared state. Since MAPs are

distributed, however, and many—like the MDCF—use publish-subscribe archi-

tectures (see [73]), an ideal formalization would need to have a notion of asyn-

chronous, port-based communication.

A full formalization of the hazard-analysis view of system safety would be extremely

useful, not only to improving techniques like SAFE, but to broadening the applicability

of formal methods-based approaches as well. We believe that the definitions in this chap-

199

ter, subject to the assumptions and caveats stated above, represent a promising possible

approach to such a formalization.

200

Chapter 6

Evaluation

In this chapter we present an evaluation of both the manual and tool assisted versions of our

new hazard analysis technique. The evaluation is presented as the findings produced by our

analysis when it is applied to the PCA interlock scenario. Recognizing that the subjectivity

of our analysis damages our confidence in it, we also propose a collection of user studies

which we would perform in the ideal case.

6.1 Analysis of the PCA Interlock System

In this section, we discuss the results of the analysis of the central control loop in the

PCA interlock system, shown in Figure 6.1, including both issues found previously by other

researchers and newly identified problems. The full report, including analysis of each element

in the loop, is available in Appendix C.

6.1.1 Previously Discovered Issues

As the PCA interlock scenario has been studied extensively, one useful activity is discussing

the extent to which our analysis rediscovers problems that have been found by other re-

searchers. The novelty and benefit of the technique described in this dissertation stems

201

App Logic

Ok

Near Harm

Overdosed

Patient Status

PCA Pump

1

...

600

Ticket Duration

App → Pump

Pulse Ox

0
...
100

Capnograph

0

...

100

EtCO2

0

...

75

Resp. Rate

SpO2 → App

EtCO2 → App

Resp. Rate → App

PatientIV Line Refracted Light
Breath

SpO2

Figure 6.1: The inner control loop of the PCA Interlock scenario

less from an analyst’s ability to uncover problems that have never been considered before,

and more from his or her ability to (comparatively) easily and quickly uncover an extremely

broad range of problems that are typically not revealed by a single previously existing hazard

analysis technique or mode of thinking. The first two findings addressed here are primarily

issues of ensuring correct timing, and the latter four are more focused on security concerns.

Ticket-Based Architecture

The need for “tickets” which enable the PCA pump to run for some window of time, rather

than with simple on/off commands, was first suggested by Arney et al. in [27]. The pro-

202

cess described in Section 4 would discover the same solution when performing Step 1.2 on

the PCA pump. More specifically, assuming an architecture with an event-based channel

(where events toggle the state of the pump, from on-to-off or vice-versa), when considering

the “Halted” manifestation, an analyst would note that this could leave the pump on for

an inappropriate length of time. This problem could be detected at runtime (i.e., using

“Concurrent Detection” in the language of [3]) by using a ticket-based architecture.

Quality-of-Service Enforcement

It is generally understood that the correctness of real-time systems depends not only calcu-

lating correct values, but also on delivering those values within acceptable time ranges. The

need for a MAP to support guarantees of these timing constraints has been discussed for

some time; an excellent example is King et al.’s [113]. Our hazard analysis process would

discover this requirement in a number of places as the analyst is asked, in each component

and connection, to consider the case where incoming messages arrive later than they should.

The only way to detect these late messages is to ask developers to specify quality-of-service

requirements, and the only way to ensure those requirements are met in a semi-open system

like a MAP is to have the platform itself guarantee their enforcement, using a technology

like MIDAS [19].

Access Control

Controlling access to MAP apps and devices can be done in a number of ways, ranging from

physical security to software-enforced role-based access control (RBAC). Salazar explains

the need for, and provides a MDCF-based design of, RBAC in [114]. Our analysis would

reveal the need for access control in step 2 (which focuses on faults not caused by other

components), with guidewords 10, 12, 13 and 14. All four of these guidewords involve either

inadvertent or malicious actions, and they have listed—as typical compensation—access

control.

203

Device Certification and Authentication

While the safe behavior of all elements of a MAP is the goal of the analysis, there is a risk

that the end-user of a given app or device may attempt to use a device that has not actually

passed any sort of hazard analysis. A very similar concern is that of device authentication,

i.e., the need for some assurance that a MAP element is what it claims to be. Salazar argues

that existing certification mechanisms can be strengthened considerably by using machine-

readable cryptographic certificates that attest to an element’s identity and its having passed

certification. He motivates, designs, and evaluates a certificate framework for the MDCF

that would ensure a device’s authenticity as well as its certification by some trusted authority

[114].

This is, to some extent, outside the scope of our hazard analysis and would instead be

covered by an element’s “lifecycle” as addressed by, e.g., IEC 62304 (see Section 2.2.5).

That said, in order to prevent compromised hardware and software (guidewords 3 and 4),

our process recommends enforcing a chain-of-trust, which could be cryptographic in nature.

Communication Security

Salazar also discusses the need for, implementation of, and design of cryptographic security

for inter-element communication in the MDCF [115, 114]. This would be addressed by

guidewords 12 and 13 of our process, which suggest—in addition to access control and

physical security—cyptography as a possible compensatory measure.

6.1.2 Newly Discovered Issues

There were two potential improvements suggested by our analysis of the PCA interlock

system that—to the best of our knowledge—have not been directly addressed previously in

the literature. The first improvement is focused on the algorithm itself and the second on

the user interface of the app’s display and devices. These improvements are not oversights

of any of the previous analyses of the PCA interlock app because they are beyond the

204

scope of the previous analyses. Instead, these are dangers that could come about in an app

implementation, even if that implementation successfully incorporated the findings of all

previous research on the scenario.

Statistical Inference

In Arney et al.’s original work on a ticket-based PCA interlock architecture, the duration

of the ticket sent to the PCA pump is to be determined according to a pharmacokinetic

model of a typical patient’s tolerance for opioid analgesic [27]. Using this model (Arney

et al. cite [116] as an example) and the current state of the the values of the physiological

parameters (i.e., SpO2, ETCO2, respiratory rate, and pulse rate), a safe window of time can

be calculated.

Arney et al. explain that they “are not aware of a unified model that captures the whole

process and is appropriate for the control-theoretic study of the closed loop dynamics,” and

discuss options for control if such a model were to become available. In the interim, though,

we argue that it would be safer for algorithm designers who are using statistical models

of “typical” patient pharmacokinetics ([116] uses a 95% confidence interval) to instead use

an algorithm that assumes very conservative patient dynamics. Then, in response to phys-

iological inputs the algorithm should use, e.g., Bayesian inference to drift towards more

typical values after it has been established that the current patient is not an outlier. That

is, instead of assuming a patient has a standard tolerance for analgesic, the PCA interlock

app logic should assume that opioid will have an outsize effect and only allow very small

doses. Once it has been established (via some sort of statistical inference) that the dose and

response are in line with that of a typical patient, the app can enable typical (i.e., larger)

doses.

This danger was detected via a careful reading of Arney et al.’s work and its citations

[27, 116]. It would be detected by step 2.2 of the hazard analysis process, when considering

guideword 2: “Bad Software Design.” This problem is exactly what Avižienis et al. discuss

205

when they describe “deliberate, nonmalicious development faults” in that the fault is sim-

ply the result of a development choice—to assume typical patient pharmacokinetics—that,

eventually, would cause the hazard: the overadministration of analgesic [3]. While the de-

sign of such an algorithm is beyond the scope of this work, we recognize that our process

has acheived its goal simply by detecting the causal scenario.

Thoughtful User Interface Design

Guidewords 11-14 in step 2.2 of SAFE ask the analyst to consider the result of an operator

making either a mistake, or an intentional—but incorrect—choice when using the hardware

or software of a system. This points to the need for thoughtful user inteface (UI) design

that considers two separate factors: usability and awareness of system state; these factors

are discussed in some depth in Section 9.4 of [30].

Usability The design of PCA pumps—only one component of the PCA interlock app—

to avoid user mistakes is itself a topic of study [98]. Careful analysis of the app’s display

components would also be warranted, and would be useful in increasing the overall safety

of the app. Leveson gives some specific guidance on this topic in Section 9.4.6 of [30].

Awareness of System State A second concern, which seeks to avoid incorrect, inten-

tional actions is UI design that makes the operator aware of the effects of her actions.

Leveson addresses this topic specifically in Section 9.4.7 of [30], and names four potential

problems including “mode confusion,” where an operator thinks the system is in one mode

when it is in fact in another. Careful design to show the operator the potential effects of

her actions is vital for the overall system safety.

206

6.1.3 Threats to Validity

The most significant threat to the findings discussed in this section is that the technique has

been primarily developed using the PCA interlock scenario as a running example. While

we have no doubt benefited from the deep consideration given the scenario by various re-

searchers, we have also had to consciously work against fitting the analysis too closely to

the scenario. That is, there is a risk that we only caught the five previously-discovered

issues discussed in this section because our analysis was inadvertently designed to focus

on those exact issues. Despite the efforts made to generalize the process, we would have

more confidence in our findings, and they would be more broadly applicable, if we had more

case studies or, at a minimum, a different MAP app than had been used in the process’s

development.

6.2 Proposed User Study

We note that there are two techniques that could be used to evaluate the hazard analysis

presented in this work. The first, which we have discussed in the previous section, is a

discussion of our experiences applying the technique to the PCA Interlock system. The

second, and ultimately preferable, technique would be a user study, which we describe here.

6.2.1 Methodology

We propose providing some number of volunteers with a narrative description of a system

(e.g., the PCA interlock main control loop examined previously) as well as training on a

hazard analysis technique. That is, the independent variable in this study would be the type

of analysis training is provided for, e.g., FTA, FMEA, STPA, or the new hazard analysis

process described in this work. Then, the dependent variables would be:

1. Analytic Power (Quantitative): The number of faults and errors uncovered; discovery

of higher numbers of faults and errors would be better.

207

2. Analytic Power (Qualitative): The distribution of faults and errors uncovered, where

a more broad distribution across each category is better. Axes of distribution would

be seven of the elementary fault classes1 and the five service failure modes identified

in [3]:

(a) Phase of Creation: Faults that occur in development versus those occurring when

the system is operating.

(b) System Boundaries: Faults internal to the system versus those outside the sys-

tem’s boundary.

(c) Phenomenonological Cause: Faults made by humans versus those resulting from

natural causes.

(d) Dimension: Faults originating in hardware versus those originating in software.

(e) Objective: Malicious versus non-malicious faults.

(f) Intent: Deliberate versus non-deliberate faults.

(g) Persistence: Permanent versus transient faults.

(h) Content Errors: Input that arrived at the correct time, but had an incorrect

value.

(i) Early Timing Errors: Input that had the correct value but arrived too early.

(j) Late Timing Errors: Input that had the correct value but arrived too late.

(k) Halted Service Errors: A complete lack of input.

(l) Erratic Service Errors: Input that arrives at the wrong time with values that are

incorrect.

1Note that Avižienis et al. identify an eighth fault class—Capability—to distinguish between accidental
faults and those resulting from incompetence. This is done to aid in the determining of blame, but we agree
with Leveson who writes in [30] that “Blame is the enemy of safety. Focus should be on understanding how
the system behavior as a whole contributed to the loss and not on who or what to blame for it.”

208

A
na

ly
ti

c
P

ow
er

(Q
ua

nt
it

at
iv

e)

P
ha

se
of

C
re

at
io

n

Sy
st

em
B

ou
nd

ar
ie

s

P
he

no
m

en
on

ol
og

ic
al

C
au

se

D
im

en
si

on
O

b
je

ct
iv

e
In

te
nt

P
er

si
st

en
ce

C
on

te
nt

E
ar

ly
T

im
in

g
L
at

e
T

im
in

g
H

al
te

d
Se

rv
ic

e
E

rr
at

ic
Se

rv
ic

e
T

im
e

R
eq

ui
re

d
C

om
pl

ex
it
y

Analytic Power (Qualitative)

FMEA – – – – – – – – – – – – – – * – * * * * * +

EMv2 FMEA – – – – – – – – – – – – – * – * * * * + ++

FTA – – – – * – – – * – – * * * – *

STPA – – + * – – * * * * * * * + +

Manual HA * * * * * * * * * * * * * * *

Tool HA * * * * * * * * * * * * * + *

Table 6.1: The hypothesized results of the proposed user study as relative estimates

3. Time Required: The time elapsed between when the system description is provided

and when the user declares that the analysis is complete; less time required is better.

4. Complexity: A subjective evaluation of how hard it is to perform the technique cor-

rectly; less complexity is better.

6.2.2 Hypothesis

Hypothesized results are presented in Table 6.1 (using the same notation as Table 4.7).

Rather than attempt to estimate precise values, we position the hazard analysis techniques

relative to one another, using M-SAFE as a baseline.

209

6.2.3 Threats to Validity

Though this study would be of considerably higher quality than the case study evaluation

provided in Section 6.1, one significant threat to its validity is that the evaluation is tied

to Avižienis et al.’s taxonomy, which has also used to create our analysis technique. The

results would be stronger if there were a different—but similarly powerful—classification of

faults and errors available, but we are not aware of one.

6.2.4 Further Studies

After performing the initial study, we note that there are several other possible studies that

would yield interesting results. These variants would reuse the methodology sketched in Sec-

tion 6.2.1 but would add additional independent variables. The dependent variables would

remain largely the same, though to save time/effort, analysis of the qualitative variables

could be skipped.

� Skill Required: Here the amount of training provided to the users would vary (in

addition to the analysis techniques), and the resulting effects on the analytic power

would be particularly interesting. We would hypothesize that the impact of reduced

training would be more substantial on techniques like STPA and FTA than on the

more rigidly-defined processes like SAFE or FMEA.

� Domain: Here we would vary the domains from which the system descriptions are

gathered. That is, different groups of users would have descriptions of, e.g., auto-

motive, avionics, and/or medical systems. We would hypothesize that FMEA would

require less time when analyzing hardware-dominated domains, and our process would

work better than others in domains with looser coupling between components.

� Phase: Here the system descriptions provided to the users would vary in terms of

development phase, i.e., some users could have conceptual, preliminary, or detailed

210

system designs. While we hypothesize that all techniques would show more analytic

power on more detailed system descriptions, we also believe that flexible analyses like

STPA and FTA would show more power than FMEA and our process when analyzing

more preliminary designs. Further, we believe that the tool-supported processes like

EMv2-derived FMEA and the tool-supported version of our process would be nearly

unworkable.

One final study that would be particularly useful would be to compare the results of

SAFE-trained analysts not against otherwise-inexperienced volunteers trained in other haz-

ard analysis techniques but against experts instead. Positive results from this study, which

is arguably biased against SAFE, may be more convincing to experts who are well-versed

in STPA, FMEA, FTA, or other more well-established hazard analysis techniques.

211

Chapter 7

Future Work and Conclusions

In this section we enumerate possible next steps for the three technical contributions dis-

cussed in this dissertation, and then provide concluding remarks. This section can be

thought of as the results of performing an informal “gap analysis,” i.e., what desiderata

implied by our original goal of an application development environment for MAP apps are

not included in this work?

7.1 Future Work

7.1.1 MDCF Architect

There are three primary directions in which work on the MDCF Architect might proceed:

expanding the input language, retargeting the code generator, or enhancing the tooling with

additional verification activities.

Expanding the Modeling Language

Despite the fact that the subset used by the MDCF Architect (which is the subject of Chap-

ter 3) is narrowly tailored to the MAP domain, we believe there is still room for expansion.

212

One possibility is to support richer data type modeling, which could enable features like

aggregate data types. It is likely that developers of real-world medical devices will want to

bundle physiological readings with metadata like timestamps or patient data, and our lan-

guage should be able to support that. A second possibility would be to support the modeling

of component modes as high-level descriptors of the state an app might be in, e.g., “initial-

izing,” “self-maintenance,” or “operating.” These features are already supported in the full

AADL, so expanding our treated subset to include them should be fairly straightforward.

Many features that are already modelable in AADL are difficult to implement in Java and

XML, i.e., data flow restrictions such as in, out, or in/out method parameters. Other pos-

sible languages could include those designed for safety-critical systems (e.g., SPARK [117]);

languages designed for high-reliability distributed systems (e.g., Erlang [118]); or a purpose-

built, domain-specific language. Such a language should support features like pattern match-

ing, a well-defined real-time computational model, and ease of verification/analysis.

Retargeting the Code Generator

Additional MAPs exist, like those built by Draeger or DocBox [23]. It would be highly

beneficial to app and device developers if components could be specified in a single common

language and then retargeted automatically to other MAPs, and we believe that the MDCF

Architect provides a suitable platform for this task. Though code generation currently only

supports the MDCF, the translator could be retargeted to these or other MAP implementa-

tions, with the goal of helping the different device and app developers in the ICE ecosystem

move towards a common model of computation and communication. This would potentially

enable the significant code and analysis reuse that the MAP vision relies on.

Additional Verification Capabilities

Since so much information regarding a component is specifiable in the MDCF Architect’s

language, it seems natural to evaluate additional verification techniques. While the MDCF

213

Architect should be extended to support a number of different testing techniques, one par-

ticularly promising feature is fault injection. Developers already specify their component’s

input and output message types and rates of delivery, as well as information regarding the

effects of incoming errors (by using the T-SAFE-supported EMV2 annotations). It seems

natural to build software tooling that could verify these claims by injecting generated faults

into a component and then ensuring that the effects on the component’s output are as stated

in its specification.

Other verification techniques might require extensions to the input language to allow

specification of contracts. Software contracts enable assertions of various desired system

properties to be generated and checked automatically, and they have considerable benefits

for system development [103]. Larson et al. have implemented a sophisticated contract

specification and verification tool on top of AADL called BLESS; future work should consider

its use in the specification of MAP app behavior and properties [119].

7.1.2 The SAFE Process

As discussed in Section 6.2, a full user study is needed to completely evaluate the claims made

in this work regarding SAFE’s quality. Beyond this test, though, future work should examine

how SAFE enables (or impedes) analyses of various system desiderata. One particularly

interesting aspect of SAFE is its ability to neatly consider both safety and security concerns

simultaneously in both Activity 1 and Activity 2. This is particularly useful given ongoing

challenges in uniting the fields; both traditional safety analyses (i.e., FMEA and FTA) as

well as more modern ones (i.e., STPA) do not explicitly consider designing systems to be

more secure against malevolent adversaries.

SAFE and Security: Activity 1

The compression of possible incoming errors into the failure domains identified by Avižienis

et al. aligns very well with concepts that exist in the security domain. Indeed, Dolev and

214

Yao’s well-established threat model is in many ways a recognition of similar styles of failure

from an adversarial point of view [93]. We believe that a full mapping between the two is

possible, and would like to establish the equivalence of the underlying ideas.

SAFE and Security: Activity 2

There are four fault classes used in SAFE which speak directly to the activities of a malevo-

lent adversary (fault classes 3, 4, 12, and 13 in Table 4.1). These fault classes can be further

refined based on a particular attacker model, and recommended compensatory actions can

be refined as well. For example, consider fault class 13 which describes the situation where

an adversary is able to gain access to one or more of the system’s software elements at

runtime. If we assume an attacker that is capable only of reading the state of the software,

then encrypting any private data may suffice to compensate for the fault. If, however, we as-

sume a more capable adversary that can forge and re-send commands, then more expensive

compensations—like cryptographic chains-of-trust and authentication—may be required.

Retargeting the Report Generator

Though we believe the SAFE report format discussed in Chapter 4 is a reasonable hazard

analysis format, we recognize that hazard analyses are often used as components of struc-

tured arguments of a system’s overall safety. These arguments are referred to as assurance

cases, or sometimes safety cases (see Section 2.2.4). It would be useful to generate as much

of these cases as is possible using existing T-SAFE annotations. It would also be an in-

teresting research task to examine the overlaps between the notions considered by T-SAFE

and those by existing assurance case tooling, and to determine what benefits can be derived

from programmatic integrations between the two.

215

7.1.3 Theoretical Work

Obvious next steps for the theoretical aspects of this work, as specified in Chapter 5, are—in

addition to those discussed in Section 5.6—to a) examine its suitability and value when ap-

plied to more examples, and b) investigate if the use of assume-guarantee reasoning—instead

of Shankar’s “lazy compositional” style—would bring any benefits to the compositional as-

pects of this work. In the longer-term, though, there are two other tasks that we see as

particularly interesting: formalizing the semantics of the guidewords we use in SAFE’s first

and second steps, and linking our work to a more well-defined computational model.

Formalization of Guidewords

The guidewords used in identifying manifestations in SAFE’s Activity 1 have no formal

definitions. While producing these definitions may be straightforward in some cases, i.e.,

“Early” or “Value low,” others, such as “Erratic,” may not be formalizable. Work in this

area should likely hew closely to the definitions used in AADL’s EMV2 standard, since it

contains formalizations of the errors used in its library [33]. Many of those overlap (or refine)

the guidewords used by SAFE. Formalizing the fault classes used in Activity 2 will be more

challenging, and will likely require a much more well-defined model of computation.

A Formal Computational Model

The formalizations from Chapter 5 rely on an implicit computational model, but making

that model explicit would be useful for a number of reasons. Just as we had to adopt

the asynchronous transition formalism in order to decompose the analysis task in Section

5.4, so too would we need a computational model for, e.g.: connecting to assume-guarantee

reasoning, analyzing “gaps” in SAFE (or other hazard analysis techniques, see Section 5.5.3),

or formalizing the definition of the fault classes used in SAFE’s Activity 2.

216

7.2 Concluding Remarks

In this work we have presented three technical aspects which collectively enable a prototype

development environment for MAP applications. First, in Chapter 3, we described an input

language and code generator for applications that run on the MDCF. Second, in Chapter

4, we described a semi-compositional, component-oriented hazard analysis technique for

evaluating the safety-related aspects of these and other safety-critical applications. Third,

in Chapter 5, we presented a collection of mathematical definitions derived from a concept

grounded in the system safety community and then suggested potential connections between

it and two important formalisms from the formal methods community. We believe that this

work has advanced the state of the art in this area, and—using the ideas in this dissertation

as a stepping-stone—has enabled a number of exciting avenues for future work.

217

Bibliography

[1] Y. J. Kim, S. Procter, V.-P. Ranganath, J. Hatcliff, and Robby, “Stakeholders in ICE

Ecosphere,” in Healthcare Informatics (ICHI), 2015 IEEE International Conference

on, 2015.

[2] ASTM International, “ASTM F2761: Medical Devices and Medical Systems –

Essential safety requirements for equipment comprising the patient-centric integrated

clinical environment (ICE),” ASTM International, West Conshohocken, PA, 2009.

[Online]. Available: www.astm.org

[3] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Concepts and Tax-

onomy of Dependable and Secure Computing,” Dependable and Secure Computing,

IEEE Transactions on, vol. 1, no. 1, pp. 11–33, 2004.

[4] S. Procter and J. Hatcliff, “An architecturally-integrated, systems-based hazard anal-

ysis for medical applications,” in Formal Methods and Models for Codesign (MEM-

OCODE), 2014 Twelfth ACM/IEEE International Conference on, Oct 2014.

[5] J. Rushby, “Understanding and Evaluating Assurance Cases,” SRI International,

Computer Science Laboratory, SRI International, Menlo Park CA 94025, USA, Tech.

Rep. SRI-CSL-15-01, 2015.

[6] S. Procter, J. Hatcliff, S. Weininger, and A. Fernando, “Error type refinement for

assurance of families of platform-based systems,” in Computer Safety, Reliability, and

Security. Springer International Publishing, 2015, pp. 95–106.

[7] C. A. Ericson II, Hazard analysis techniques for system safety. John Wiley & Sons,

2005.

218

www.astm.org

[8] J. C. Knight, “Safety critical systems: challenges and directions,” in Software En-

gineering, 2002. ICSE 2002. Proceedings of the 24rd International Conference on.

IEEE, 2002, pp. 547–550.

[9] N. Leveson, “Perspective: The Drawbacks in Using The Term ’System of Systems’,”

Biomedical Instrumentation & Technology, vol. 47, no. 2, pp. 115–118, 2013.

[10] P. H. Feiler, “Model-based validation of safety-critical embedded systems,” in

Aerospace Conference, 2010 IEEE. IEEE, 2010, pp. 1–10.

[11] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord,

and J. Stafford, Documenting Software Architectures: Views and Beyond. Pearson

Education, 2010.

[12] E. Phelps and J. Goldman, “Automated situational analysis for operating room anes-

thesia monitoring,” Biomedical Sciences Instrumentation, vol. 28, pp. 111–116, 1991.

[13] J. Hatcliff, A. King, I. Lee, A. MacDonald, A. Fernando, M. Robkin, E. Vasserman,

S. Weininger, and J. M. Goldman, “Rationale and architecture principles for medical

application platforms,” in Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM Third

International Conference on. IEEE, 2012, pp. 3–12.

[14] P. Checkland, Systems thinking, systems practice. John Wiley & Sons, 1981.

[15] P. J. Prisaznuk, “Integrated modular avionics,” in Proceedings of the IEEE 1992 Na-

tional Aerospace and Electronics Conference, 1992. (NAECON), vol. 1, May 1992, pp.

39–45.

[16] J. Rushby, “Separation and Integration in MILS (The MILS Constitution),” SRI In-

ternational, Computer Science Laboratory, 333 Ravenswood Ave., Menlo Park CA

94025, USA, Tech. Rep. SRI-CSL-08-XX, 2008.

219

[17] A. L. King, L. Feng, S. Procter, S. Chen, O. Sokolsky, J. Hatcliff, and I. Lee, “Towards

Assurance for Plug & Play Medical Systems,” in Computer Safety, Reliability, and

Security. Springer, 2015.

[18] A. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren, W. Spees, R. Jetley, P. Jones,

and S. Weininger, “An open test bed for medical device integration and coordination,”

in Proceedings of the 31st International Conference on Software Engineering, 2009.

[19] Andrew King and Sanjian Chen and Insup Lee, “The MIDdleware Assurance Sub-

strate: Enabling Strong Real-Time Guarantees in Open Systems With OpenFlow,” in

17th IEEE Computer Society Symposium on object/component/service-oriented real-

time distributed computing (ISORC 2014), 2014.

[20] M. D. Petty and E. W. Weisel, “A composability lexicon,” in Proceedings of the Spring

2003 Simulation Interoperability Workshop, 2003, pp. 181–187.

[21] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, “Java message service,”

Sun Microsystems, Inc., Tech. Rep. 1.1, April 2002.

[22] G. Pardo-Castellote, “OMG Data-Distribution Service: Architectural Overview,” in

Distributed Computing Systems Workshops, 2003. Proceedings. 23rd International

Conference on. IEEE, 2003, pp. 200–206.

[23] S. Schlichting and S. Pöhlsen, “An architecture for distributed systems of medical

devices in high acuity environments,” Dräger, Tech. Rep., 2014.

[24] ISO/IEEE, “ISO/IEEE11073-10101 Health informatics – Point-of-care medical device

communication - Nomenclature,” ISO/IEEE, Tech. Rep., 2004.

[25] ——, “ISO/IEEE11073-10201 Health informatics – Point-of-care medical device com-

munication - Domain information model,” ISO/IEEE, Tech. Rep., 2004.

220

[26] D. Arney, S. Fischmeister, J. M. Goldman, I. Lee, and R. Trausmuth, “Plug-and-play

for medical devices: Experiences from a case study,” Biomedical Instrumentation &

Technology, vol. 43, no. 4, pp. 313–317, 2009.

[27] D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and O. Sokolsky, “To-

ward patient safety in closed-loop medical device systems,” in Proceedings of the 1st

ACM/IEEE International Conference on Cyber-Physical Systems. ACM, 2010, pp.

139–148.

[28] R. R. Maddox and C. Williams, “Clinical experience with capnography monitoring

for pca patients,” APSF Newsletter, vol. 26, p. 3, 2012.

[29] R. W. Hicks, V. Sikirica, W. Nelson, J. R. Schein, and D. D. Cousins, “Medica-

tion errors involving patient-controlled analgesia,” American Journal of Health-System

Pharmacy, vol. 65, no. 5, pp. 429–440, 2008.

[30] N. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety. MIT

Press, 2011.

[31] Association for the Advancement of Medical Instrumentation, “ANSI/AAMI/ISO

14971: Medical devices—Application of risk management to medical devices,”

ANSI/AAMI/ISO, Tech. Rep., 2000.

[32] ——, “ANSI/AAMI/IEC 80001: Application of risk management for IT Networks

incorporating medical devices,” ANSI/AAMI/IEC, Tech. Rep., 2010.

[33] SAE AS-2C Architecture Description Language Subcommittee, “SAE Architecture

Analysis and Design Language (AADL) Annex Volume 3: Annex E: Error Model

Language,” SAE Aerospace, Tech. Rep., June 2014.

[34] A. J. Masys, “Fratricide in Air Operations. Opening the Black-Box: Revealing the

’Social’,” Ph.D. dissertation, University of Leicester, 2010.

221

[35] M. Wallace, “Modular Architectural Representation and Analysis of Fault Propagation

and Transformation,” Electronic Notes in Theoretical Computer Science, vol. 141,

no. 3, pp. 53–71, 2005.

[36] J. Rushby, “Logic and epistemology in safety cases,” in Computer Safety, Reliability,

and Security. Springer, 2013, pp. 1–7.

[37] S. E. Toulmin, The Uses of Argument. Cambridge University Press, 2003.

[38] T. Kelly and R. Weaver, “The Goal Structuring Notation – A Safety Argument No-

tation,” in Proceedings of the Dependable Systems and Networks 2004 Workshop on

Assurance Cases, 2004.

[39] T. P. Kelly, “Arguing safety – a systematic approach to managing safety cases,” Ph.D.

dissertation, University of York, September 1999.

[40] L. Feng, A. L. King, S. Chen, A. Ayoub, J. Park, N. Bezzo, O. Sokolsky,

and I. Lee, “A safety argument strategy for PCA closed-loop systems: A

preliminary proposal,” in 5th Workshop on Medical Cyber-Physical Systems, MCPS

2014, Berlin, Germany, April 14, 2014, 2014, pp. 94–99. [Online]. Available:

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.94

[41] Institute of Electrical and Electronics Engineers, “ISO/IEC/IEEE 15288: Systems

and software engineering—System life cycle processes,” ISO/IEC/IEEE, Tech. Rep.,

2015.

[42] International Electrotechnical Commission, “ISO/IEC 12207: Systems and software

engineering—Software life cycle processes,” ISO/IEC, Tech. Rep., 2008.

[43] A. Bertolino and L. Strigini, “Assessing the risk due to software faults: estimates

of failure rate versus evidence of perfection,” Software Testing, Verification

222

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.94

and Reliability, vol. 8, no. 3, pp. 155–166, 1998. [Online]. Available: http:

//dx.doi.org/10.1002/(SICI)1099-1689(1998090)8:3⟨155::AID-STVR163⟩3.0.CO;2-B

[44] P. Bishop, R. Bloomfield, B. Littlewood, A. Povyakalo, and D. Wright, “Toward a

formalism for conservative claims about the dependability of software-based systems,”

Software Engineering, IEEE Transactions on, vol. 37, no. 5, pp. 708–717, 2011.

[45] L. Strigini and A. Povyakalo, “Software Fault-Freeness and Reliability Predictions,”

in Computer Safety, Reliability, and Security. Springer, 2013, pp. 106–117.

[46] International Electrotechnical Commission, “Iec 61508: Functional safety of elec-

trical/electronic/programmable electronic safety-related systems,” IEC, Tech. Rep.,

April 2010.

[47] SAE International, “SAE ARP 4761: Guidelines and Methods for Conducting the

Safety Assessment Process on Civil Airborne Systems and Equipment,” SAE Interna-

tional, Tech. Rep., 1996.

[48] N. Leveson, C. Wilkinson, C. Fleming, J. Thomas, and I. Tracy, “A Comparison

of STPA and the ARP 4761 Safety Assessment Process,” Massachusetts Institute of

Technology Partnership for a Systems Approach to Safety, Tech. Rep., October 2014.

[49] Association for the Advancement of Medical Instrumentation, “ANSI/AAMI 60601:

Medical electrical equipment,” ANSI/AAMI, Tech. Rep., 2013.

[50] ——, “ANSI/AAMI/IEC 62304: Medical device software—Software life cycle pro-

cesses,” ANSI/AAMI/IEC, Tech. Rep., 2006.

[51] J. W. Liu, Real-Time Systems. Prentice Hall, 2000.

[52] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers, Principles, Techniques,

2nd ed. Addison Wesley, 2007.

223

http://dx.doi.org/10.1002/(SICI)1099-1689(1998090)8:3<155::AID-STVR163>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1099-1689(1998090)8:3<155::AID-STVR163>3.0.CO;2-B

[53] International Organization for Standardization / International Electrotechnical Com-

mission, “ISO/IEC 10746: Information technology – Open Distributed Processing,”

ISO/IEC, Tech. Rep., 1998.

[54] P. F. Linington, Z. Milosevic, A. Tanaka, and A. Vallecillo, Building Enterprise Sys-

tems with ODP: An Introduction to Open Distributed Processing. CRC Press, 2011.

[55] Institute of Electrical and Electronics Engineers, “ISO/IEC/IEEE 42010: Systems and

software engineering—Architecture Description,” ISO/IEC/IEEE, Tech. Rep., 2011.

[56] Object Management Group, “Omg unified modeling language (omg uml) superstruc-

ture,” Object Management Group, Tech. Rep., August 2011.

[57] ——, “OMG Systems Modeling Language (OMG SysML),” Object Management

Group, Tech. Rep., June 2012.

[58] Y. Jarraya, M. Debbabi, and J. Bentahar, “On the meaning of sysml activity dia-

grams,” in Engineering of Computer Based Systems, 2009. ECBS 2009. 16th Annual

IEEE International Conference and Workshop on the, April 2009, pp. 95–105.

[59] D. Latella, I. Majzik, and M. Massink, “Towards a formal operational semantics

of uml statechart diagrams,” in Formal Methods for Open Object-Based Distributed

Systems, ser. IFIP The International Federation for Information Processing,

P. Ciancarini, A. Fantechi, and R. Gorrieri, Eds. Springer US, 1999, vol. 10, pp.

331–347. [Online]. Available: http://dx.doi.org/10.1007/978-0-387-35562-7 25

[60] X. Li, Z. Liu, and H. Jifeng, “A formal semantics of uml sequence diagram,” in

Proceedings of the 2004 Australian Software Engineering Conference, 2004, pp. 168–

177.

[61] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The Architecture Analysis & Design

Language (AADL): An introduction,” DTIC Document, Tech. Rep., 2006.

224

http://dx.doi.org/10.1007/978-0-387-35562-7_25

[62] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL: An Introduction

to the SAE Architecture Analysis & Design Language. Addison Wesley, 2012.

[63] F. Cadoret, E. Borde, S. Gardoll, and L. Pautet, “Design patterns for rule-based

refinement of safety critical embedded systems models,” in Engineering of Complex

Computer Systems (ICECCS), 2012 17th International Conference on, July 2012, pp.

67–76.

[64] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “Ocarina : An Environment

for AADL Models Analysis and Automatic Code Generation for High Integrity

Applications,” in Reliable Software Technologies Ada-Europe 2009, ser. Lecture

Notes in Computer Science, F. Kordon and Y. Kermarrec, Eds. Springer

Berlin Heidelberg, 2009, vol. 5570, pp. 237–250. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-642-01924-1 17

[65] S. OSATE, “An extensible open source aadl tool environment,” SEI AADL Team

technical Report, 2004.

[66] P. Feiler, J. Hansson, D. de Niz, and L. Wrage, “System architecture virtual

integration: An industrial case study,” Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2009-TR-017, 2009. [Online].

Available: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9145

[67] J. Hansson, B. Lewis, J. Hugues, L. Wrage, P. Feiler, and J. Morley, “Model-based

verification of security and non-functional behavior using aadl,” Security Privacy,

IEEE, vol. PP, no. 99, pp. 1–1, 2009.

[68] B. Kim, L. T. Phan, O. Sokolsky, and L. Lee, “Platform-dependent code generation for

embedded real-time software,” in Compilers, Architecture and Synthesis for Embedded

Systems (CASES), 2013 International Conference on. IEEE, 2013.

225

http://dx.doi.org/10.1007/978-3-642-01924-1_17
http://dx.doi.org/10.1007/978-3-642-01924-1_17
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9145

[69] A. Murugesan, M. W. Whalen, S. Rayadurgam, and M. P. Heimdahl, “Compositional

verification of a medical device system,” in Proceedings of the 2013 ACM SIGAda

annual conference on High integrity language technology. ACM, 2013.

[70] SAE AS-2C Architecture Description Language Subcommittee, “SAE Architecture

Analysis and Design Language (AADL) Annex Volume 2: Annex B: Behavior Annex,”

SAE Aerospace, Tech. Rep., April 2011.

[71] B. Larson, J. Hatcliff, K. Fowler, and J. Delange, “Illustrating the aadl error modeling

annex (v. 2) using a simple safety-critical medical device,” in Proceedings of the 2013

ACM SIGAda annual conference on High integrity language technology. ACM, 2013,

pp. 65–84.

[72] B. Larson, J. Hatcliff, S. Procter, and P. Chalin, “Requirements specification for apps

in medical application platforms,” in Software Engineering in Health Care (SEHC),

2012 4th International Workshop on. IEEE, 2012, pp. 26–32.

[73] A. L. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren, W. Spees, R. P. Jetley, P. L.

Jones, and S. Weininger, “A publish-subscribe architecture and component-based pro-

gramming model for medical device interoperability.” SIGBED Review, vol. 6, no. 2,

p. 7, 2009.

[74] V. P. Ranganath, Y. J. Kim, J. Hatcliff, and Robby, “Communication patterns for

interconnecting and composing medical systems,” in Engineering in Medicine and

Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE,

Aug 2015, pp. 1711–1716.

[75] Ivy Biomedical Systems Inc., “Vital-Guard 450C Patient Monitor with Nellcor SpO2,”

Aug 2005.

[76] “Capnostream 20 Bedside Patient Monitor,” http://www.covidien.com/rms/

products/capnography/capnostream-20p-bedside-patient-monitor.

226

http://www.covidien.com/rms/products/capnography/capnostream-20p-bedside-patient-monitor
http://www.covidien.com/rms/products/capnography/capnostream-20p-bedside-patient-monitor

[77] J. Siegel, CORBA 3 fundamentals and programming. John Wiley & Sons Chichester,

2000, vol. 2.

[78] “Xstream,” http://x-stream.github.io, 2016.

[79] T. Kühne, “Matters of (meta-) modeling,” Software & Systems Modeling, vol. 5, no. 4,

pp. 369–385, 2006. [Online]. Available: http://dx.doi.org/10.1007/s10270-006-0017-9

[80] V. H. Balgos, “A Systems Theoretic Application to Design for the Safety of Medical

Diagnostic Devices,” Master’s thesis, Massachusetts Institute of Technology, 2012.

[81] R. S. Mart́ınez, “System Theoretic Process Analysis of Electric Power Steering for

Automotive Applications,” Master’s thesis, Massachusetts Institute of Technology,

2015.

[82] B. Abrecht and N. Leveson, “Systems theoretic process analysis (stpa) of an

offshore supply vessel dynamic positioning system,” Massachusetts Institute of

Technology Lincoln Laboratory, Tech. Rep., February 2016. [Online]. Available:

http://sunnyday.mit.edu/papers/Navy-Final-Report-2016-Feb-17.pdf

[83] J. Y. Halpern and J. Pearl, “Causes and Explanations: A Structural-Model

Approach. Part I: Causes,” The British Journal for the Philosophy of Science, vol. 56,

no. 4, pp. 843–887, 2005. [Online]. Available: http://dx.doi.org/10.1093/bjps/axi147

[84] N. Shankar, “Lazy compositional verication,” in Compositionality: The Significant

Difference. Springer, 1998, pp. 541–564.

[85] C. L. Thornberry, “Extending the Human-Controller Methodology in Systems-

Theoretic Process Analysis (STPA),” Master’s thesis, Massachusetts Institute of Tech-

nology, 2012.

[86] M. S. Placke, “Application of stpa to the integration of multiple control systems: A

227

http://dx.doi.org/10.1007/s10270-006-0017-9
http://sunnyday.mit.edu/papers/Navy-Final-Report-2016-Feb-17.pdf
http://dx.doi.org/10.1093/bjps/axi147

case study and new approach,” Master’s thesis, Massachusetts Institute of Technology,

2014.

[87] J. Hatcliff, A. Wassyng, T. Kelly, C. Comar, and P. Jones, “Certifiably safe software-

dependent systems: challenges and directions,” in Proceedings of the on Future of

Software Engineering. ACM, 2014, pp. 182–200.

[88] C. J. Walter and N. Suri, “The customizable fault/error model for dependable dis-

tributed systems,” Theoretical Computer Science, vol. 290, no. 2, pp. 1223–1251, 2003.

[89] F. Leitner-Fischer, “Causality Checking of Safety-Critical Software and Systems,”

Ph.D. dissertation, Universität Konstanz, 2015.

[90] J. Thomas, “Extending and Automating a Systems-Theoretic Hazard Analysis for

Requirements Generation and Analysis,” Ph.D. dissertation, Massachusetts Institute

of Technology, 2013.

[91] R. van der Meyden, “What, indeed, is intransitive noninterference?” in Computer

Security – ESORICS 2007, ser. Lecture Notes in Computer Science, J. Biskup and

J. Lopez, Eds. Springer Berlin Heidelberg, 2007, vol. 4734, pp. 235–250. [Online].

Available: http://dx.doi.org/10.1007/978-3-540-74835-9 16

[92] J. Rushby, “Noninterference, transitivity, and channel-control security policies,” SRI

International, Computer Science Laboratory, 333 Ravenswood Ave., Menlo Park CA

94025, USA, Tech. Rep., May 2005.

[93] D. Dolev and A. C. Yao, “On the Security of Public Key Protocols,” Information

Theory, IEEE Transactions on, vol. 29, no. 2, pp. 198–208, 1983.

[94] D. L. Parnas and J. Madey, “Functional documents for computer systems,” Science

of Computer Programming, vol. 25, no. 1, pp. 41–61, 1995.

[95] W. R. Ashby, An introduction to cybernetics. Chapman & Hall Ltd., London, 1956.

228

http://dx.doi.org/10.1007/978-3-540-74835-9_16

[96] A. Abdulkhaleq and S. Wagner, “Integrated Safety Analysis Using Systems-Theoretic

Process Analysis and Software Model Checking,” in Computer Safety, Reliability,

and Security: 34th International Conference, (SAFECOMP), F. Koornneef and

C. van Gulijk, Eds. Springer International Publishing, 2015, pp. 121–134. [Online].

Available: http://dx.doi.org/10.1007/978-3-319-24255-2 10

[97] N. G. Leveson, Safeware: System safety and Computers. Reading, Massachusetts:

Addison-Wesley Publishing Company, Inc., 1995.

[98] P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, and H. Thimbleby, “Model-Based

Development of the Generic PCA Infusion Pump User Interface Prototype in PVS,”

in Computer Safety, Reliability, and Security, ser. Lecture Notes in Computer Science,

F. Bitsch, J. Guiochet, and M. Kaâniche, Eds. Springer Berlin Heidelberg, 2013, vol.

8153, pp. 228–240.

[99] J. Thomas and N. Leveson, “Performing hazard analysis on complex, software-and

human-intensive systems,” in Proceedings of the 29th International Conference on

Systems Safety, 2011.

[100] C. H. Fleming, “Safety-driven Early Concept Analysis and Development,” Ph.D. dis-

sertation, Massachusetts Institute of Technology, 2015.

[101] B. Latour, Reassembling the Social - An Introduction to Actor-Network-Theory. Ox-

ford University Press, Sep. 2005.

[102] C. W. Johnson, “Organisational, Political and Technical Barriers to the Integration

of Safety and Cyber-Security Incident Reporting Systems,” in Computer Safety,

Reliability, and Security, ser. Lecture Notes in Computer Science, F. Koornneef and

C. van Gulijk, Eds. Springer International Publishing, 2015, vol. 9337, pp. 400–409.

[Online]. Available: http://dx.doi.org/10.1007/978-3-319-24255-2 29

229

http://dx.doi.org/10.1007/978-3-319-24255-2_10
http://dx.doi.org/10.1007/978-3-319-24255-2_29

[103] B. Meyer, “Applying “Design by Contract”,” Computer, vol. 25, no. 10, pp. 40–51,

1992.

[104] D. Lempia and S. Miller, “DOT/FAA/AR-08/32. Requirements Engineering Manage-

ment Handbook,” Federal Aviation Administration, 2009.

[105] J. A. Beachy and W. D. Blair, Abstract Algebra With a Concrete Introduction. Pren-

tice Hall, 1990.

[106] J. Misra and K. Chandy, “Proofs of networks of processes,” Software Engineering,

IEEE Transactions on, vol. SE-7, no. 4, pp. 417–426, July 1981.

[107] C. B. Jones, “Tentative steps toward a development method for interfering programs,”

ACM Transactions on Programming Languages and Systems, vol. 5, no. 4, pp.

596–619, Oct. 1983. [Online]. Available: http://doi.acm.org/10.1145/69575.69577

[108] J. Rushby, “A Formal Model for MILS Integration,” SRI International, Computer

Science Laboratory, 333 Ravenswood Ave., Menlo Park CA 94025, USA, Tech. Rep.

SRI-CSL-08-XX, May 2008.

[109] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model Checking Programs,”

Automated Software Engineering, vol. 10, no. 2, pp. 203–232, 2003.

[110] Y. Papadopoulos and J. A. McDermid, “Hierarchically Performed Hazard Origin

and Propagation Studies,” in Computer Safety, Reliability and Security: 18th

International Conference on (SAFECOMP), M. Felici and K. Kanoun, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1999, pp. 139–152. [Online]. Available:

http://dx.doi.org/10.1007/3-540-48249-0 13

[111] B. Gallina and S. Punnekkat, “FI4FA: A Formalism for Incompletion, Inconsistency,

Interference and Impermanence Failures’ Analysis,” in 2011 37th EUROMICRO

230

http://doi.acm.org/10.1145/69575.69577
http://dx.doi.org/10.1007/3-540-48249-0_13

Conference on Software Engineering and Advanced Applications, Aug 2011, pp.

493–500. [Online]. Available: http://dx.doi.org/10.1109/SEAA.2011.80

[112] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer

Science, vol. 126, no. 2, pp. 183 – 235, 1994. [Online]. Available: http:

//dx.doi.org/10.1016/0304-3975(94)90010-8

[113] A. L. King, L. Feng, O. Sokolsky, and I. Lee, “Assuring the Safety of On-Demand

Medical Cyber-Physical Systems,” in Proceedings of the 1st International Conference

on Cyber-Physical Systems, Networks, and Applications, August 2013, pp. 1–6.

[114] C. Salazar, “A Security Architecture for Medical Application Platforms,” Master’s

thesis, Kansas State University, 2014.

[115] C. Salazar and E. Vasserman, “Retrofitting Communication Security into a Pub-

lish/Subscribe Middleware Platform,” in Proceedings of the International Workshop

on Software Engineering in Healthcare, Washington, DC, July 2014.

[116] J. X. Mazoit, K. Butscher, and K. Samii, “Morphine in Postoperative Patients: Phar-

macokinetics and Pharmacodynamics of Metabolites,” Anesthesia & Analgesia, vol.

105, no. 1, pp. 70–78, 2007.

[117] J. Barnes, High Integrity Software: The Spark Approach to Safety and Security.

Addison-Wesley, 2003.

[118] J. Armstrong, R. Virding, C. Wikström, and M. Williams, Concurrent Programming

in ERLANG. Englewood Cliffs, New Jersey 07632: Prentice Hall, 1993.

[119] B. R. Larson, P. Chalin, and J. Hatcliff, “BLESS: Formal Specification and

Verification of Behaviors for Embedded Systems with Software,” in NASA Formal

Methods: 5th International Symposium, NFM 2013, G. Brat, N. Rungta, and

231

http://dx.doi.org/10.1109/SEAA.2011.80
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/0304-3975(94)90010-8

A. Venet, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, May 2013, pp.

276–290. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-38088-4 19

232

http://dx.doi.org/10.1007/978-3-642-38088-4_19

Appendix A

SAFE Process

233

Systematic Analysis of Faults and Errors

Sam Procter, John Hatcliff; Kansas State University

General Tips
1. These instructions are designed to be used with publically­available ​templates
2. A partially­worked ​example​ is also available
3. The templates often assume one element where there may be multiple. In

nearly all cases, the analyst can simply add rows.
4. Spreadsheet cells are quite small, so...

– Cells can be made multiline by setting Text­Wrapping to "Wrap"
– Using the name as an index, fill in all notes in the "Explanations" Section

5. Reference cells can (and should) be actual references to keep the worksheet
elements synchronized

6. When the term "element" is used, it signifies either a component or a
connection between two components.

7. When component A is a ​predecessor​ of component B, A provides input to B.
When component A is a ​successor​ of component B, A gets its input from B.

8. A ​link​ is the pathway between a component and a connection (or a connection
and a component). It is infallible: any failures are considered to be part of either
the source or destination element.

Activity 0: Fundamentals

Overview:​ In this step the analyst fills in basic information about the system, like its
name, component pieces, and the problems that need to be avoided. This
corresponds to the "Fundamentals" Chapter of Leveson's ​Engineering a Safer World​.

0.1: System Fundamentals

Overview:​ Here, the analyst considers basic information about the system as a
whole. In the second substep (described below) she will be directed to consider the
individual elements of the system.

1. Identify the System
1. Guide:

• This is the name of the system you're considering.
• Enter the name of the system:

1. Row: System: (1)

234

2. Column: (B)
2. Example:

• PCA Interlock
2. Identify Accident Levels

1. Guide:
• These are the levels of accidents we'll want to avoid.
• Enter the name of the accident levels:

1. Row: Accident levels (5)
2. Column: Name (B).

• The reference column will not be used.
• Names are typically prefixed with "AL."
• The term "Accident Levels" comes from Leveson (see, e.g., Section

7.1 of ​Engineering a Safer World​), but corresponds well to similar
notions of loss categorization from other domains:
– Medical: Qualitative Severity Levels (ISO 14971, Section

D.3.4.2)
– Avionics: Consequences of Failure Conditions (FAA AC

25.1309­1A, Figure 1)
2. Examples:

1. AL.Death
2. AL.Discomfort

3. Identify the System and Environment Elements
– Research questions:

• How reasonable is it to identify components without
relationships at this point in the process?

1. Guide
• This is just a listing of the elements that are under the system

designer's control and in the environment
• Enter the names of the components, one per cell

1. Column: System (J), starting on row 3
2. Column: Environment (K), starting on row 3

• Add more components in more rows as necessary
• Though this step seems simple, there are actually two tasks being

performed, both of which should be carefully considered:
1. Determining the system boundary: Which components are

going to be directly controlled by the system developer
and which are not

2. Determining the level of abstraction: What defines a
"component" ­­ each component could (in all likelihood)

235

itself be considered a system, with its own
(sub)components and environment.
• There is no right answer, just be able to justify the

choices that get made.
• Avoid the temptation to allocate the components to a control

structure ­­ these lists will get modified in subsequent steps, and
it will be easier to simply add / remove components without
changing the architecture.

2. Examples
1. System Components

– PCA Pump
– App Logic
– App Display
– Patient Sensors

2. Environment Components
– Patient

4. Identify Accidents
1. Guide

• These are the bad things that may happen. They should be
traceable to the accident levels from 2.

• Enter the name and associated accident level:
1. Row: Accidents (7)
2. Column: Name (B), Reference (C)

• Names are typically prefaced with "ACC."
• We use Leveson's terminology here as in step 2. Engineering a

Safer World defines an Accident in section 7.1 as "An undesired
or unplanned event that results in a loss, including loss of human
life or human injury, property damage, environmental pollution,
mission loss, etc."

• Accidents are typically a pairing of an environmental component
with an accident level. They should not speak to ​how​ the harm
occurs (which is instead covered by a hazard).
– We use the term in such a way that it is interchangeable

with the term Mishap as defined in MIL­STD­882C and D.
2. Examples

1. ACC.Patient Dies (AL.Death)
2. ACC.Patient is in Pain (AL.Discomfort)

5. Identify the System Hazards
– Research questions

• Is it possible to consistently identify hazardous component and
environmental states at this point in the process?

236

1. Guide
• These are ways that the accidents could happen. They should be

traceable to accidents from step 3.
• In addition to the standard name and reference, hazards also

involve identifying:
– A hazardous factor, which will be released in
– A system state that, by a
– System Component, that when combined with
– The worst case state of an
– Environmental component
 ... that will lead to the referenced accident.

• There are equivalencies for some of these terms with, eg,
Ericson's terminology (See pg 17 of ​Hazard Analysis Techniques
for System Safety​):

 Our term Ericson's Term
 Hazardous Factor Hazardous Element
 System State Initiating Mechanism
 Environmental Component Target / Threat

• Enter the hazard and its information:
1. Row: Hazards (9)
2. Column: Name (B), Reference (C), Hazardous Factor (D),

System Element (E), System Element State (F),
Environment Element (G), Environment Element State
(H), Manifestation (I)

• Names are typically prefaced with "H."
2. Examples

1. H.Patient Overdose (ACC.Patient Dies, Analgesic, PCA Pump,
Pumping, Patient, Patient Cannot Tolerate More Analgesic,
Improper Transmission)

2. H.Patient Underdose (ACC.Patient is in Pain, Analgesic, PCA
Pump, Not Pumping, Patient, Patient is in pain and can tolerate
more analgesic, Delay / Drop)

6. Identify the System Safety Constraints
1. Guide

• These are constraints that, if they hold, guarantee the avoidance
of the Hazards.

• They are stated in nearly the same terms as the hazard, but with
a minimal change that avoids the hazard (typically a different
state of the element on the system boundary)

• Enter the associated Safety Constraints
1. Row: Safety Constraints (11)

237

2. Column: Name (B), Reference (C)
• Names are typically prefaced with "SC."
• Often there is a one­to­one correspondence of hazards to safety

constraints (e.g., the safety­constraint is simply a negation of the
hazard), but sometimes a number of constraints collectively or
individually prevent a single hazard.

• Note that safety constraints are not simply safety requirements
for the system, but rather high­level safety goals that will get
discharged to the various components of the system as safety
requirements on those components.
– This generic nature makes it easier to catch

less­traditional hazards, ie those resulting from things
like: component interactions, degradation of the
component over time, or the component's use by other
actors as part of a larger process.

2. Examples
1. SC.Dont Over Administer Analgesic (H.Patient Overdose,

Analgesic, PCA Pump, Not Pumping, Patient, Near Harm)
2. SC.Dont Under Administer Analgesic (H.Patient Underdose,

Analgesic, PCA Pump, Pumping, Patient, Healthy but in pain)
7. (Optional) Determine the graphical candidate control structure

1. Guide
• This involves the allocation of system components to a structure

which will allow each component to get the information it needs
about the state of the controlled process to make safe decisions

• This cannot be done in a spreadsheet format, though Google
Spreadsheets allows insertion of diagrammatic drawings into
sheets.

• The control structure can be diagrammed as:
– Components are drawn as boxes
– Connections are directional connectors between

components
– System components and connections are drawn with solid

lines
– Environmental components and connections are drawn

with dashed lines
• Note that, in step 1.1.2, the components in this structure will be

extended with process models (which cannot be determined at
this point in the process)
– Process models are drawn as solid boxes within

components

238

– Process variables are collections of process values, which
are drawn text within a process model

2. Examples
• See the “Control Structure” sheet of the ​examples​.

0.2: Component Fundamentals

Overview:​ For each element in the system, the analyst now creates a copy of the
Element spreadsheet (which won't get filled out completely as part of this step) and
fills in basic information. This is effectively the creation of a textual version of the
system’s control structure.

1. Identify the element
1. Guide

• This is a name for the element under analysis
– The first element examined should be the element closest

to the system boundary (but still inside the system) as
identified in Steps 4 and 7 of part 1.

– Following the first element, the analyst should work
backwards up the control structure (so, after examining
an element, consider its immediate predecessor)

• The name for should correspond to either:
– One of the components inside the system boundary, or
– A name for a connection between two components, one or

both of which must be inside the system boundary
• Enter a reference to the element:

1. Row: Element (4+)
2. Column: (A­B)

• Note that we deterministically derive the element under analysis
­­ and examine all components in the control structure ­­ rather
than manually choosing a control action, as in Leveson's
Engineering a Safer World​.
– Other researchers, like Zahid H. Qureshi, have interpreted

Leveson's methodology to involve three elements of the
control structure (1. Controller errors, 2. Failure by the
actuator to execute a control action, and 3. Bad feedback).
In a similar spirit, we interpret Leveson's work as well.

2. Examples
• Component: PCA Pump
• Connection: IVLine, PCA Pump ­­> Patient

2. Identify the successor link name
1. Guide

239

• This is the link between this element and (one of) its
successor(s).

• If the element has more than one successor link and plays a
different role for those two links, ​fill out a copy of the worksheet
for each role/link pairing
– This step is necessary because a component playing

multiple roles is essentially multiple components
combined into one “box.” The individual components
should be considered individually.

• This is essentially the generic form of what Leveson refers to as
"control actions" ­­ it's generic in that we do not restrict
ourselves to links that carry control / command messages ­­ that
are ​leaving​ the component.

• Enter the link name:
1. Row: Successor Link Name: (4+)
2. Column: (C­D)

2. Examples
• Component: PCA Pump ­> IV Line
• Connection: IV Line ­> Patient

3. Identify the predecessor link name(s)
a. Guide

• This is the set of links between this element and its predecessor
(or, if there are multiple predecessor components, all of them).
That is, these are the links over which the component's input
arrives.

• This is essentially the generic form of what Leveson refers to as
"control actions" that are ​entering​ the component.

• Enter the link name:
1. Row: Predecessor Link Name: (4+)
2. Column: (E­F)

b. Examples
• Component: AppLogicCommands ­> PCA Pump
• Connection: App Logic ­> AppLogicCommands

4. Identify the element's classification(s)
– Research questions:

• What's a good set of component classifications?
• What's a good set of connection classifications?

1. Guide
• This is the classification of the element according to the plays in

the system.
• Enter the classification

240

1. Row: Architectural (4),
2. Column: (H­I)

• Architectural classifications should be one of:
– Sensor
– Actuator
– Controller
– Controlled Process

• Connection architectural classification should be the
classification of the source component and the destination
component (eg, Sensor ­­> Controller)

2. Examples
• Component: Actuator
• Connection: Actuator ­­> Controlled Process

5. Repeat for the source of all predecessor links
– By repeatedly applying Step 0.2 to all predecessor links, the analyst will

work backwards through the control structure of the application.

Activity 1: Externally Caused Unsafe Interactions

1.1: Deriving the Successor Dangers

Overview:​ These are the things that can go wrong with the current element's
immediate successor (ie, the component that is the destination of the Successor Link
identified in 0.2­2). Our whole analysis of a given component will be to avoid these
problems.

1. Pull in the Successor dangers
1. Guide

• These can typically be imported from the previous worksheet.
– If this is the first element considered after the full system,

then the successor dangers are simply violations of the
system’s safety constraints (Column B, Row ~11).

– If this is the second or later element, the successor
dangers are the manifestations of the successor
component (Columns D­I, Row ~9)

• Enter references to the dangers:
1. Row: (13+)
2. Column: Successor Dangers (A­B)

2. Examples
• Component: IVLine.Overinfusion

241

– This would be a successor danger for the PCA Pump ­­­ the
pump's goal is to avoid the IV line's "overinfusion" danger,
by not being in it's ​pumping​ state when the patient is in
the ​near harm​ state.

• Connection: H.PatientOverdose
– This would be a successor danger for the IV Line. Since the

line exists at the system boundary, its successor dangers
are the system­level hazards.

2. (If Component) Document the Process Model
1. Guide

• A process model is a collection of process variables which are
essentially collections of abstract states (termed process values)
of the component relative to the notion(s) of danger identified in
the previous step.

• The control structure, created in step 0.1.7, should be updated to
contain these process variables and their values.

• Enter references to the dangers:
1. Row: (17+)
2. Column: Process Variable (A), Process Value (B­I)

• Process models are required for controller components, but can
be documented for sensors and actuators as well. This stems
from the realization that most components are, at a lower level of
abstraction, entire systems consisting of internal sensors,
controllers, and actuators.

2. Examples
• Component: PCA Pump

– Process Variable: Ticket Duration
– Process Value: 1, …, 600

• Connection: N/A

1.2: Deriving the Element's Dangers

Overview:​ Here the analyst considers if problems with the input to this component
would cause problems with its output. This step is similar to, but much deeper than,
STPA’s Step 1.

Note also that, from this point on, the analysis of one element does not depend on
the analysis of its predecessors ­­ ie, the analysis is compositional from here on out.

1. Select a Predecessor Link
1. Guide

• These are the links identified in 0.2­3 (Column E­F, Row 3+)
• Create a reference to the selected link:

242

1. Row: (13+)
2. Column: Pred. Link (C)

2. Example
• Component: AppLogicCommands ­> PCA Pump
• Connection: App Logic ­> AppLogicCommands

2. Consider the four manifestations
1. Guide

• Here, the analyst should consider if it would be hazardous if the
predecessor link exhibited any of the four manifestations
– Note that we do not consider here if it's possible for the

link to exhibit the given manifestations, only if their being
exhibited would be hazardous

– These manifestations are from Avizienis et­al's ​Basic
Concepts and Taxonomy of Dependable and Secure
Computing​, where they are called Failure Domain's (see
Fig. 8, pg 9)

• The manifestations are:
– Content ­­ ie, the value of messages on the link are

incorrect, optionally divided further into:
• High
• Low

– Halted ­­ ie, messages on the link stop arriving
– Erratic ­­ ie, messages on the link appear out of the blue
– Timing ­­ ie, messages on the link appear at the wrong

time, typically divided further into
• Early
• Late

• Record...
– The result of the manifestation occurring ­­ie, a new

danger­­ (typically formatted as
ComponentName.NameOfOccurrence)

– Not Hazardous if messages on the link could not cause this
hazard, or

– Not Applicable if messages on the link could not exhibit
this manifestation

1. Row: (13+)
2. Column: (D­I, as labelled)

3. Return to step 1.2­1 and repeat for all predecessor links identified in step 0.2­3

243

1.3 Examining the Externally Caused Dangers

Overview:​ Here the analyst explains how the successor dangers (identified in step
1.1) could be caused by bad input to the element (ie, the manifestations identified in
step 1.2)

1. Select a Successor Danger
1. Guide

• The first thing an analyst needs to do is to select one of the
successor dangers (identified in step 1.1, stored in column A­B,
row ~9+)

• Enter a reference to the danger:
1. Row: (23+)
2. Column: Successor Dangers (A)

• Each successor danger may have more than one row ­­ this
signifies that multiple errors in the current element will cause the
same danger in the successor component

• In some cases, more than one successor danger will occur
simultaneously ­­ in this case, list all the successor dangers in the
table cell.

2. Examples
• Component: IVLine.Overinfusion
• Connection: H.PatientOverdose

2. Record the name of the danger
1. Guide

• Each previously­identified danger (from step 1.2­2) should show
up at least once in this column
– In general, though, there is a many­to­many mapping from

successor dangers to externally caused dangers
• Enter the name of the danger

1. Row: (23+)
2. Column: Name (B)

2. Example
• Component: PCA Pump.Spontaneously Give Drug
• Connection: IV Line.Overadminister Drug

3. Identify the relevant process variable name and incorrect value
1. Guide

• Each component can be thought of as having a model of the
controlled process
– Sensors read the state of the controlled process directly

244

– Controllers have a model of the controlled process
provided by the sensors

– Actuators get commands from controllers, which provides
a (greatly reduced) view of the state of the controlled
process

• A mismatch between the controlled process state (identified in
the previous step) and the component's process model lies at the
root of every externally caused danger. This and the previous
step combine to make that mismatch explicit.

• Leveson's ​Engineering a Safer World​ gives an good primer on
process models in Section 4.3 (pages 87­89)

• Enter the process variable name and value
1. Row: (23+)
2. Column: Process Var. Name (C) and Value (D)

2. Example
• Component: PatientHealth, Ok

4. Interpret the danger
1. Guide

• Since one guideword or manifestation can be interpreted in
different ways, the analyst should now provide a concrete
interpretation that explains how the danger name in column B
causes the successor danger in column A

• Enter the interpretation of the danger
1. Row: (23+)
2. Column: (E­F)

2. Example
• Component: The PCA pump receives a command to run even

though it is unsafe to do so
• Connection: There is more analgesic put into the IVLine than the

patient can safely tolerate
5. Identify any Co­occurring Dangers

1. Guide
• Sometimes dangers will only manifest in the presence of other

dangers ­­ this may be reflected in the natural language of the
environmental state and / or interpretation, but should be made
explicit here by referring to the other dangers (separated by
commas) here.
– Note that elements with only one predecessor link will not

typically have co­occurring dangers

245

• Each cause of the danger will need its own entry. So, if two
components (A and B) have to fail simultaneously for the danger
to occur, four rows will need to be created:
– Two which cause the successor danger:

• A's failure will have one row in the table (with B's
failure as a co­occurring danger)

• B's failure will have its own subsequent row (with
A's failure as a co­occurring danger)

– Two which are not hazardous:
• A's failure without a simultaneous failure of B
• B's failure without a simultaneous failure of A

• Enter the name of co­occurring dangers, or "None" if not required
1. Row: (23+)
2. Column: Co­occurring Dangers, (G)

• Dangers are assumed to be combined via AND joins ­­­ more
complex relationships (OR, M­of­N, etc.) can be explained in the
interpretation / global env. state columns.

2. Example
• Component: N/A
• Connection: N/A

6. Run­time Detection
1. Guide

• This allows an analyst to specify a mechanism to detect the
occurrence of a danger at runtime

• Avizienis et­al. state that there are two ways errors can be
detected at runtime (see Fig. 16, page 16), either
– Concurrently (as the element is performing its job), or
– Preemptively (while the element is suspended for testing)

• Record the mechanism (typically prefaced with either
"Concurrent" or "Preemptive"), or "None" if run­time detection is
impossible
1. Row (23+)
2. Column Run­time Detection (H)

2. Example:
• Component: None
• Connection: Concurrent: Flow metering

7. Run­time Handling
1. Guide

• This allows an analyst to specify a mechanism to correct the
occurrence of a danger at runtime

246

• Avizienis et­al. state that there are three ways errors can be
handled at runtime (see Fig. 16, page 16),
– Rollback (restoring the system to a saved state),
– Rollforward (moving to a state without errors, ie a

known­safe state), or
– Compensation (use redundancy to mask the error)

• Record the mechanism of correction (typically prefaced with
"Rollback", "Rollforward", or "Compensation"), or "None" if
run­time compensation is impossible
1. Row (23+)
2. Column Run­time Handling (I)

2. Example:
• Component: None
• Connection: Rollforward: Stop Analgesic Flow

Step 2: Working with Internal Faults

Overview:​ These are the things that can go wrong with the element itself. There are
18 classes of faults, 15 of which come from Avizienis's work (they're a condensed
form of the 31 fault classes from Fig. 5, page 6) and 3 come in response to problems
with compositional verification.

Num. Guideword
Possible
Compensation Description

1 Software Bug Static
Verification

Mistakes made in software creation

2 Bad Software
Design

 Poor choices made in software
creation

3 Compromised
Software

TPM­like +
Chain­of­trust

Adversary tampers with software in
development

4 Compromised
Hardware

“Exotic” only Adversary tampers with hardware
in development

5 Hardware Bug Mistakes made in hardware
development

6 Bad Hardware
Design

 Poor choices made in hardware
development

7 Production Defect Hardware production defects (due
to natural phenomena)

8 Deterioration Periodic
inspection

Internal hardware fault at runtime
due to natural phenomena

247

9 Environment
damages
hardware

Shielding, ECC Externally caused hardware fault at
runtime due to natural phenomena

10 Operator HW
Mistake

Thoughtful UI,
Authorization,
Access Control

Operator makes a mistake while
interacting with hardware

11 Operator HW
Wrong Choice

Thoughtful UI,
Re­training,
Authorization,
Access Control

Operator makes a poor choice while
interacting with hardware

12 Adversary
Accesses
Hardware

Physical
Security,
“Exotic”

Adversary tampers with hardware
at runtime

13 Adversary
Accesses Software

Access Control
(Network and
Local), Physical
Security,
TPM­like +
Chain­of­Trust

Adversary tampers with software at
runtime

14 Operator SW
Mistake

Thoughtful UI,
Authorization,A
ccess Control

Operator makes a mistake while
interacting with software

15 Operator SW
Wrong Choice

Thoughtful UI,
Re­training,
Authorization,
Access Control

Operator makes a poor choice while
interacting with software

16 Syntax Mismatch The current element uses a different
syntax than its predecessor

17 Rate Mismatch QoS
Specification +
Enforcement

The current element expects input
at a different rate than its
predecessor outputs

18 Semantic
Mismatch

 The current element and its
predecessor do not interpret a given
value in the same way

2.1: Eliminating Classes of Internal Faults

Overview:​ While an analyst can consider each guideword individually, we also
provide the following questions which can be used to eliminate entire classes of
faults. Note that the default choice is italicized, and non­default answers should be
justified in the "Faults Not Considered" cells, Row 32+, Columns A­B (Guideword),
C­I (Justification)

248

1. Phase of Creation or Occurrence ­­ "Should faults from the element's
development be considered?"
– Yes​ ­­ Development and operational faults
– No ­­ Operational faults only (Remove 1­7)

2. Dimension ­­ "Does the element involve hardware, software, or both?"
– Hardware ­­ Hardware only (Remove 1­3,13­15)
– Software ­­ Software only (Remove 4­12)
– Both​ ­­ Both hardware and software

3. Phenomenological cause, pt 1 (unless Software dimension only) ­­ "Will the
hardware elements be protected from natural phenomena?"
– Yes ­­ No Natural faults (Remove 7­9)
– No​ ­­ Natural faults included

4. Phenomenological cause, pt 2 ­­ "Does the element receive input from directly
from a human operator?"
– Yes​ ­­ Human­made operational faults included
– No ­­ Human­made operational faults excluded (Remove 10­11,14­15)

5. Objective ­­ "Is it possible that an adversary could gain access to the element?"
– Yes​ ­­ Malicious and Non­Malicious faults
– No ­­ Non­Malicious faults only (Remove 3­4,12­13)

6. Interaction ­­ "Have the two components joined by this connection either
worked together before or been developed together?"
– Yes ­­ No interaction faults (Remove 15­18)
– No​ ­­ Interaction faults

2.2 Examining the Internally Caused Dangers

Overview:​ Here the analyst explains how the successor dangers (identified in step
1.1) could be caused by faults internal to the element using the guideword table
from above.

1. Select a guideword
1. Guide

• The first thing an analyst needs to do is to select one of the
non­eliminated guidewords

• Enter a reference to the guideword:
1. Row: (38+)
2. Column: Guideword (B)

• Each guideword may have more than one row ­­ this signifies that
the same guideword may cause multiple dangers in the successor
component

2. Examples

249

• Component: Operator SW Mistake
• Connection: Compromised Software

2. Select a Successor Danger that this guideword could cause
1. Guide

• Next, the analyst should pick one of the successor dangers the
guideword from 2.2­1 could cause

• Enter a reference to the danger:
1. Row: (38+)
2. Column: Successor Danger (A)

• Each successor danger may have more than one row ­­ this
signifies that different faults in the current element will cause the
same danger in the successor component

2. Examples
• Component: IVLine.Overinfusion
• Connection: H.PatientOverdose

3. Interpret the danger
1. Guide

• Since one guideword can be interpreted in different ways, the
analyst should now provide a concrete interpretation that
explains how the guideword in column B causes the successor
danger in column A

• Enter the interpretation of the danger
1. Row: (38+)
2. Column: (D­E)

2. Example
• Component: The PCA pump runs even though it's not

commanded to
• Connection: The connection drops the message

4. Identify any Co­occurring Dangers
1. Guide

• Sometimes dangers will only manifest in the presence of other
dangers ­­ this may be reflected in the natural language of the
interpretation, but should be made explicit here by referring to
the other dangers (separated by commas) here.
– Note that these can be other internal faults, or external

dangers from Step 1
• Each cause of the danger will need its own entry. So, if two faults

(A and B) have to occur simultaneously for the danger to occur,
four rows will need to be created:
– Two which cause the successor danger:

250

• Fault A will have one row in the table (with fault B
as a co­occurring danger)

• Fault B will have its own subsequent row (with
fault A as a co­occurring danger)

– Two which are not hazardous:
• Fault A without a simultaneous fault B
• Fault B without a simultaneous fault A

• Enter the name of co­occurring dangers, or "None" if not required
1. Row: (38+)
2. Column: Co­occurring Dangers, (E)

• Dangers are assumed to be combined via AND joins ­­­ more
complex relationships (OR, M­of­N, etc.) can be explained in the
interpretation / global env. state columns.

2. Example
• Component: N/A
• Connection: N/A

5. Design­time Detection
1. Guide

• This allows an analyst to specify a mechanism to detect the
presence of a fault at the design­time of a system

• Avizienis et­al. state that there are five verification approaches
(see Fig. 19, page 18),
– Static Analysis,
– Theorem Proving,
– Model Checking,
– Symbolic Execution, or
– Testing

• Record the mechanism of detection (which may be one or more
of the five verification methods or a domain­specific approach),
or "None" if design­time compensation is impossible
1. Row (38+)
2. Column Run­time Handling (F)

2. Example:
• Component: Model Checking
• Connection: Testing

6. Run­time Detection
1. Guide

• This allows an analyst to specify a mechanism to detect the
occurrence of a danger at runtime

251

• Avizienis et­al. state that there are two ways errors can be
detected at runtime (see Fig. 16, page 16), either
– Concurrently (as the element is performing its job), or
– Preemptively (while the element is suspended for testing)

• Record the mechanism (typically prefaced with either
"Concurrent" or "Preemptive"), or "None" if run­time detection is
impossible
1. Row (38+)
2. Column Run­time Detection (G)

2. Example:
• Component: None
• Connection: Concurrent: Flow metering

7. Run­time Error Handling
1. Guide

• This allows an analyst to specify a mechanism to correct the
occurrence of a danger at runtime

• Avizienis et­al. state that there are three ways errors can be
handled at runtime (see Fig. 16, page 16),
– Rollback (restoring the system to a saved state),
– Rollforward (moving to a state without errors, ie a

known­safe state), or
– Compensation (use redundancy to mask the error)

• Record the mechanism of correction (typically prefaced with
"Rollback", "Rollforward", or "Compensation"), or "None" if
run­time compensation is impossible
1. Row (38+)
2. Column Run­time Handling (H)

2. Example:
• Component: None
• Connection: Rollforward: Stop Analgesic Flow

8. Run­time Fault Handling
1. Guide

• This allows an analyst to specify a mechanism to correct the
cause of a fault at runtime

• Avizienis et­al. state that there are four ways faults can be
handled at runtime (see Fig. 16, page 16),
– Diagnosis (identifying and recording the causes of the

issue),
– Isolation (physically or logically excluding the faulty

components from further participation in the system),

252

– Reconfiguration (switching in spare components or
reassigning tasks among non­failed components), or

– Reinitialization (“rebooting” the system)
• Record the mechanism of correction (typically prefaced with

"Diagnosis", “Isolation”, “Reconfiguration”, “Reinitialization”), or
"None" if run­time handling is impossible
3. Row (38+)
4. Column Run­time Handling (I)

2. Example:
• Component: Reinitialization: Reboot the pump
• Connection: None

253

Appendix B

SAFE Worksheets

254

System: [Fill]

System Environment

Name Reference [Fill] [Fill]

Accident Levels [Fill] N / A

Accidents: [Fill] [Fill]
Hazardous

Factor System Element
System Element

State Env. Element
Env. Element

State

Hazards: [Fill] [Fill] [Fill] [Fill] [Fill] [Fill] [Fill]

Safety Constrai [Fill] [Fill]

Reference

System Boundary

Fundamentals

Explanations

Explanation

255

Architectural:

High Low Early Late

[Fill] [Fill] [Fill]

[...] [...] [...]

Process
Variable Name Unit

[Fill] [Fill] [...] [Fill]

[...] [Fill] [...] [...]

Successor
Danger Name

Process Var.
Name

Process Var.
Value

Co-occurring
Dangers

Run-time
Detection

Run-time
Handling

[Fill] [Fill] [Fill] [Fill] [Fill] [Fill] [Fill]

[...] [...] [...] [...] [...] [...] [...]

Successor
Danger Guideword

Co-occurring
Dangers

Design-time
Detection

Run-time
Detection

Run-time
Error Handling

Run-time
Fault Handling

[Fill] [Fill] [Fill] [Fill] [Fill] [Fill] [Fill]

[...] [...] [...] [...] [...] [...] [...]

Activity 0: Fundamentals
Step 0.2

Element: Successor Link Name(s): Predecessor Link Name(s) Classification

[Fill] [Fill] [Fill] [Fill]

[...] [...] [...]

Activity 1: Unsafe Interactions
Step 1.1 Step 1.2

Successor Dangers
Manifestations

Pred. Link
Content

Halted Erratic
Timing

[Fill] [Fill] [Fill]

[...] [...] [...]

Process Values

Step 1.3

Externally Caused Dangers Proposed Mitigations

Interpretation

[Fill]

[...]

Activity 2: Internal Faults

Step 2.1

Faults Not Considered

Guideword Justification

[Fill] [Fill]

[...] [...]

Step 2.2

Internally Caused Dangers

Interpretation

[Fill]

[...]

256

Appendix C

Full PCA Example

257

System: PCA Interlock

System Environment

Name Reference PCA Pump Patient

App Logic

Accident Levels:
AL.DeathOrSeri
ousInjury N / A Pulse Oximeter

Capnograph

Accidents:
Acc.PatientHar
med

AL.DeathOrSeri
ousInjury

Hazardous
Factor System Element

System Element
State Env. Element

Env. Element
State

Hazards:
H.TooMuchAnal
gesic

Acc.PatientHar
med Analgesic PCA Pump Pumping Patient NearHarm

Safety
Constraints:

SC.DontODPati
ent

H.TooMuchAnal
gesic

Reference
Acc.PatientHar
med
H.TooMuchAnal
gesic

Architecture

System Boundary

Fundamentals

Explanations

Explanation

The patient is harmed or seriously injured as a result of the App's actions

The patient is given more analgesic than they can safely tolerate

As modeled by Arney-etal in ICCPS10 (in section 4.3) with some modifications

A lot of possibly unmeetable assumptions (guaranteed timing of network and app)

Modified to include RR and EtCO2 physiological monitors (in addition to SpO2)

258

259

Architectural:

High Low Early Late
AppLogicComm

ands -> PCA
Pump

PCAPump.Ticket
TooLong Not Hazardous Not Hazardous

PCAPump.Errati
cTicket

PCAPump.Early
Ticket

PCAPump.LateT
icket

Process
Variable Unit

Ticket Duration 1 2 3 ... 598 599 600 Seconds

Successor
Danger Name

Process Var.
Name

Process Var.
Value

Co-occurring
Dangers

Run-time
Detection

Run-time
Handling

SC.DontODPati
ent

PCAPump.Ticke
tTooLong Ticket Duration Higher than safe None None N / A

SC.DontODPati
ent

PCAPump.Errati
cTicket Ticket Duration Any None None N / A

SC.DontODPati
ent

PCAPump.Early
Ticket Ticket Duration Any None

Concurrent:
Timeouts

Rollforward:
Pump switches
into permanent

KVO (and
notifies the
clinician?)

SC.DontODPati
ent

PCAPump.LateT
icket Ticket Duration Any None

Concurrent:
Timestamped

"tickets"

Rollforward:
Pump switches

into KVO

Successor
Danger Guideword

Co-occurring
Dangers

Design-time
Detection

Run-time
Detection

Run-time
Error Handling

Run-time
Fault Handling

Activity 0: Fundamentals
Step 0.2

Element: Successor Link Name: Predecessor Link Name(s) Classification

PCA Pump PCA Pump -> IV Line
AppLogicCommands -> PCA
Pump Actuator

Activity 1: Unsafe Interactions
Step 1.1 Step 1.2

Successor Dangers
Manifestations

Pred. Link
Content

Halted Erratic
Timing

SC.DontODPatient

Process Values

Step 1.3

Externally Caused Dangers Proposed Mitigations

Interpretation

The ticket has a time value that is
too long

The PCA Pump gets a ticket "out of
the blue"

The PCA Pump gets a ticket "too
soon" -- before it has finished
handling the previous ticket

The PCA pump gets a ticket late,
so it's valid past the time window it

should be

Activity 2: Internal Faults

Step 2.1

Faults Not Considered

Guideword Justification

Software Bug

We're using a "proven in use" PCA Pump

Bad Software Design

Compromised Software

Compromised Hardware

Hardware Bug

Bad Hardware Design

Production Defect

Adversary Accesses Hardware
The hospital has physical security measures in place

Adversary Accesses Software

Syntax Mismatch
The PCA pump isn't a connection between two componentsRate Mismatch

Semantic Mismatch

Step 2.2

Internally Caused Dangers

Interpretation

260

SC.DontODPati
ent Deterioration None

Testing:
Maintenance

intervals should
be established

by the
manufacturer

and verified by
regulators

Preemptive:
Periodic pump
examinations

None None

Preemptive:
Self-test

Compensation:
ECC Memory

Isolation:
Shielding

Preemptive:
Periodic pump
examinations

None

Isolation:
Adequate

sealing, N/A:
careful use in

the clinical
environment

SC.DontODPati
ent

Operator HW
Mistake None

Testing: Perform
user studies on

the interface
None None

Diagnosis:
Thoughtful UI

(re)design

SC.DontODPati
ent

Operator HW
Wrong Choice None

Testing: Perform
user studies on

the interface
None None

Diagnosis:
Thoughtful UI

(re)design,
periodic

retraining

SC.DontODPati
ent

Operator SW
Mistake None

Testing: Perform
user studies on

the interface
None None

Diagnosis:
Thoughtful UI

(re)design

SC.DontODPati
ent

Operator SW
Wrong Choice None

Testing: Perform
user studies on

the interface
None None

Diagnosis:
Thoughtful UI

(re)design,
periodic

retraining

The pump is poorly maintained and
fails open due to deterioration

SC.DontODPati
ent

Environment
damages
hardware

A cosmic ray flips a bit in the pump,
making it run

None

Testing: Subject
the pump to

various
environmental

problems
The pump is poorly protected from
the environment and fails open due

to, eg, liquids

The operator accidentally presses
a button she didn't mean to, giving
either too much drug, too strong of

a drug, or drug too quickly

The operator misunderstands the
patient state and / or clinical

process, giving either too much
drug, too strong of a drug, or drug

too quickly

The operator accidentally presses
a button she didn't mean to, giving
either too much drug, too strong of

a drug, or drug too quickly

The operator misunderstands the
patient state and / or clinical

process, giving either too much
drug, too strong of a drug, or drug

too quickly

261

Architectural:

High Low Early Late
App Logic ->

AppLogicComm
ands

AppToPumpCmds
.TicketTooLong Not Hazardous Not Hazardous

AppToPumpCm
ds.ErraticTicket

AppToPumpCm
ds.EarlyTicket

AppToPumpCm
ds.LateTicket

Successor
Danger Name

Global Env.
State

Co-occurring
Dangers

Run-time
Detection

Run-time
Handling

Design-time
Mitigation

PCAPump.Ticke
tTooLong

AppToPumpCm
ds.TicketTooLon

g
Patient.NearHar

m None None N / A N / A

PCAPump.Errati
cTicket

AppToPumpCm
ds.ErraticTicket

Patient.NearHar
m None None N / A N / A

PCAPump.Early
Ticket

AppToPumpCm
ds.EarlyTicket

Patient.NearHar
m None

Concurrent:
Timeouts

Rollforward:
Network
disables

connection (and
notifies the
clinician?) N / A

PCAPump.LateT
icket

AppToPumpCm
ds.LateTicket

Patient.NearHar
m None None N / A

Timestamped
tickets or tickets

have a valid
end-time (and

the app needs a
global clock)

Activity 0: Fundamentals
Step 0.2

Element: Successor Link Name: Predecessor Link Name(s) Classification

AppToPumpCmds
AppLogicCommands -> PCA
Pump App Logic -> AppLogicCommands Controller -> Actuator

Activity 1: Unsafe Interactions
Step 1.1 Step 1.2

Successor Dangers
Manifestations

Pred. Link
Content

Halted Erratic
Timing

PCAPump.TicketTooLong

PCAPump.ErraticTicket

PCAPump.EarlyTicket

PCAPump.LateTicket

Step 1.3

Externally Caused Dangers Proposed Mitigations

Interpretation

The ticket has a time value that is too
long

The app->pump connection gets a
ticket "out of the blue"

The app->pump connection gets a
ticket "too soon" -- before it has

finished handling the previous ticket

The app->pump gets a ticket late, so
it's valid past the time window it

should be

Activity 2: Internal Faults

Step 2.1

Faults Not Considered

Guideword Justification

Software Bug

We're using a "proven in use" network

Bad Software Design

Compromised Software

Compromised Hardware

Bad Software Design

Bad Hardware Design

Production Defect

Deterioration Deterioration is not a significant source of concern over the life of the networking materials

Environment damages hardware The app isn't responsible for network maintenance

Operator HW Mistake
The network doesn't interact directly with a human operator

Operator HW Error

Hacked Hardware
The hospital has physical security measures in place

Hacked Software

Operator SW Mistake
The network doesn't interact directly with a human operator

Operator SW Wrong Choice

262

Successor
Danger Guideword

Co-occurring
Dangers

Design-time
Detection

Run-time
Detection

Run-time
Error Handling

Run-time
Fault Handling

PCAPump.Tick
etTooLong

Syntax
Mismatch None

Model Checking:
Verify syntax of

sender and
receiver

None None None

PCAPump.Early
Ticket Rate Mismatch None

Model Checking:
Verify QoS of
sender and

receiver

Concurrent:
Timeouts

Rollforward:
Network
disables

connection (and
notifies the
clinician?)

None

PCAPump.Late
Ticket Rate Mismatch None

Model Checking:
Verify QoS of
sender and

receiver

Concurrent:
Expected arrival

time

Rollforward:
Network
disables

connection (and
notifies the
clinician?)

None

PCAPump.Ticke
tTooLong

Semantic
Mismatch

None
Testing: Verify
semantics of
sender and

receiver

Concurrent:
Messages
should use

some sort of
semantic tag,

eg, 11073
nomenclature

Rollforward:
Mismatched

tags mean the
app switches to
a safe state and

notifies the
clinician

None

Step 2.2

Internally Caused Dangers

Interpretation

A ticket is issued by the app in a
different format than expected by

the pump, so it runs for an
unintended length of time

Tickets are sent from the app too
quickly for the pump to handle

The app doesn't send tickets fast
enough because it thinks the pump

can't handle them

A ticket is issued by the app in a
different format than expected by

the pump, so it runs for an
unintended length of time

263

Architectural:

High Low Early Late
SpO2ToApp ->

App Logic
AppLogic.SpO2To

oHigh Not Hazardous
AppLogic.NoSp

O2 Not Hazardous
AppLogic.SpO2

Early
AppLogic.SpO2

Late
EtCO2ToApp ->

App Logic Not Hazardous
AppLogic.EtCO2T

ooLow
AppLogic.NoEtC

O2 Not Hazardous
AppLogic.EtCO2

Early
AppLogic.EtCO2

Late
RRToApp ->

App Logic
AppLogic.RRToo

High Not Hazardous AppLogic.NoRR Not Hazardous
AppLogic.RREar

ly
AppLogic.RRLat

e

Process
Variable Unit

Patient Status Very healthy Quite healthy Pretty healthy ... A little healthy Risk Overdosed N / A

Successor
Danger Name

Ctrld Process
State

Process Var.
Name and Value

Co-occurring
Dangers

Run-time
Detection

Run-time
Handling

AppToPumpCm
ds.TicketTooLon

g
AppLogic.SpO2

TooHigh
Patient.NearHar

m
Patient Status >=

Risk

AppLogic.EtCO2
TooLow AND

AppLogic.RRTo
oHigh None N / A

None
AppLogic.SpO2

TooHigh N / A Any

AppLogic.EtCO2
TooLow OR

AppLogic.RRTo
oHigh OR None

Concurrent:
Assume best-

case reading is
valid

Compensation:
Require healthy
reading from all
three sensors

AppToPumpCm
ds.TicketTooLon

g
AppLogic.EtCO2

TooLow
Patient.NearHar

m
Patient Status >=

Risk

AppLogic.SpO2
TooHigh AND

AppLogic.RRTo
oHigh None N / A

None
AppLogic.EtCO2

TooLow N / A Any

AppLogic.SpO2
TooHigh OR

AppLogic.RRTo
oHigh OR None

Concurrent:
Assume best-

case reading is
valid

Compensation:
Require healthy
reading from all
three sensors

AppToPumpCm
ds.TicketTooLon

g
AppLogic.RRTo

oHigh
Patient.NearHar

m
Patient Status >=

Risk

AppLogic.SpO2
TooHigh AND

AppLogic.EtCO2
TooLow None N / A

None
AppLogic.RRTo

oHigh N / A Any

AppLogic.SpO2
TooHigh OR

AppLogic.EtCO2
TooLow OR

None

Concurrent:
Assume best-

case reading is
valid

Compensation:
Require healthy
reading from all
three sensors

None
AppLogic.NoSp

O2 N / A Any Any

Concurrent:
Require signal
from all three

sensors

Rollforward:
Issue zero-
length ticket

None
AppLogic.NoEtC

O2 N / A Any Any

Concurrent:
Require signal
from all three

sensors

Rollforward:
Issue zero-
length ticket

None AppLogic.NoRR N / A Any Any

Concurrent:
Require signal
from all three

sensors

Rollforward:
Issue zero-
length ticket

Activity 0: Fundamentals
Element: Successor Link Name: Predecessor Link Name(s) Classification

App Logic App Logic -> AppLogicCommands SpO2ToApp -> App Logic Controller

EtCO2ToApp -> App Logic

RRToApp -> App Logic

Activity 1: Unsafe Interactions
Step 1.1 Step 1.2

Successor Dangers
Manifestations

Pred. Link
Content

Halted Erratic
Timing

AppToPumpCmds.TicketTooLong

AppToPumpCmds.ErraticTicket

AppToPumpCmds.EarlyTicket

AppToPumpCmds.LateTicket

Process Values

Step 1.3

Externally Caused Dangers Proposed Mitigations

Interpretation

The feedback from all three
sensors is simultaneously incorrect

leading the app to believe the
patient is healthy

The feedback from either one or
two of the sensors are incorrect,
but due to redundancy harm is

avoided

The feedback from all three
sensors is simultaneously incorrect

The feedback from either one or
two of the sensors are incorrect,
but due to redundancy harm is

avoided

The feedback from all three
sensors is simultaneously incorrect

The feedback from either one or
two of the sensors are incorrect,
but due to redundancy harm is

avoided

The feedback from a sensor is
missing, but the app is built to not
issue tickets if any information is

missing

The feedback from a sensor is
missing, but the app is built to not
issue tickets if any information is

missing

The feedback from a sensor is
missing, but the app is built to not
issue tickets if any information is

missing

264

AppToPumpCm
ds.LateTicket

AppLogic.SpO2
Early N / A Any Any

Concurrent:
Timeouts

Compensation:
Drop messages
violating QoS

settings

AppToPumpCm
ds.LateTicket

AppLogic.EtCO2
Early N / A Any Any

Concurrent:
Timeouts

Compensation:
Drop messages
violating QoS

settings

AppToPumpCm
ds.LateTicket

AppLogic.RREar
ly N / A Any Any

Concurrent:
Timeouts

Compensation:
Drop messages
violating QoS

settings

None
AppLogic.SpO2

Late N / A Any Any

Concurrent:
Require signal
from all three

sensors

Rollforward:
Issue zero-
length ticket

None
AppLogic.EtCO2

Late N / A Any Any

Concurrent:
Require signal
from all three

sensors

Rollforward:
Issue zero-
length ticket

None
AppLogic.RRLat

e N / A Any Any

Concurrent:
Require signal
from all three

sensors

Rollforward:
Issue zero-
length ticket

Successor
Danger Guideword

Co-occurring
Dangers

Design-time
Detection

Run-time
Detection

Run-time
Error Handling

Run-time
Fault Handling

AppToPumpCm
ds.TicketTooLon

g

AppToPumpCm
ds.ErraticTicket

AppToPumpCm
ds.EarlyTicket

AppToPumpCm
ds.LateTicket

AppToPumpCm
ds.TicketTooLon

g
None

Rollforward: Use
an adaptive

algorithm and
start with a very

small dose

None

The app's ticket is late because it is
handling an (or a number of)

unexpected SpO2 message(s)

The app's ticket is late because it is
handling an (or a number of)

unexpected EtCO2 message(s)

The app's ticket is late because it is
handling an (or a number of)
unexpected RR message(s)

The feedback from a sensor is
delayed, but the app is built to not
issue tickets if any information is

missing

The feedback from a sensor is
delayed, but the app is built to not
issue tickets if any information is

missing

The feedback from a sensor is
delayed, but the app is built to not
issue tickets if any information is

missing

Activity 2: Internal Faults

Step 2.1

Faults Not Considered

Guideword Justification

Syntax Mismatch
Element is a component, not a connectionRate Mismatch

Semantic Mismatch

Compromised Hardware

We're using a previously-certified MAP implementation (ie, safety assessment of the MAP itself is not part of the safety
assessment of the app)

Hardware Bug

Bad Hardware Design

Production Defect

Deterioration

We're using an externally maintained MAP (ie, the protection of the MAP itself is not part of the safety assessment of the
app)

Environment Damages Hardware

Adversary Accesses Hardware

Adversary Accesses Software

Operator HW Mistake

The app logic doesn't interact with an operator.
Operator HW Wrong Choice

Operator SW Mistake

Operator SW Wrong Choice

Step 2.2

Internally Caused Dangers

Interpretation

Software Bug

A software bug leads to incorrect
ticket calculations

None

Theorem
proving: formally

verify the
behavior of the

app logic.

None None None

A software bug leads to the app
issuing tickets erratically

A software bug leads to the app
sending tickets earlier than it

should

A software bug leads to the app
issuing tickets later than it should

Bad Software
Design

The app is designed for someone
with a normal opioid tolerance
(95% of the population) but the

patient is an outlier

Testing and
statistically-back

ed,
"bootstrapping"

certification

Concurrent:
Physiological

monitors

265

AppToPumpCm
ds.TicketTooLon

g
AppToPumpCm
ds.ErraticTicket
AppToPumpCm
ds.EarlyTicket

AppToPumpCm
ds.LateTicket

AppToPumpCm
ds.TicketTooLon

g
AppToPumpCm
ds.ErraticTicket
AppToPumpCm
ds.EarlyTicket

AppToPumpCm
ds.LateTicket

Other poor desgin choice leads to
inappropriate-length or erratic

tickets
None None None

Compromised
Software

An adversary gets access to the
app while it's being developed None None

Concurrent:
Some sort of

TPM-like device
on the MAP
itself and a

cryptographic
chain-of-trust

None
Isolation:

Chain-of-trust
violations block

app launch

266

Architectural:

High Low Early Late
PulseOx ->
SpO2ToApp

SpO2ToApp.SpO
2TooHigh Not Hazardous

SpO2ToApp.No
SpO2 Not Hazardous

SpO2ToApp.Sp
O2Early

SpO2ToApp.Sp
O2Late

Successor
Danger Name

Ctrld Process
State

Process Var.
Name and Value

Co-occurring
Dangers

Run-time
Detection

Run-time
Handling

AppLogic.SpO2
TooHigh

SpO2ToApp.Sp
O2TooHigh

Patient.NearHar
m

Patient SpO2 >
Actual Value None None None

AppLogic.NoSp
O2

SpO2ToApp.No
SpO2 Any None None None None

AppLogic.SpO2
Early

SpO2ToApp.Sp
O2Early Any Any None

Concurrent:
Timeouts

Rollforward:
Network
disables

connection (and
notifies the
clinician?)

AppLogic.SpO2
Late

SpO2ToApp.Sp
O2Late Any Any None None None

Successor
Danger Guideword

Co-occurring
Dangers

Design-time
Detection

Run-time
Detection

Run-time
Error Handling

Run-time
Fault Handling

Activity 0: Fundamentals
Element: Successor Link Name: Predecessor Link Name(s) Classification

SpO2ToApp SpO2ToApp -> App Logic PulseOx -> SpO2ToApp Sensor -> Controller

Activity 1: Unsafe Interactions
Step 1.1 Step 1.2

Successor Dangers
Manifestations

Pred. Link
Content

Halted Erratic
Timing

AppLogic.SpO2TooHigh

AppLogic.NoSpO2

AppLogic.SpO2Early

AppLogic.SpO2Late

Step 1.3

Externally Caused Dangers Proposed Mitigations

Interpretation

The feedback from the SpO2
sensor is higher than its actual

value

There is no feedback from the
SpO2 sensor

The feedback from the SpO2
sensor arrives earlier than it should

The feedback from the SpO2
sensor arrives later than it should

Activity 2: Internal Faults

Step 2.1

Faults Not Considered

Guideword Justification

Software Bug

We're using a "proven in use" network

Bad Software Design

Compromised Software

Compromised Hardware

Bad Software Design

Bad Hardware Design

Production Defect

Deterioration Deterioration is not a significant source of concern over the life of the networking materials

Environment damages hardware The app isn't responsible for network maintenance

Operator HW Mistake
The network doesn't interact directly with a human operator

Operator HW Error

Hacked Hardware
The hospital has physical security measures in place

Hacked Software

Operator SW Mistake
The network doesn't interact directly with a human operator

Operator SW Wrong Choice

Step 2.2

Internally Caused Dangers

Interpretation

267

AppLogic.SpO2
TooHigh

AppLogic.NoSp
O2

AppLogic.SpO2
TooHigh

Semantic
Mismatch None

N/A:
Standardize
semantics at

ecosphere level

Concurrent:
Messages
should use

some sort of
semantic tag,

eg, 11073
nomenclature

Rollforward:
Mismatched

tags mean the
app switches to
a safe state and

notifies the
clinician

None

AppLogic.SpO2
Early

If messages
arrive faster than

allowed the
network drops
them and the
app switches

into a safe state

AppLogic.SpO2
Late

If messages
don't arrive as
frequently as
specified the
app switches

into a safe state
and notifies the

clinician

Syntax
Mismatch

The SpO2 message is in a different
syntactic format than what the app

is expecting, so the app
misinterprets it, leading to the app

reading an inflated SpO2 value
None

Model Checking
or Testing:
Verify that

syntax of SpO2
value used by

Pulse Oximeter
matches that
used by app

None N / A None
The SpO2 message is in a different
syntactic format than what the app

is expecting, so the app can't
understand it, leading to the app

having no SpO2 value

The underlying meaning of the
SpO2 value produced by the puse

oximeter isn't the same as the
underlying meaning assigned to

the value by the app, leading to the
app interpreting an inflated SpO2

value

Rate Mismatch

The pulse oximeter sends SpO2
messages faster than the app is

expecting / can handle them

None

Static Analysis:
Verify that RT /

QoS
specifications

cannot be
violated

Concurrent:
Specified RT /
QoS Properties

None

The pulse oximeter doesn't send
SpO2 messages as frequently as

the app needs them

268

Architectural:

High Low Early Late
PatientToPulse
Ox -> PulseOx

PulseOx.HighRea
ding Not Hazardous

PulseOx.NoCon
nection Not Hazardous

PulseOx.EarlyR
eading

PulseOx.LateRe
ading

Process
Variable Unit

Patient SpO2 100% 99% 98% ... 2% 1% 0% Percentage

Successor
Danger Name

Ctrld Process
State

Process Var.
Name and Value

Co-occurring
Dangers

Run-time
Detection

Run-time
Handling

SpO2ToApp.Sp
O2TooHigh

PulseOx.HighRe
ading

Patient.Near
Harm

Patient SpO2 >
Read value None

Concurrent: Use
a sensor with a

data-quality
reading

Rollforward:
Drop readings

without
adequate quality

(transforming
this into

NoSpO2)

SpO2ToApp.No
SpO2

PulseOx.NoCon
nection Any Any None None N / A

None PulseOx.EarlyR
eading Any Any None

Concurrent: RT /
QoS

specifications

Rollforward:
Drop readings
that arrive too

early

None PulseOx.LateRe
ading Any Any None

Concurrent: RT /
QoS

specifications

Rollforward:
Notify clinician

and stop
producing data
(transforming

this into
NoSpO2)

Activity 0: Fundamentals
Step 0.2

Element: Successor Link Name: Predecessor Link Name(s) Classification

Pulse Ox PulseOx -> SpO2ToApp PatientToPulseOx -> PulseOx Sensor

Activity 1: Unsafe Interactions
Step 1.1 Step 1.2

Successor Dangers
Manifestations

Pred. Link
Content

Halted Erratic
Timing

SpO2ToApp.SpO2TooHigh

SpO2ToApp.NoSpO2

SpO2ToApp.SpO2Early

SpO2ToApp.SpO2Late

Process Values

Step 1.3

Externally Caused Dangers Proposed Mitigations

Interpretation

The pulse oximeter gets a bad
reading from its patient-attachment

(eg, finger clip)

The pulse oximeter's
patient-attachment becomes

disconnected or otherwise stops
producing data

The pulse oximeter's
patient-attachment produces

messages faster than the
pulse-oximeter itself expects them

The pulse oximeter's
patient-attachment produces
messages slower than the

pulse-oximeter itself expects them

Activity 2: Internal Faults

Step 2.1

Faults Not Considered

Guideword Justification

Software Bug

We're using a "proven in use" pulse oximeter

Bad Software Design

Compromised Software

Compromised Hardware

Hardware Bug

Bad Hardware Design

Production Defect

Adversary Accesses Hardware
The hospital has physical security measures in place

Adversary Accesses Software

269

Successor
Danger Guideword

Co-occurring
Dangers

Design-time
Detection

Run-time
Detection

Run-time
Error Handling

Run-time
Fault Handling

SpO2ToApp.Sp
O2TooHigh None

Preemptive:
Self-test

Compensation:
ECC Memory

Isolation:
Shielding

SpO2ToApp.Sp
O2TooHigh

SpO2ToApp.No
SpO2

SpO2ToApp.Sp
O2Early

SpO2ToApp.Sp
O2Late

SpO2ToApp.No
SpO2 Deterioration None

Testing:
Maintenance

intervals should
be established

by the
manufacturer

and verified by
regulators

Preemptive:
Periodic

examinations
None None

Operator HW Mistake

There are no user settings used for the pulse oximeter
Operator HW Wrong Choice

Operator SW Mistake

Operator SW Mistake

Syntax Mismatch
The pulse oximeter isn't a connection between two componentsRate Mismatch

Semantic Mismatch

Step 2.2

Internally Caused Dangers

Interpretation

Environment
damages
hardware

A cosmic ray flips a bit in the
PulseOx, breaking it in any

possible way

None
The pulse oximeter is poorly

protected from the environment
and fails due to, eg, liquids

Testing: Subject
the PulseOx to

various
environmental

problems

Preemptive:
Periodic pulseox

examinations

Compensation:
Additional

physiological
monitors should
be used in case
of errors with the
pulse oximeter

Isolation:
Adequate

sealing, N/A:
careful use in

the clinical
environment

The pulse oximeter is poorly
maintained and fails due to

deterioration

270

Architectural:

High Low Early Late
Capnograph ->
EtCO2ToApp Not Hazardous

EtCO2ToApp.EtC
O2TooLow

EtCO2ToApp.No
EtCO2 Not Hazardous

EtCO2ToApp.Et
CO2Early

EtCO2ToApp.Et
CO2Late

Successor
Danger Name

Ctrld Process
State

Process Var.
Name and Value

Co-occurring
Dangers

Run-time
Detection

Run-time
Handling

AppLogic.EtCO2
TooLow

EtCO2ToApp.Et
CO2TooLow

Patient.NearHar
m

Patient EtCO2 <
Actual Value None None None

AppLogic.NoEtC
O2

EtCO2ToApp.No
EtCO2 Any Any None None None

AppLogic.EtCO2
Early

EtCO2ToApp.Et
CO2Early Any Any None

Concurrent:
Timeouts

Rollforward:
Network
disables

connection (and
notifies the
clinician?)

AppLogic.EtCO2
Late

EtCO2ToApp.Et
CO2Late Any Any None None None

Successor
Danger Guideword

Co-occurring
Dangers

Design-time
Detection

Run-time
Detection

Run-time
Error Handling

Run-time
Fault Handling

Activity 0: Fundamentals
Element: Successor Link Name: Predecessor Link Name(s) Classification

EtCO2ToApp EtCO2ToApp -> App Logic Capnograph -> EtCO2ToApp Sensor -> Controller

Activity 1: Unsafe Interactions
Step 1.1 Step 1.2

Successor Dangers
Manifestations

Pred. Link
Content

Halted Erratic
Timing

AppLogic.EtCO2TooLow

AppLogic.NoEtCO2

AppLogic.EtCO2Early

AppLogic.EtCO2Late

Step 1.3

Externally Caused Dangers Proposed Mitigations

Interpretation

The feedback from the EtCO2
sensor is lower than its actual value

There is no feedback from the
EtCO2 sensor

The feedback from the EtCO2
sensor arrives earlier than it should

The feedback from the EtCO2
sensor arrives later than it should

Activity 2: Internal Faults

Step 2.1

Faults Not Considered

Guideword Justification

Software Bug

We're using a "proven in use" network

Bad Software Design

Compromised Software

Compromised Hardware

Bad Software Design

Bad Hardware Design

Production Defect

Deterioration Deterioration is not a significant source of concern over the life of the networking materials

Environment damages hardware The app isn't responsible for network maintenance

Operator HW Mistake
The network doesn't interact directly with a human operator

Operator HW Error

Hacked Hardware
The hospital has physical security measures in place

Hacked Software

Operator SW Mistake
The network doesn't interact directly with a human operator

Operator SW Wrong Choice

Step 2.2

Internally Caused Dangers

Interpretation

271

AppLogic.EtCO2
TooLow

AppLogic.NoEtC
O2

AppLogic.EtCO2
TooLow

Semantic
Mismatch None

N/A:
Standardize
semantics at

ecosphere level

Concurrent:
Messages
should use

some sort of
semantic tag,

eg, 11073
nomenclature

Rollforward:
Mismatched

tags mean the
app switches to
a safe state and

notifies the
clinician

None

AppLogic.EtCO2
Early

If messages
arrive faster than

allowed the
network drops
them and the
app switches

into a safe state

AppLogic.EtCO2
Late

If messages
don't arrive as
frequently as
specified the
app switches

into a safe state
and notifies the

clinician

Syntax
Mismatch

The EtCO2 message is in a
different syntactic format than what

the app is expecting, so the app
misinterprets it, leading to the app
reading a deflated EtCO2 value

None

Model Checking
or Testing:
Verify that

syntax of EtCO2
values used by

Capnograph
matches that
used by app

None N / A None
The EtCO2 message is in a

different syntactic format than what
the app is expecting, so the app

can't understand it, leading to the
app having no EtCO2 value

The underlying meaning of the
EtCO2 value produced by the puse

oximeter isn't the same as the
underlying meaning assigned to

the value by the app, leading to the
app interpreting a deflated EtCO2

value

Rate Mismatch

The pulse oximeter sends EtCO2
messages faster than the app is

expecting / can handle them

None

Static Analysis:
Verify that RT /

QoS
specifications

cannot be
violated

Concurrent:
Specified RT /
QoS Properties

None

The pulse oximeter doesn't send
EtCO2 messages as frequently as

the app needs them

272

Architectural:

High Low Early Late
PulseOx ->
RRToApp

RRToApp.RRToo
High Not Hazardous RRToApp.NoRR Not Hazardous

RRToApp.RREa
rly

RRToApp.RRLat
e

Successor
Danger Name

Ctrld Process
State

Process Var.
Name and Value

Co-occurring
Dangers

Run-time
Detection

Run-time
Handling

AppLogic.RRTo
oHigh

RRToApp.RRTo
oHigh

Patient.NearHar
m

Patient RR >
Actual Value None None None

AppLogic.NoRR RRToApp.NoRR Any Any None None None

AppLogic.RREar
ly

RRToApp.RREa
rly Any Any None

Concurrent:
Timeouts

Rollforward:
Network
disables

connection (and
notifies the
clinician?)

AppLogic.RRLat
e

RRToApp.RRLat
e Any Any None None None

Successor
Danger Guideword

Co-occurring
Dangers

Design-time
Detection

Run-time
Detection

Run-time
Error Handling

Run-time
Fault Handling

Activity 0: Fundamentals
Element: Successor Link Name: Predecessor Link Name(s) Classification

RRToApp RRToApp -> App Logic PulseOx -> RRToApp Sensor -> Controller

Activity 1: Unsafe Interactions
Step 1.1 Step 1.2

Successor Dangers
Manifestations

Pred. Link
Content

Halted Erratic
Timing

AppLogic.RRTooHigh

AppLogic.NoRR

AppLogic.RREarly

AppLogic.RRLate

Step 1.3

Externally Caused Dangers Proposed Mitigations

Interpretation

The feedback from the RR sensor
is higher than its actual value

There is no feedback from the RR
sensor

The feedback from the RR sensor
arrives earlier than it should

The feedback from the RR sensor
arrives later than it should

Activity 2: Internal Faults

Step 2.1

Faults Not Considered

Guideword Justification

Software Bug

We're using a "proven in use" network

Bad Software Design

Compromised Software

Compromised Hardware

Bad Software Design

Bad Hardware Design

Production Defect

Deterioration Deterioration is not a significant source of concern over the life of the networking materials

Environment damages hardware The app isn't responsible for network maintenance

Operator HW Mistake
The network doesn't interact directly with a human operator

Operator HW Error

Hacked Hardware
The hospital has physical security measures in place

Hacked Software

Operator SW Mistake
The network doesn't interact directly with a human operator

Operator SW Wrong Choice

Step 2.2

Internally Caused Dangers

Interpretation

273

AppLogic.RRTo
oHigh

AppLogic.NoRR

AppLogic.RRTo
oHigh

Semantic
Mismatch None

N/A:
Standardize
semantics at

ecosphere level

Concurrent:
Messages
should use

some sort of
semantic tag,

eg, 11073
nomenclature

Rollforward:
Mismatched

tags mean the
app switches to
a safe state and

notifies the
clinician

None

AppLogic.RREar
ly

If messages
arrive faster than

allowed the
network drops
them and the
app switches

into a safe state

AppLogic.RRLat
e

If messages
don't arrive as
frequently as
specified the
app switches

into a safe state
and notifies the

clinician

Syntax
Mismatch

The RR message is in a different
syntactic format than what the app

is expecting, so the app
misinterprets it, leading to the app

reading an inflated RR value
None

Model Checking
or Testing:
Verify that

syntax of RR
values used by

Capnograph
matches that
used by app

None N / A None
The RR message is in a different

syntactic format than what the app
is expecting, so the app can't

understand it, leading to the app
having no RR value

The underlying meaning of the RR
value produced by the puse

oximeter isn't the same as the
underlying meaning assigned to

the value by the app, leading to the
app interpreting an inflated RR

value

Rate Mismatch

The pulse oximeter sends RR
messages faster than the app is

expecting / can handle them

None

Static Analysis:
Verify that RT /

QoS
specifications

cannot be
violated

Concurrent:
Specified RT /
QoS Properties

None

The pulse oximeter doesn't send
RR messages as frequently as the

app needs them

274

Architectural:

Early Late

Process
Variable Unit

Patient EtCO2 100% 99% 98% ... 3% 2% 1% Percent

Patient RR 75 74 73 ... 2 1 0
Breaths per

Minute

Successor
Danger Name

Ctrld Process
State

Process Var.
Name and Value

Co-occurring
Dangers

Run-time
Detection

Run-time
Handling

EtCO2ToApp.Et
CO2TooLow

EtCO2 < Actual
Value

RRToApp.RRTo
oHigh RR > Actual Value

EtCO2ToApp.No
EtCO2

RRToApp.NoRR

None PatientToCapno
graph.EarlyData Any Any None

Concurrent: RT /
QoS

specifications

Rollforward:
Drop readings
that arrive too

early

None PatientToCapno
graph.LateData Any Any None

Concurrent: RT /
QoS

specifications

Rollforward:
Notify clinician

and stop
producing data
(transforming

this into
NoSpO2)

Activity 0: Fundamentals
Step 0.2

Element: Successor Link Name(s): Predecessor Link Name(s) Classification

Capnograph Capnograph -> EtCOToApp
PatientToCapnograph ->

Capnograph Sensor

Capnograph -> RRToApp

Activity 1: Unsafe Interactions
Step 1.1 Step 1.2

Successor Dangers
Manifestations

Pred. Link Content Halted Erratic
Timing

EtCO2ToApp.EtCO2TooLow PatientToCapno
graph ->

Capnograph
PatientToCapnograph.BadReading PatientToCapno

graph.NoData Not Hazardous PatientToCapno
graph.EarlyData

PatientToCapno
graph.LateDataEtCO2ToApp.NoEtCO2

EtCO2ToApp.EtCO2Early

EtCO2ToApp.EtCO2Late

RRToApp.RRTooHigh

RRToApp.NoRR

RRToApp.RREarly

RRToApp.RRLate

Process Values

Step 1.3

Externally Caused Dangers Proposed Mitigations

Interpretation

PatientToCapno
graph.BadReadi

ng
Patient.NearHar

m
The sensor itself malfunctions,

providing an over-optimistic reading
of the patient's health

None None N / A

PatientToCapno
graph.NoData Any None

The sensor stops providing any
information at all, so the

capnograph also can't produce any None None N / A

The capnograph's
patient-attachment produces

messages faster than the
capnograph itself expects them

The capnograph's
patient-attachment produces
messages slower than the

capnograph itself need them

Activity 2: Internal Faults

Step 2.1

Faults Not Considered

Guideword Justification

Software Bug

We're using a "proven in use" capnograph
Bad Software Design

Compromised Software

Compromised Hardware

275

Successor
Danger Guideword

Co-occurring
Dangers

Design-time
Detection

Run-time
Detection

Run-time
Error Handling

Run-time
Fault Handling

EtCO2ToApp.Et
CO2TooLow

RRToApp.RRTo
oHigh

EtCO2ToApp.Et
CO2TooLow

EtCO2ToApp.No
EtCO2

EtCO2ToApp.Et
CO2Early

EtCO2ToApp.Et
CO2Late

RRToApp.RRTo
oHigh

RRToApp.NoRR
RRToApp.RREa

rly
RRToApp.RRLat

e
EtCO2ToApp.No

EtCO2
RRToApp.NoRR

Hardware Bug

Bad Hardware Design

Production Defect

Adversary Accesses Hardware
The hospital has physical security measures in place

Adversary Accesses Software

Operator HW Mistake

There are no user settings used for the capnograph
Operator HW Wrong Choice

Operator SW Mistake

Operator SW Mistake

Syntax Mismatch
The capnograph isn't a connection between two componentsRate Mismatch

Semantic Mismatch

Step 2.2

Internally Caused Dangers

Interpretation

Environment
damages
hardware

A cosmic ray flips a bit in the
Capnograph, breaking it in any

possible way

None

None Preemptive:
Self-test

Compensation:
ECC Memory

Isolation:
Shielding

The capnograph is poorly protected
from the environment and fails due

to, eg, liquids

Testing: Subject
the capnograph

to various
environmental

problems

Preemptive:
Periodic pump
examinations

Compensation:
Additional

physiological
monitors should
be used in case
of errors with the
pulse oximeter

Isolation:
Adequate

sealing, N/A:
careful use in

the clinical
environment

Deterioration
The capnograph is poorly

maintained and fails due to
deterioration

None

Testing:
Maintenance

intervals should Preemptive:
Routine

Maintenance
None None

276

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Literature Review
	Integrating Medical Devices
	Medical Application Platforms
	The Integrated Clinical Environment
	The Medical Device Coordination Framework
	Connecting Medical Devices
	A PCA Interlock App

	System Safety
	A Note on Terminology
	Hazard Analyses
	The Fault Propagation and Transformation Calculus
	Documenting Safety: Assurance Cases
	Standardization Efforts

	Architecture Modeling
	Why Model System Architecture?
	Architecture Modeling Techniques
	Technological Approaches to Architecture Modeling

	An AADL Subset for MAP Apps
	Introduction
	App Development Environment Vision
	Mechanization and Regulatory Authorities

	Why AADL for MAPs?
	Medical Application Platforms
	Architecture Analysis & Design Language
	Why subset AADL?

	Language Walkthrough
	Preliminary tasks: Types and Default Properties
	The AADL System
	The AADL Process and Device
	The AADL Thread

	Code Generation and Instantiation
	Executable Code Skeletons
	App Configuration
	Launching the App

	Tailoring AADL to a Domain

	The SAFE Process
	Core Concepts
	Successor Dangers
	Manifestations
	Fault Classification
	Formality in Causation and Decomposition
	Terminology
	Parallel and Compositional Aspects of SAFE

	Activity 0: Fundamentals
	System-Level Fundamentals
	Specifying a Control Structure

	Activity 1: Externally Caused Dangers
	Successor Dangers and Process Models
	Deriving an Element's Dangers
	Documenting External Interactions

	Activity 2: Internally Caused Faults
	Eliminating Classes of Faults
	Documenting Internal Faults

	Assessment
	Objective Attributes
	Subjective Attributes of Previous Hazard Analyses
	Subjective Evaluation of SAFE
	Threats to Validity

	Theoretical Foundations
	Introduction
	Hierarchical Depth, Component Role, and Undesirability

	Process
	Formalisms
	Compositionality
	A Baseline System
	Compositional Approach: App
	Compositional Approach: Pump
	Analyzing the Composed System
	Refining a Component

	Fault Propagation and Transformation
	Example System
	Differences Found
	Methodological Discussion and Vocabulary

	Gaps in the Analysis

	Evaluation
	Analysis of the PCA Interlock System
	Previously Discovered Issues
	Newly Discovered Issues
	Threats to Validity

	Proposed User Study
	Methodology
	Hypothesis
	Threats to Validity
	Further Studies

	Future Work and Conclusions
	Future Work
	MDCF Architect
	The SAFE Process
	Theoretical Work

	Concluding Remarks

	Bibliography
	SAFE Process
	SAFE Worksheets
	Full PCA Example

