
Kinerja: A Workflow Execution Environment

by

Sam Procter

B.S., University of Nebraska at Lincoln, 2009

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2011

Approved by:

Major Professor
John Hatcliff

Copyright

Sam Procter

2011

Abstract

Like all businesses, clinical care groups and facilities are under a range of pressures to

enhance the efficacy of their operations. Though there are a number of ways to go about

these improvements, one exciting methodology involves the documentation and analysis

of clinical workflows. Unfortunately, there is no industry standard tool which supports

this, and many available workflow documentation technologies are not only proprietary,

but technologically insufficient as well. Ideally, these workflows would be documented at a

formal enough level to support their execution; this would allow the partial automation of

documented clinical procedures. However, the difficulty involved in this automation effort

is substantial: not only is there the irreducible complexity inherent to automation, but a

number of the solutions presented so far layer on additional complication.

To solve this, the author introduces Kinerja, a state-of-the-art execution environment

for formally specified workflows. Operating on a subset of the academically and industrially

proven workflow language YAWL, Kinerja allows for both human guided governance and

computer guided verification of workflows, and allows for a seamless switching between

modalities. Though the base of Kinerja is essentially an integrated framework allowing for

considerable extensibility, a number of modules have already been developed to support

the checking and executing of clinical workflows. One such module integrates symbolic

execution which greatly optimizes the time and space necessary for a complete exploration

of a workflow’s state space.

Table of Contents

Table of Contents iv

List of Figures vi

List of Algorithms vii

Acknowledgements viii

Dedication ix

1 Introduction 1
1.1 What is Workflow? . 1
1.2 Workflow in Health Care . 3
1.3 Contributions . 5

2 Literature Review 8
2.1 Execution of Workflow . 8

2.1.1 Status Quo . 8
2.1.2 Future Developments . 9

2.2 Evaluation Metrics . 10
2.3 Workflow Language Examples . 12

2.3.1 BPMN . 13
2.3.2 Little-JIL . 15
2.3.3 YAWL . 18

2.4 Symbolic Execution . 22

3 Kinerja 25
3.1 Design Overview . 25
3.2 Description of YAWL-Subset . 27

3.2.1 Informal Description . 27
3.2.2 Formal Description . 27

3.3 Evaluation Metrics Revisited . 33
3.4 Control Aspect . 35

3.4.1 Control flow . 36
3.4.2 Data Structures . 46

3.5 Data Aspect . 49
3.5.1 Formalization of Symbolic Execution 49
3.5.2 Control Flow . 50

iv

3.5.3 Data Structures . 53
3.6 Monitors . 53
3.7 User Interface . 56

4 Benchmarks 58
4.1 Synthetic Benchmark . 58

4.1.1 Description . 58
4.1.2 Execution . 62

4.2 Clinical Benchmark . 66
4.2.1 Description . 66
4.2.2 Execution . 69
4.2.3 Evaluation . 70

5 Conclusion 72
5.1 Future Work . 72
5.2 Clinical Impact . 73

Bibliography 79

v

List of Figures

1.1 An example workflow . 2
1.2 The Kinerja vision . 6

2.1 A simple BPMN diagram. 13
2.2 A simple Little-JIL diagram. 16
2.3 A simple YAWL diagram. 18
2.4 An imperative program and its symbolic execution tree 23

3.1 The high-level architecture of Kinerja. 26
3.2 The subset of YAWL28 that Kinerja supports. 27
3.3 The YAWL example from chapter two, as parsed 28
3.4 The YAWL example, highlighting definition one 29
3.5 The YAWL example, highlighting definition three 30
3.6 The YAWL example, highlighting definition six 32
3.7 An example of what each of definition seven’s rules enforce 34
3.8 The execution tree for the DFS algorithm 37
3.9 Execution of the DFS algorithm on a simplified workflow 39
3.10 The execution tree for the Enabled algorithm 41
3.11 Execution of the Enabled algorithm on a simplified workflow 42
3.12 The execution tree for the logical state conversion component of the Seen-

Before algorithm . 44
3.13 The execution tree for the subsumption checking component of the SeenBe-

fore algorithm . 45
3.14 Execution of the SeenBefore algorithm on a simple data-aspect state . . . 46
3.15 The execution tree for the Execute algorithm 51
3.16 A simple monitor . 54
3.17 Two example monitors . 55
3.18 The Kinerja (named Lambda when this screenshot was taken) web interface. 56

4.1 The synthetic benchmark for Kinerja, as laid out in YAWL. 59
4.2 Kinerja’s parser’s final interpretation of the synthetic workflow 63
4.3 The states of the Synthetic workflow . 64
4.4 The clinical benchmark’s overview net and Setup subnet. 66
4.5 The clinical benchmark’s Check Patient subnet. 67

vi

List of Algorithms

1 The DFS algorithm . 36
2 The Enabled algorithm . 40
3 The SeenBefore algorithm . 43
4 The Execute algorithm . 51

vii

Acknowledgments

This thesis, and the software developed to support it, could not have happened without

the support, help, and caring of my teachers, family and friends. First and foremost I

would like to thank Dr. John Hatcliff, my primary adviser, whose help and guidance was

absolutely crucial not only on this project, but on a number of smaller projects which led

to my graduate work at Kansas State. I also want to explicitly thank Dr. Robby, whose

technical advice was essential during the development of the more intricate parts of Kinerja.

I’d also like to thank Dr. Virgil Wallentine for his advice, and for serving on my committee.

I’d like to thank my family for their understanding, support and advice, particularly when

it came to the machinations of graduate school. Finally I’d like to thank my friends, who

listened to not only my complaints when my program was functioning incorrectly, but also

my celebrations when things finally worked.

viii

Dedication

To my parents, who were my first teachers, and to my brother, who before anyone else

showed me that learning was cool.

ix

Chapter 1

Introduction

1.1 What is Workflow?

We define a workflow as a series of steps necessary to complete some task as well as the

rules governing transitions between those steps. An alternative definition, from Modern

Business Process Automation is (paraphrased): a precise process description used to guide

the execution of activities14. The task might be something quite simple with a small number

of steps (e.g., filling a cup with coffee) or it may be a very complex, long process (e.g.,

launching the space shuttle). Each step in a workflow can itself contain a number of sub-

steps; i.e., each step in a process can itself be a fully defined workflow. This gives the creator

of a workflow the ability to define a process at an arbitrary level of abstraction, and it allows

for a gradual refinement (or abstraction) over time as needs dictate.

A workflow model, then, is a representation of a workflow for the purpose of communica-

tion or storage. Though a model may be a diagram on a piece of paper or a whiteboard, it

might also be machine readable, in a standardized format referred to as a workflow modeling

language. Some of these languages, such as Business Process Modeling Notation (BPMN)31,

are developed by third party consortia for the purpose of standardizing workflow models. In

recent years there has been a growing interest in getting workflows off-the-page (or off-the-

whiteboard, as the case may be) for ease of sharing and archiving. This has led to a number

of new workflow modeling languages which are designed strictly for use in various work-

1

flow modeling tools2,14,18,26. These languages are similar in a number of ways to computer

programming languages, in that they:

• Have a defined syntax and structure

• Enjoy rich tool support, including editors, translators, pretty printers, etc.

• Can often be generated from higher-level abstractions

• Have (possibly formally defined) semantics

• Can be simulated, verified, etc.

It should also be noted that without a well-defined semantics, simulation, verification and

execution of workflows is difficult, if not impossible.

Are the

vital signs

in range?

Yes No

Give

Medicine

A

Give

Medicine

B

Notify

Doctor

Figure 1.1: An example workflow

There are a number of industries to which workflow modeling is particularly well suited,

and interest in many of these industries is high. Often the best process for completing a

2

given task is dictated by some domain expert, so in these industries the sharing of best-

practices (in the form of workflow documentation) can be of substantial benefit. Workflow

modeling has been successfully used in a broad range of commercial and industrial contexts,

ranging from professional cinema23 to business process management29 to various medical

contexts (e.g.: gynecological14).

There are a number of organizations involved in advancing workflow modeling. These in-

clude commercial entities like the Object Management Group (OMG12) as well as academic

institutions like the University of Massachusetts (UMass33) and Queensland University of

Technology (QUT28). Similarly, a range of tools have been developed, such as the Little-

JIL33 or BPMN Modeler27 tools – both are plug-ins for the popular Eclipse integrated de-

velopment environment. There are also standalone tools like the Java Application Building

Center (jABC25) or Yet Another Workflow Language (YAWL28) editor and engine.

1.2 Workflow in Health Care

The documentation of work processes is important in a range of industries, not least among

them medicine. There are four main ways the documentation of workflow is especially useful:

1. Communicating best practices from domain experts to medical workers – The range

of procedures various medical personnel are tasked with is vast. Though many have

a great deal of expertise in a number of areas, there are experts in each of the more

specific domains found in health care. Training with workflows developed, critiqued,

or otherwise reviewed by these experts allows for an efficient and novel dissemination

of the professional’s expertise.

2. Communicating best practices from device manufacturers to medical workers – Device

manufacturers and those in the medical services field have a vested interest in making

sure that their products are used correctly and safely. The use of workflow modeling

technologies in conjunction with standard training techniques allows for longer term

and more thorough reinforcement after the training session has completed.

3

3. Documenting a hospital’s current practices for quality auditing organizations – Having

on-hand documentation of existing processes can minimize the disruption caused by

the various audits medical centers are often required to undergo. The documentation

can also provide a “paper trail” useful for explaining what went wrong when a problem

is discovered. This paper trail can allow issues of liability to be settled more quickly

and accurately, as time-stamped comparisons of what should have occurred versus

what actually occurred can be easily created.

4. Enhancing operations management and efficiency planning – Workflows can aid in

the creation of simulations which allow management to more easily test out different

resource allocation strategies, increasing the facility’s efficiency and helping to keep

costs low. They can benefit planners by not only detecting flaws earlier in the workflow

design process, but by designing workflows with more clarity and specificity in the

original case.

In many medical centers, workflows are poorly documented24, and many aren’t documented

at all, but are instead simply routines well-known to experienced workers. These steps to

perform a given task are passed on through word-of-mouth and on-site training. If a process

requires in-depth analysis, it may be drawn up on a whiteboard or poster, but the knowledge

contained in the diagram is lost as soon as the board is erased or the poster is taken down.

The most advanced technology commonly used is basic graphing software (e.g., Microsoft

Visio) which allows for sub-processes, but little else.

One area where currently popular workflow modeling technologies (graphing software as

well as whiteboard diagrams) fall considerably short of more specialized technologies is the

formality of their semantics. As mentioned previously, a formal semantics allows for a range

of benefits:

1. Simulation – Since a workflow specification written in a language which has formalized

semantics has a completely unambiguous meaning, a computerized interpreter can be

built which allows for simulation of the workflow.

4

2. Verification – The simulation mentioned in (1) can be re-executed repeatedly to check

for errors or verify that certain properties never hold, hold in all cases, or hold in

certain special situations.

3. Code Generation – An unambiguous workflow specification can be interpreted by a

computer and then re-generated in some other unambiguous language (e.g. a pro-

gramming language like Java or Scala). This allows for large amounts of tedious,

error-prone (and boring) code to be generated rather than implemented by a human.

Unfortunately, the solution to this problem is far more complex than simply using existing

formal modeling technologies. Specifically, the problems with formally modeling clinical

workflows include:

1. Frequent exceptional occurrences – With the variety of patient disorders and possible

comorbidities, workflows cannot be standardized to nearly the same degree that they

can in other industries.

2. Frequent concurrency – Many medical workflows have a high degree of concurrency.

Further complicating the processes is the large amount of integration between the

concurrent workflows as inter-process communication is extremely common.

3. Wide variety of potential workflows – Many roles in medical centers require a broad

range of abilities, and repetition can be infrequent. This means individual workflows

may receive less attention than those in other industries due to the number of processes

to document.

1.3 Contributions

This thesis introduces and explains a new tool, developed by the author, called Kinerja.

Kinerja is a workflow execution environment. That is, it is not an editor for developing

workflows, but rather an interpreter for workflows with well-defined semantics. While its

5

External Input Source Internal Input Source
State matching

Symbolic Execution

Governance Common Engine Verification

Property Checking

Figure 1.2: The Kinerja vision

use is not tailored to any particular industry, the examples and focus in this thesis are

clinical in nature.

Kinerja itself has two important aspects:

1. Two engine modes –

(a) Verification – In verification mode, Kinerja systematically explores all possible

program states.

(b) Governance – In governance mode, Kinerja directly executes the workflow.

The key difference between engine modes is what happens when a point of nondeter-

minism is reached – that is, what happens when the system does not contain enough

information to figure out how to proceed on its own. In verification mode, execution

takes all possible routes. That is, if the workflow asks for a patient’s heart rate as

some number between 1 and 300, Kinerja continues executing with every possible heart

rate. In governance mode, Kinerja will poll an outside agent for the information. For

6

example, the patient’s heart rate could be entered by a clinician, or read directly from

a compatible heart rate monitor.

Note also that both of these modes will use the same program logic, guaranteeing that

all states reachable in governance mode are checkable by the verification mode.

2. Property Checking – Kinerja is able to verify properties9 of the workflows it executes,

and these properties are implemented as finite-state machines.

7

Chapter 2

Literature Review

2.1 Execution of Workflow

In addition to the benefits cited in the previous section, an additional, and significant,

benefit of formalizing workflows is the ability to “execute” them by defining actions (either

manual or automated) to associate with steps in processes. This execution can be quite

basic, like simply working through a checklist generated from the flow of steps in a given

process, or it can be far more complex, like an execution environment with automatic and

manual task integration handled by a central dispatch. It is similar to the simulation of

workflows discussed earlier, except rather than simulating the outcomes of tasks, the steps

of the workflow are instead actually performed, and the result is loaded back into the system

so the process can continue.

2.1.1 Status Quo

While the concept of performing medical procedures as a series of steps has been around

as long as medicine itself, medical devices have only (relatively) recently been electro-

mechanical devices. As the machines, and eventually computers, controlling medical devices

have increased in complexity, so has their flexibility. No longer are devices limited to the

simple display of visual information – many medical devices can report report their status

along some electronic communication channel as well (e.g.: a serial or Universal Serial Bus

8

(USB) port). This allows these devices to be networked with each other and with central

servers.

These communication links can remove much of the tedious and error-prone data entry

steps in medical workflows – not only making getting patient physiological data into med-

ical systems faster, but more accurate as well. This communication allows for a far more

smoother integration of automated and manual tasks in a workflow (since manually entering

the results of an automated step is counter-intuitive and error-prone).

Some workflow technologies (e.g.: YAWL) allow custom automated tasks. These tech-

nologies define a mapping from the workflow’s state variables to a user-defined program

(which may be an interface to a physical device) and from the output of the custom pro-

gram back into the workflow state. In this mapping, there is a realization of the goal of a

smooth integration of automated and manually executed tasks.

2.1.2 Future Developments

One interesting application currently on the “bleeding-edge” of development is the abil-

ity to coordinate the control of medical devices with the Integrated Clinical Environment

(ICE) standard or a similar framework (see e.g.:15). The technological piece necessary for

this advancement is the addition of control data to the computer-interface in a medical

device. Though many medical devices support streaming data meant for display, relatively

few support receiving commands that modify the device’s behavior. This advancement is

interesting for three reasons:

1. The power of such a system is impressive – Connecting and integrating medical devices

allows for everything from safer surgeries (e.g.: disabling a medical laser if a patient’s

oxygen line is still active) to more accurate diagnostic images (e.g.: a respirator sig-

naling an x-ray machine when a patient’s lungs are inflated to a certain amount17).

With such a system, both the likelihood and impact of human error can be reduced,

and the speed of many operations increased.

9

2. A “closed-loop” medical system is risky – The idea of a computer error costing a

human life is particularly horrifying, and relinquishing any amount of control over a

medical procedure is likely to cause considerable unease.

3. Verification of such a system is unprecedented – The verification required to eliminate

risk in such a system is certain to be difficult. Worse still, the current regulatory

framework is not prepared to deal with workflows that create closed-loop systems15.

Since medical devices have historically been monolithic units, they are tested as such

and there is no way to verify the correctness of individual elements of a heterogeneous

system.

It’s logical that workflow coordination languages should aim to be “device-aware” at some

future point, and to be able to handle the coordination of devices into closed-loop systems.

2.2 Evaluation Metrics

There exist a number of workflow modeling languages and tools; and they range from

those designed for use within the medical profession to those designed for business to those

designed for computer scientists. Ultimately we settled on three order qualifiers:

1. Expressiveness – The language must be able to capture the complexities and diverse

range of workflows in the medical profession. This means the tool must support a

number of different workflow “constructs” such as:

(a) Explicit flow control – The workflow author should be able to explicitly control

the flow in the process. This entails not only the ordering of tasks, but also

any synchronization requirements as well. This is often achieved by embedding

different “split” and “join” logics, which allows the transitions between steps in

a workflow to be deterministic at run time.

(b) Explicit sequence control – The workflow author should be able to model multiple

tasks that execute in parallel or in sequence.

10

(c) Inter-process communication – The workflow author should be able to model

channels of communication between tasks that are executing simultaneously.

(d) Acquisition of resources – The workflow author should be able to acquire resources

for shared or exclusive use.

(e) Exceptional control flow – The workflow author should be able to cleanly and

succinctly model behavior where errors have occurred.

2. Ease of use – The language must be easily understandable by someone in the medical

field. If the language is highly expressive but is too complex to be rapidly learned

and understood by workers in industry, then it is ultimately of little value. Uses one

and two in the Workflow in section 1.2 (communication of best practices from either

domain experts or device manufacturers to medical workers) are directly contingent

upon workflow models being adopted by non-technical medical professionals, and ease

of use is critical to their adopting any language.

3. Tool support – The language must have a rich tool set in place to support the creation,

maintenance, and preferably execution of workflows. Ideally this tool would also be

easily used by medical personnel, since this would lead to domain experts requiring

less training and non-domain professionals providing better feedback, editing, and

revisions. Better tool support would also translate into users being more likely to

continue using the workflow modeling language, leading to increased standardization

over time. This support might also include a model checker / other verification system

integrated with a given execution environment.

Note that another means of evaluation include the multitude of workflow patterns explored

by W.M.P. van der Aalst et al29.

There were a number of potential workflow modeling languages we considered:

• BPEL4 – An XML standard for describing interactions between a business process and

11

a web service. It has no set graphical notation, although BPMN is partially capable

as serving as a graphical layout of a BPEL workflow.

• Little-JIL34 – Little-JIL refers to itself as an agent coordination language. It focuses

on coordinating the actions of various agents, which are defined in an environment

external to Little-JIL.

• jABC25 – jABC is developed at the University of Dortmund. It is an all-purpose “Java

Application Building Center,” allowing computer programmers to define nodes which

are linked together by non-technical domain experts. These nodes are backed by java

classes, and can be linked together graphically in the supplied editor.

• BPMN12 – BPMN is a standardized notation designed to build diagrams of business

processes. There are a wide range of graphical editors, though, and while some at-

tempts at formalizing BPMN’s semantics have been made, they greatly reduce the

language to a less-expressive subset8. It would likely be extremely difficult or impos-

sible to formally define the entirety of the BPMN specification.

• YAWL28 – YAWL was created to be able to easily support nearly all of the 26 original

workflow patterns29. It is an actively-developed, free, open-source workflow editor

and includes a process server capable of executing workflows. There also exist basic

model-checkers for its control aspect.

Three of these technologies were selected for a more close examination: BPMN, Little-JIL,

and YAWL (see the section below).

2.3 Workflow Language Examples

This section contains an example of a process represented in three different workflow mod-

eling languages. In this process, a nurse checks a patient to see if her vital signs are within

12

an expected range (see Figure 1). If they are, then he administers a dose of medicine A. If

her vital signs are abnormal, however, a doctor is notified while medicine B is delivered.

2.3.1 BPMN
N

u
rs

e

Check Vital

Signs

Give Medicine

A

Give Medicine

B

D
o
s
in

g
N

o
ti

fi
c
a
ti

o
n

D
o
c
to

r

Doctor

Notified

Figure 2.1: A simple BPMN diagram.

Business Process Modeling Notation (BPMN – see Figure 2) is a modeling language

created by the Business Process Management Initiative (BPMI) for standardizing the many

diagram formats used in business31. It is now supported by the Object Management Group

(OMG), which merged with BPMI after the creation of the language. The language is made

up of graphical elements that are similar to those found in flow charts. Diagrams in BPMN

are not meant to be executable.

Though there are four types of constructs in BPMN, many simple diagrams can be

represented with only the first two types (flow and connecting objects). The four types of

constructs are:

• Flow Objects – These are objects that represent the steps in a workflow. There are

three types of flow objects:

13

– Activities – Rounded rectangles represent activities. An activity is a “task” or

unit of work in the workflow. Tasks with decompositions (that is, tasks which

themselves are made up of subtasks) are referred to as sub-processes and are

denoted by a small + on the rounded rectangle.

– Events – Circles represent events e.g.: a message being sent or received. There

are three types of events:

∗ Start Events – These are events that start a series of steps when they occur.

∗ Intermediate Events – These are events that occur mid-flow, and signal nei-

ther the start nor the end of a workflow. They can, however, affect which

branch a workflow takes.

∗ End Events – These events signal that a workflow has completed, and should

be terminated.

– Gateways – Diamonds represent gateways. These can be either decision points

(which direct the flow through a process) or control points (which manage the

joining and splitting of flow paths). Symbols on the diamond specify the type of

gateway, e.g.: a + denotes a parallel gateway.

• Connecting Objects – These are branches that connect the flow objects. There are

three types of connecting objects:

– Sequence Flow – The typical flow connector (represented by a solid line), this

indicates the order in which flow objects are to be executed.

– Message Flow – A message flow (represented by a dashed line) indicates commu-

nication between different entities or roles in the diagram.

– Association – An association (represented by a dotted line) specifies that a given

artifact belongs to the indicated flow object.

14

• Swimlanes – Swimlanes are used to denote the responsibilities of actors in a BPMN

workflow. There are two types of of swimlanes:

– Pool – A pool contains all tasks a process participant is responsible for. In the

diagram, the two pools are named “Nurse” and “Doctor.”

– Lane – A lane is a subsection of a pool, and is used solely for organizing activities;

it does not denote a different participant. In the diagram, the Nurse pool has

two lanes, denoted “Dosing” and “Notification.” The Doctor pool has only one

(anonymous) lane.

• Artifacts – Artifacts are graphical enhancements to BPMN diagrams, and do not

affect the flow through a process. The set of artifacts is intended to be tailored to the

application. The set of artifacts included in the BPMN 1.0 standard are data objects,

groupings, and comments / annotations31.

As BPMN is a business-oriented standard12, tool support for the editing of BPMN diagrams

is extensive. These tools range from components of commercially developed systems27 to

freely available standalone diagram editors5. No tools which allow simulation / verification

of a BPMN model are freely available.

BPMN is highly readable, and its standardization is one of its selling points. Its similarity

to existing flow diagrams, and its compatibility with Unified Markup Language (UML) make

it quite desirable, unfortunately there are no formally defined semantics. Though there have

been attempts to define formal semantics for BPMN, they are defined for only a subset of the

language, and there is no tool support for this strict subset8. This makes BPMN essentially

impossible to simulate or model check, which means that it is not a strong candidate.

2.3.2 Little-JIL

Little-JIL is (see Figure 3) defined by its creators as an agent coordination language33.

It was designed by the Laboratory for Advanced Software Engineering Research (LASER)

15

Vitals In Range Vitals Out of Range

Give Medicine A Give Medicine B Notify Doctor

Check Vital Signs

Figure 2.2: A simple Little-JIL diagram.

group at the University of Massachusetts at Amherst (UMass) as an easily-read graphical

tool to support process programming by people who are not computer scientists. It has

formally defined semantics and is supported by a set of analysis tools as well as a graphical

editor.

There are two basic elements in Little-JIL: agents and steps. Steps are laid out (with the

Visual-JIL plug-in for the Eclipse IDE) graphically and represent units of work or tasks. A

group of steps combine as a tree into an agenda, which is assigned to an agent. Agents are

responsible for (attempting to) execute steps, and can be human but are not necessarily, as

tasks could potentially be completed by a computer or mechanical system.

• A step represents a single task.

– A badge on the left side of a step denotes the execution sequence of its children.

Execution sequences can be sequential (→), parallel (=), mutually exclusive (),

or try-until-success ().

– Steps can be external to the current agenda, and groups of external steps are

referred to as modules.

– Steps can have parameters, which are modal: a parameter can be designated for

input, output, input and output, or local/temporary uses.

16

– Steps possess a cardinality which denotes the number of times the step should be

executed. This cardinality can be known at design time or determined dynami-

cally.

– Steps have pre- and post-requisites (as well as predicates). Requisites are denoted

by triangles to the right and left of node names.

– Steps can have deadlines, which are written with clock hands on the interface

circle above a step’s name. Deadlines are given as a length of time relative to a

step’s enablement.

• Resources are written as call-outs with a line connected to the circle above the name

of a given step. Resource use, acquisition, and collections are all denoted by manipu-

lations of a circle icon. Note that agents can be passed as resources.

• Channels are written in a similar fashion to resources, and allow non-hierarchical

communication between nodes.

• Potentially thrown exceptions are denoted with badges on the right side of steps.

Exception handlers are linked to this badge much the same way sub-steps are linked

to a node’s sequencing badge.

• Little-JIL also has message passing / handling. Messages that are sent are denoted

with a lightning bolt attached to a call-out coming from the interface circle. A message

handler has a lightning bolt badge in the center of the step (between the sequencing

and exception badges) which is linked via call-out to the message handler.

Two tools for working with Little-JIL have been developed by UMass. The first, Visual-JIL,

is an Eclipse plugin which enables a process programmer to build a Little-JIL program34.

The second is a set of two tools for verifying Little-JIL programs. The first tool is a finite

state verification system, and the second is a fault tree generator / analysis system3,10. The

agent environment UMass uses is called Juliette and is not publicly released.

17

Little-JIL has none of the problems that BPMN has – Little-JIL’s semantics are well

defined and rich. Interesting work has been done with Little-JIL34, but it has not taken off

in industry. This may be due to the structure of Little-JIL diagrams: though information-

rich, they can be difficult to understand quickly. Interpreting a large set of tasks can pose

a challenge when they are presented in a control-flow order, but can be outright confusing

when presented as a tree designed to be traversed in preorder. Further, since the only

denotation of sequencing is done with a small badge on the left side of a step, parallel,

exclusive-choice, and sequentially ordered agendas all look virtually identical at first glance,

and following an execution process requires a steady concentration. Since we ultimately

want to work with members of industry who will need to pick up our notation quickly and

since we desired the ability to simulate workflow models, we decided that Little-JIL was

unfit for our purposes.

2.3.3 YAWL

Figure 2.3: A simple YAWL diagram.

Yet Another Workflow Language (YAWL) was developed in 2002 as a joint project be-

18

tween professors at the Eindhoven University of Technology and the Queensland University

of Technology1. It was built with two chief considerations: support for the common work-

flow patterns29, and a rigorous set of semantics based on colored (or stateful) petri-nets.

The makers of YAWL had to modify colored petri-nets in novel ways to support all of the

workflow patterns, and as YAWL is still under heavy development, they continue to extend

their semantics to support new features.

There are three perspectives in YAWL22:

• Control-flow Perspective – This is the perspective most often thought of when the

term workflow is used, and it is also the main perspective of the YAWL editor. YAWL

workflows are organized into nets, which are essentially pages. The basic constructs

of the control-flow perspective are1:

– Conditions – Known as places in the language of Petri nets28, conditions are

akin to resting states. Each workflow has two special conditions – an input

condition which is where the control flow begins, and an output condition that,

when reached, terminates the workflow. Places are indicated as circles on YAWL

nets.

– Tasks – Tasks are similar to the Petri net concept of transitions. Tasks are where

the actual work of the workflow gets described, and are denoted as squares. Note

that unlike in Petri nets, it is not necessary to have a condition between tasks as

an implicit condition can be created if tasks are connected directly. A task will

also be:

∗ Composite or Atomic – An atomic task is entirely self-describing; it is not

an abstraction for a sub-process. A composite task, on the other hand, is

merely an abstraction. A composite task is mapped to a separate workflow

(defined on a different net) which contains the steps necessary to complete

it.

19

∗ Single or Multiple Instance – A single instance task will occur once and a mul-

tiple instance task can occur multiple times. The semantics for controlling

the number of simultaneous instances are specific enough to allow minimum

and maximum numbers of instances, minimum numbers of instances that

must complete before the task itself is considered complete, and continua-

tion thresholds.

– Flows – Akin to arcs in YAWL parlance, control flows are indicated as solid,

directional lines with arrowheads. The splitting and joining of flows is explicit in

YAWL, and there are three types of splits and joins:

∗ AND – AND splits enable all outgoing flows in parallel. Similarly, an AND

join will wait for all incoming flows to be activated before the task it precedes

will execute.

∗ XOR – XOR splits enable a single outgoing flow, and the others are never

enabled. XOR joins initiate the task attached to them as soon as any of the

incoming flows are enabled.

∗ OR – OR splits trigger some outgoing flows. Each outgoing flow has a con-

dition attached to it (e.g.: myVar > 7), and each flow’s condition is tested.

Each flow with a true condition will be enabled. OR joins block until all

incoming flows are either enabled or deadlocked (that is, they will never be

enabled).

– Cancellation Regions – Denoted by a dashed line around a set of nodes, a cancel-

lation region allows for a set of tasks to be canceled after a certain task completes

execution.

• Data Perspective – Recognizing that workflows in the real world rely on data to guide

decisions, the creators of YAWL built a data perspective into the YAWL editor. The

base of the data perspective is the decomposition1. A decomposition is the work

20

required to complete a task, and they use parameters which are taken as input and

produced as output. Parameters are akin to variables in traditional programming,

and have many of the same characteristics, such as a name, a type, a scope, and

a designation. A parameter’s designation is identical to the concept of modality in

traditional programming: a parameter may be an “in” variable, an “out” variable, an

“in/out” variable or for local use only. Decompositions can be small XPath or XQuery

strings, references to web services, or even java classes.

• Resource Perspective – In industry, assignments to workers are often based on their

roles, capabilities, memberships in organizations, etc.. In order to best model this,

the creators of YAWL implemented the resource perspective which allows a workflow

designer to define a range of organizational structures, and to let the system assign

tasks automatically using a person’s membership in these structures as criteria. The

four types of organizational structures are1:

– Roles – A role is a job to be performed by a given user. Note that a user can

have multiple roles, and that roles can be part of other roles (e.g.: the role of

nurse’s assistant belongs to the role of nurse).

– Capabilities – A capability is simply a flag that a user has some skill (e.g.: a

nurse has pediatric training).

– Positions – A position is a set job in a set hierarchical structure (e.g.: the nurse’s

assistant reports to the chief of nursing who reports to the director of a hospital).

– Organizational Groups – Organizational groups are groups of positions. Organi-

zational groups can contain positions as well as other organizational groups (e.g.:

the nursing group would contain the positions of nurse’s assistant and chief of

nursing, and be contained by the hospital group).

It should also be noted that what YAWL terms resources are often also called agents.

21

They are not resources that are used or consumed in a process, but rather things that

are capable of completing tasks independently.

There are a broad range of tools designed to work with YAWL – the official distribution

includes both an editor for YAWL nets and an engine to allow them to be executed. The

editor is the reference implementation, and supports all currently available language features.

The engine allows an organization to execute workflows by posting tasks to user’s worklists,

executing automated tasks, and keeping track of organizational data. There are also a

number of services designed to work with the engine, ranging from interfaces with Twitter

to digital signature validators1. Further, there are tools which are external to the main

YAWL distribution but which coordinate with it to, e.g.: run simulations and analysis on

data derived from YAWL execution traces35.

YAWL marries the benefits of the two previously discussed technologies (Little-JIL and

BPMN): it has formally defined semantics as well as an easily understandable graphical

notation. There are numerous cases of it being used in a range of industries (e.g.: the film

industry23), and its facilities for logging and simulation are very exciting from an operations

management perspective. Though YAWL lacks some desirable features (e.g.: inter-process

communication) it is the best notation available.

2.4 Symbolic Execution

Note that this section is reprinted, with modifications, from the SAnToS technical report

“Efficient and Formal Generalized Symbolic Execution” by Xianghua Deng, Jooyong Lee,

and Robby7.

King initially came up with the idea of symbolic execution in 197616. The essential idea

of symbolic execution is demonstrated on a simple imperative method in Figure 2.4. In

contrast to concrete (traditional) execution, symbolic execution reasons about all possible

values when a concrete value isn’t known. These unknown values are represented as symbols

instead of e.g. integers.

22

1 int abs(int x) {
2 if (x < 0)
3 x = -x;
4 if (x < 0)
5 assert false;
6 return x;
7 }

⟨α,T⟩

⟨α,α<0⟩ ⟨α,α≥0⟩

⟨α,α<0 ∧ β = -α⟩

⟨β,α<0 ∧ β = -α⟩⟨β,F⟩

⟨α,F⟩ ⟨α,α≥0⟩

2,T 2,F

3

4,T 4,F

4,T 4,F

Figure 2.4: An imperative program and its symbolic execution tree

In the example, each tree node is a symbolic state 〈x, φ〉. The first term is a variable

identifier (x, in this case) and the second is a predicate φ which constrains the value of x. As

there is no initial information about x, the predicate is True, and there are no constraints

on φ. When execution arrives at line two, there isn’t enough information to know which

execution path to take, thus both paths are explored and appropriate constraints are added

to the symbolic state.

As execution progresses, the constraint is augmented by predicates which correspond

to the logical condition that caused the particular branch to be explored – thus φ is often

referred to as the path condition because it fully describes the conditions that must be met

for an execution trace to reach the current state. Note that if a constraint ever becomes

false, that means that that branch is no longer logically consistent (that is, it’s unreachable)

and as such can be discarded. In our example, line five is unreachable.

Decision Procedure: Decision procedures are used to determine which branches are

infeasible, and which should be followed. Similarly, they are also used to determine when a

constraint is technically valid (i.e., is a valid program state) but is inconsistent with stated

properties (i.e., an error has been detected).

Termination: One of the major challenges with symbolic execution is (the potential lack

of) termination. State matching, a common method for detecting duplicate states, is not

23

immediately applicable since additional constraints (which have no effect) may be added

by an additional iteration of a loop or an additional recursive call. Instead of testing for

equality, however, testing (by the decision procedure) can be done for state subsumption.

That is, if a state includes entirely a smaller state, then the former is said to subsume the

latter. As an example, consider the situation where we have two states: γ = 〈x, x > 3〉 and

δ = 〈x, x > 5〉. In this situation, γ subsumes δ – that is, every possible state δ encompasses

is also encompassed by γ, and as such, δ can be disregarded.

24

Chapter 3

Kinerja

Kinerja (sometimes written / abbreviated as κ) is a software model-checker, designed and

developed by the author, for workflows written in YAWL-formatted XML. Workflows can

thus be designed in the YAWL-editor, and then executed (in one of multiple modes) in

Kinerja. This approach is novel in a number of regards, primarily in the ability to verify

a workflow and then immediately execute it in a human-guided governance mode in the

same engine. This allows for increased confidence in the results of the model checker, as

the execution trace which is used to prove or disprove properties in verification mode can

be mapped directly to a set of inputs which, when given as input to Kinerja’s governance

mode, will recreate the execution trace exactly.

3.1 Design Overview

Kinerja’s execution begins by parsing its input, and transforming it into a valid colored

petri-net. Parsing is currently only implemented for YAWL, and is responsible for enforcing

a number of the language’s definitions and requirements (see section 3.2.2).

Depending on the execution mode, the control-aspect is run via different implementations

(see figure 3.1). Note that there are two key differences between the execution modes: the

source of input and the use of subsumption / state matching.

• Source of input: In verification mode, the engine exhaustively checks all possible

25

P
A
R
S
E
R

C
O
N
T
R
O
L

M
O
D
U
L
E
S

MONITORS

Figure 3.1: The high-level architecture of Kinerja.

states. Thus, input is automatically generated, and is symbolic rather than literal. In

governance mode, the engine polls external sources for its input – sources can include

humans or other machines.

• Use of subsumption: As soon as a loop has been detected, Kinerja will, in verification

mode, back out and resume execution after the loop’s completion. In governance

mode, however, there is no checking for looping, and execution will continue as long

as input guides it in a repetitive path.

Execution in Kinerja consists of two distinct phases which explicitly treat two aspects

of workflow-modeling: the control aspect (which governs moving execution according to a

program’s various control-flow paths) and the data aspect (which governs the state of a

workflow’s variables). The data aspect is implemented as an additional “module” – while

other aspects (such as one that might track resources or agents) are possible, they have

not been implemented. On top of these two phases sit Kinerja’s monitors, which watch all

stateful aspects of execution.

26

3.2 Description of YAWL-Subset

3.2.1 Informal Description

...

Condition

Output Condition

Input Condition

AND-split task

OR-split task

XOR-split task

AND-join task

OR-join task

XOR-join task

Atomic Task

Composite Task

Multiple instances
of an atomic task

Multiple instances
of a composite task

Cancellation Region

Figure 3.2: The subset of YAWL28 that Kinerja supports.

Kinerja supports a majority of YAWL’s features, as shown by the unshaded areas of

the above figure. Or-joins and cancellation regions were not supported because their imple-

mentation requires non-local semantics. Multiple-instance tasks may be supported at some

future point, but they were not required by our working examples, and became too low of

a priority to be included in the initial scope.

3.2.2 Formal Description

Figure 3.3 shows the YAWL example from Chapter 2, unfolded with implicit conditions and

collector tasks. These implicit conditions are added by the Kinerja parser, and this will be

the format of examples in this section.

Note that these definitions are reprinted, with modifications, from “YAWL: Yet Another

Workflow Language” by W.M.P. van der Aalst and A.H.M. ter Hofstede28.

27

Vitals Out of Range

Give Medicine BGive Medicine A Notify Doctor

Vitals In Range

Check Vital Signs

Figure 3.3: The YAWL example from chapter two, as parsed

Definition 1: An extended workflow net N is a tuple (C, i, o, T, F, split, join) such that:

− C is a set of conditions,

− i ∈ C is the input condition,

− o ∈ C is the output condition,

− T is a set of tasks,

− F ⊆ (C \ {o} × T) ∪ (T × C \ {i}) ∪ (T × T) is the flow relation,

− every node in the graph (C ∪ T, F) is on a directed path from i to o,

− split : T → {AND, XOR} specifies the split behavior of each task, and

− join : T → {AND, XOR} specifies the join behavior of each task.

Figure 3.4 highlights the various parts of Definition 1. As the first definition, it simply

lays out the most basic parts of a workflow – the nodes, arcs, and rules governing their

joining. Note the special conditions i and o, which are the net’s input and output conditions,

respectively.

28

C=All
T=All
i=
o=
F=All

split=
join=

Vitals Out of Range

Give Medicine BGive Medicine A Notify Doctor

Vitals In Range

Check Vital Signs

Figure 3.4: The YAWL example, highlighting definition one

If you’re familiar with YAWL, you may notice some things missing (see Figure 3.2) –

these features were removed for a number of reasons, and will not function correctly if used

with Kinerja.

Definition 2: A workflow specification S is a tuple (Q, top, T �,map) such that:

− Q is a set of EWF-nets,

− top ∈ Q is the top level workflow,

− T � = ∪N∈QTN is the set of all tasks,

− ∀N1,N2∈QN1 6= N2 ⇒ (CN1 ∪ TN1) ∩ (CN2 ∪ TN2) = ∅ i.e., no name clashes,

− map: T � 6→ Q \ {top} is a surjective injective function which maps each composite

task onto an EWF net, and

− the relation {(N1, N2) ∈ Q×Q|∃t∈dom(mapN1
)mapN1(t) = N2} is a tree.

29

This defines how multiple workflow nets can be combined into a single workflow. I make

the simplifying assumption that there is no nesting for workflows in Kinerja, so to enforce

this the parser it employs “flattens” input workflows. This allows workflows to still use

nesting when being designed, but effectively eliminates the constraints of this definition

from the Kinerja engine.

Definition 3: LetN = (C, i, o, T, F, split, join) be an EWF-net. Cext = C∪{c(t1,t2)|(t1, t2) ∈

F ∩(T ×T)} and F ext = (F \(T ×T))∪{(t1, c(t1,t2))|(t1, t2) ∈ F ∩(T ×T)}∪{c(t1,t2)|(t1, t2) ∈

F ∩ (T × T)}. Moreover, auxiliary functions • , • : (Cext ∪ T) → P(Cext ∪ T) are defined

that assign to each node its preset and postset, respectively.

Cext=All
Fext=All
Preset of
Vitals Out
of Range

=
Postset of
Vitals Out
of Range

=
Vitals Out of Range

Give Medicine BGive Medicine A Notify Doctor

Vitals In Range

Check Vital Signs

Figure 3.5: The YAWL example, highlighting definition three

Definition 3 accomplishes two things. First, it explains how to generate a valid colored

30

petri net from a YAWL workflow by creating implicit conditions (states) between tasks (tran-

sitions), and updating F , the flow relation, accordingly. It also defines two functions: • ,

and •, which map a node (either a condition or task) to its preset and postset, respectively.

Note that in our example (Figure 3.5), nearly every old element in F has been replaced

– the only elements which persisted are the arcs which were in contact with either i or o.

Also note that, like Definition 2, the constraints of this definition are handled by Kinerja’s

parser, so the engine itself only deals with valid petri nets.

Definition 4: Whenever we introduce a workflow specification S = (Q, top, T �,map), we

assume TA, TC , C� to be defined as follows:

− TA = {t ∈ T �|t 6∈ dom(map)} is the set of atomic tasks,

− TC = {t ∈ T �|t ∈ dom(map)} is the set of composite tasks, and

− C� = ∪N∈QC
ext
N is the extended set of all conditions.

This definition is straightforward – for the purpose of brevity in future discussions, it

defines:

• TA: The set of all atomic tasks (across all workflow nets),

• TC : The set of all composite tasks (across all workflow nets), and

• C�: The set of all conditions (across all workflow nets).

Definition 5: Let S = (Q, top, T �,map) be a workflow specification. We define the func-

tion unfold: P(T � ∪ C�)→ P(T � ∪ C�) as follows. For X ⊆ T � ∪ C�:

unfold(X) =

{
∅ ifX = ∅
unfold(X \ {x}) ifx ∈ X ∩ (C� ∪ TA)

Definition 5 explains how to do the unfolding of composite tasks – which is handled by

Kinerja’s parser. It’s straightforward – composite tasks are mapped to (and replaced by)

the nets they stand in for.

31

Definition 6: A workflow state s of a specification S = (Q, top, T �,map) is a set over

Q� = C�, i.e., s ∈ Q�.

s=

Vitals Out of Range

Give Medicine BGive Medicine A Notify Doctor

Vitals In Range

Check Vital Signs

Figure 3.6: The YAWL example, highlighting definition six

This defines the concept of a workflow’s state: the set of all tokens in a workflow. A

token can be thought of as a marker on a given condition – that is, in Figure 3.6 execution

began in i, proceeded through Check Vital Signs (where it splits) and a doctor has been

notified but Medicine B has not yet been given.

To advance the state of a workflow, a token moves along an arc, through a transition (if

such a move is valid – see the next definition), splits if necessary, and then moves along the

transition’s outgoing arc(s), coming to rest in the transition’s postset.

32

Definition 7: Let S = (Q, top, T �,map) be a specification and t ∈ T �, c, p, s ∈ Q�. The

Boolean function binding(t, c, p, s) yields true if and only if some n ∈ N exists such that all

of the following conditions hold:

1. Tokens to be consumed are present in the state: c ⊆ s

2. Tokens are consumed from the input conditions of the task involved and at most one

token can be consumed from each condition in the preset: c ⊆ •t
3. Tokens are produced only for output conditions of the task involved and at most one

token can be produced for each condition in the postset: p ⊆ t•
4. For AND-join behavior, all input conditions need to have tokens: join(t) = AND ⇒

c = •t
5. For XOR-join behavior, only one input condition should have a token and that input

condition should not have more than one token: join(t) = XOR⇒ c is a singleton

6. For AND-split behavior, tokens are produced for all output conditions of the task

involved: split(t) = AND ⇒ p = t•
7. For XOR-split behavior, a token is produced for exactly one of the output conditions

of the task involved: split(t) = XOR⇒ p is a singleton

Definition seven governs how a token can advance from one condition to the next. The

explanations are fairly straightforward, and Figure 3.7 shows what each rule enforces:

Definition 8: Let S = (Q, top, T �,map) be a specification and s1 and s2 be two worfklow

states of S. s1 � s2 if and only if there are t ∈ T �, c, p ∈ Q� such that binding(t, c, p, s1)

and s2 = (s1 − c)] p.

Definition 8 simply gives a convenient notation (�) for denoting the transition between

two states. That is, if s1 can transition into s2 (i.e., it meets all the requirements) then one

can write s1 � s2.

3.3 Evaluation Metrics Revisited

Recall that in section 2.2 a set of desiderata (spanning the range from order qualifiers to

order winners) were described. These are now revisited:

33

1 2 3

4 5

6 7

Figure 3.7: An example of what each of definition seven’s rules enforce

• Expressiveness – Leveraging a subset of YAWL, Kinerja’s supported language meets

most, but not all, of the expressiveness goals:

– Explicit flow control – Discussed in depth in the previous section, the flow control

options in the supported subset of YAWL include AND and XOR splits and joins.

This is satisfactory, but as will be discussed later (see Section 4.2.3) the lack of

an OR join and split is noticeable.

34

– Explicit sequence control – The subset of YAWL that Kinerja treats supports

this.

– Inter-process communication – This is not explicitly supported. Communication

is supported, but only through the transfer of a token (which also transfers a

notion of execution) making the modeling of inter-process communication less

than intuitive.

– Acquisition of resources – This is not supported, but due to Kinerja’s extensible

architecture, may be added later.

– Exceptional control flow – This is not explicitly supported. Some level of excep-

tion handling can be modeled, but exceptions are not a native concept in YAWL.

See section 4.1.1 for a more thorough treatment of this topic.

• Ease of use – YAWL’s structure makes it straightforward to read, and similar to the

basic hand-drawn format many people use on whiteboards. Additionally, YAWL has

been previously used in a clinical context14.

• Tool support – While the editor for YAWL is sufficient, the execution environments

were focused in a different direction than we were interested in. Kinerja, however,

fulfills the tool support goals by fully integrating a model checker with an execution

environment.

3.4 Control Aspect

The control aspect of a workflow can be thought of as an imperative description of a work-

flow19. It affords no consideration for the value of the variables of the workflow, and thus

any guards which would steer execution are ignored. Similarly, there is no consideration

given to resourcing requirements regardless of any limits they may place on the execution

of a workflow. This means that a number of the states produced by the control aspect are

illogical; i.e., they cannot exist.

35

3.4.1 Control flow

There are three particularly important methods in the implementation of the control aspect

in Kinerja. The first, DFS, governs the execution of the model-checker as it exhaustively

explores (via a depth-first search, as the name implies) the entire state-space of the program

under review. The second, Enabled, determines what steps can succeed the current state.

The third, SeenBefore, determines whether or not the current state has been “seen” by

the model checker previously.

Note that algorithms are presented in two forms: in pseudocode, and in the form of an

execution tree, that is, the possible execution steps the algorithm can take. These trees are

annotated with letters corresponding to their potential states – these states are summarized

to the right of the tree, and more completely explained in the text below the diagram.

DFS

This is the central, driving algorithm which propels the entire model-checker. At a high

level, it takes as an argument a description of the initial state of the workflow, explores it

completely and continues until all states have been explored. The depth-first search method

is presented in pseudocode in algorithm 1:

Algorithm 1 The DFS algorithm

Require: seen := {state0}
Require: stack := [state0]
1: while stack 6= {} do
2: state := stack.Pop()
3: workSet := Enabled(state)
4: for all step ∈ workSet do
5: state′ := Execute(step)
6: if state′ 6∈ seen then
7: stack.Push(state′)
8: end if
9: end for

10: end while

The seen set stores sets that the model checker has already seen, and that are either

36

stack={}?

A

B C

workset={}?

E F

state'∈seen?

G

J

A
seen := {state0}
stack := [state0]

B
Yes,
stack = {}

C
No,
stack ≠ {}

H I

D

Yes,
workset = {}E

No,
workset ≠ {}F

D state := stack.Pop()
workset := Enabled(state)

G state' := Execute(step)

H
Yes,
state ∈ seen

No,
state ∉ seenI

J seen := seen ∪ state'

Figure 3.8: The execution tree for the DFS algorithm

fully explored or marked for future exploration. The stack is a stack containing states to

explore. We use a stack (as opposed to a queue or other data structure) to facilitate the

depth-first search strategy. The actions performed by the algorithm are (see figure 3.8):

(A) The seen and stack variables are initialized to their preliminary value: the workflow’s

starting state.

(B) If the stack is empty (this will never happen the first time) the search is complete and

the method terminates.

(C) If the stack is nonempty, there remain unexplored states, and execution continues.

(D) The current state is set to the top of the stack, and the possible steps resulting from

the current step are enumerated (see algorithm 2).

37

(E) If there are no possible steps to take from the current state, it is completely explored

and the algorithm is ready to examine another state.

(F) If there are possible steps to take from the current state, they are iterated over, and

execution begins on one of them.

(G) The current step is executed (see algorithm 4) which results in an updated version of

the current state.

(H) If the current state has already been seen (see algorithm 3), then it has (necessarily)

already been explored or added to the stack. Thus, we can continue execution on the

next step.

(I) If the current state has not been seen, we continue execution.

(J) The current state is added to the stack, and execution continues.

Figure 3.9 shows an execution of the DFS algorithm on a simple workflow. The initial

state of the workflow is shown on the left (in the bold-framed box) and the possible resulting

states are shown as smaller workflow states. Since the behavior of the algorithm depends

on the type of split and join used by the executed task, there are a number of possible

outcomes.

Enabled

This algorithm determines which steps are possible from the given workflow state. It requires

checking both the control aspect (i.e., which tasks link to which other tasks) and data aspect

(i.e., whether a workflow-net’s variables are in the correct state to allow entry into a given

child-task) of the current state. Note also that any aspects developed in the future (e.g.:

the resource-aspect) will need to be enforced through a hook in this method.

The enabledSet set stores which steps are possible from the given state. Accordingly, it

is initialized to the empty set when the algorithm begins. The actions performed by the

algorithm are (see figure 3.10):

38

1: seen = {A}
stack = [A]
3: state = A

If Join = XOR
4: workSet = {1}

If Join = AND
4: workSet = {}

If Split = XOR
6: state' = C | D

If Split = AND
6: state' = C&D

A B

C D

XOR

AND
1

A B

C D

XOR

XOR
1

A B

C D

AND

Split
1

A B

C D

Join

Split
1

Figure 3.9: Execution of the DFS algorithm on a simplified workflow

(A) The set of enabled steps, enabledSet, is initialized to the empty set, and the tokens

from the current state are stored in the set tokens.

(B) If the current state has no tokens, then we’re done, and return the current set of enabled

steps (possibly empty, indicating that the current state is stuck).

(C) If the current state has tokens, execution continues.

(D) The tokens are iterated over, and the current token is named τ . The current token’s

location is retrieved and stored in location. location’s children (which are guaranteed

to be transitions) are retrieved and stored in the set children.

(E) If the current token has no (remaining) children, we’re done with this token and can

begin exploring the next.

(F) If the current token has at least one (unexplored) child, execution continues.

39

Algorithm 2 The Enabled algorithm

Require: enabledSet := ∅
1: for all τ ∈ tokens do
2: location := getLocation(τ)
3: for all γ ∈ location.children do
4: entrySet := join(s, τ, γ)
5: exitSet := split(s, γ, entrySet)
6: for all σ ∈ exitSet do
7: dataSet := dataAspect(σ, s)
8: enabledSet := enabledSet ∪ dataSet
9: end for

10: end for
11: end for
12: return enabledSet

(G) The children of the token are now iterated over, and the current child is named γ. We

first check if the given transition can be activated (that is, its entry requirements are

met) via the method Join. All resulting tokens, stored in entrySet, are then passed

(along with the current state and γ) to the Split method which computes which tokens,

if any, will exit from the current child.

(H) If the current child cannot advance, we’re done exploring it and can begin exploring its

next sibling.

(I) If the current child can advance (that is, a valid step can be formed with it as the

parent), execution continues.

(J) The current child’s valid steps are now iterated over, and the current step is named σ.

All non control-flow aspects are now enforced. Currently this is only the data aspect,

so it is passed σ and the current state, and returns valid steps (which are updated to

include the results of running the data aspect). These steps are then added to the set

of enabled steps and the next advancement of the current child is considered.

40

tokens={}?

A

B C

children={}?

E F

exits={}?

G

J

A enabledSet = {}
tokens := s.tokens

B
Yes,
tokens = {}

C
No,
tokens ≠ {}

H I

Yes,
children = {}E

No,
children ≠ {}F

D D
location := τ.location
children := location.children

G
entrySet := join(s,τ,γ)
exitSet := split(s,γ,entrySet)

H
Yes,
exits = {}

No,
exits ≠ {}I

J dataSet := dataAspect(σ,s)
enabledSet := enabledSet ∪ dataSet

Figure 3.10: The execution tree for the Enabled algorithm

SeenBefore

The SeenBefore algorithm calculates whether or not a state has been seen previously –

that is, has the state already been explored / marked for exploration. If it has, we can safely

disregard it – in fact, we have to disregard it in order to avoid getting stuck in an infinite

evaluation loop.

Checking to see if a state has previously been seen can be idealized as checking if the

current state is a member of the seen set, which is maintained by the DFS algorithm (see

algorithm 1). Unfortunately, since Kinerja uses symbolic execution via Kiasan6 (and thus,

maintains its state symbolically) state matching alone is not strong enough.

Note that this algorithm only runs if the control-aspect of the current state has been

41

Line 3:
τ = α
location = A

If Join = XOR
5: γ = 1
entrySet = A | B

If Split = XOR
6: exitSet = C | D

If Split = AND
6: exitSet = C&D

A B

C D

Join

Split
1

α

If Join = AND
5: γ = 1
entrySet = A&B

If α passes dataAspect
σ = C&D
7: dataSet = {C&D}

If α doesn't pass dataAspect
σ = C&D
7: dataSet = {}

If α doesn't pass dataAspect
σ = C | D
7: dataSet = {}

A B

C D

AND

Split
1

α

XOR

XOR
1

A B

C D

XOR

XOR
1

A B

C D
α

XOR

AND
1

A B

C D

XOR

AND
1

A B

C D
α α

Figure 3.11: Execution of the Enabled algorithm on a simplified workflow

seen before. Since the control-aspect of a state is simply a collection of tokens, a test for the

control-aspect state’s membership in the seen set is sufficient. Thus, this algorithm assumes

identical control-aspect states, and is testing for data-aspect subsumption.

Consider the case where we have previously explored a state with a single constraint

which has a single variable: x > 3. If we then generate a new state where x > 5, our states

won’t match exactly, but we do not need to explore the new state since there is no number

that is larger than five that is not larger than three. We say that the first state subsumes

our new state, and thus we do not need to explore it.

The SeenBefore algorithm has two phases: first, it converts the current (symbolic)

state into its logical representation; second, it checks to see if the current state does not

imply any of the previous states.

42

This implication may seem confusing at first, so a small example should be considered.

Consider again our two states: x > 3 and x > 5. Ideally we would simply ask our decision

procedure “Are there any states where x is greater than five, but not greater than three?”

Unfortunately, there are two problems with this query: first, it’s not stated as a logical

statement. Thus, we convert our query to (x > 5) → (x > 3)? Second, the decision

procedure cannot work on such open ended queries, but rather must consider cases where a

single counterexample is enough to prove inconsistency. We then rephrase our question to

¬((x > 5) → (x > 3)). Our decision procedure will of course tell us that this is true, and

that means our new state is subsumed by our old state and should not added to the list of

states to explore.

Algorithm 3 The SeenBefore algorithm

Require: logicalState := ∅
1: varMap{symV ar → netV ar} := buildV arMap(state.vars)
2: for all α ∈ state.pathConditions do
3: for all β ∈ α.constraints do
4: for all γ ∈ β.substitutions do
5: γ := varMap{γ.symV ar}
6: end for
7: if symV ars ∩ β 6= ∅ then
8: logicalState := logicalState ∧ β
9: end if

10: end for
11: end for
12: if ¬((logicalState ∧monitorState)→ (seen1 ∨ seen2 ∨ . . . ∨ seenn)) then
13: return true
14: else
15: seen := seen ∪ logicalState
16: return false
17: end if

The enabledSet set stores the logical representation of the constraints that make up the

state of the workflow. Accordingly, it is initialized to the empty set when the algorithm

begins. The actions performed by the algorithm are (see figure 3.12):

(A) A mapping from symbolic variable name to net variable name is built with the variables

43

pathconditions={}?

A

B C

constraints={}?

D E

substitutions={}?

F G

J
symVars∩β={}?

H I

K

A logicalState = {}

B
Yes,
pathConditions = {}

C
No,
pathConditions ≠ {}

E
No,
constraints ≠ {}

Yes,
constraints = {}D

H
Yes,
symVars ∩ β={}

No,
symVars ∩ β ≠ {}I

J γ := varMap{γ.symVar}

F Yes,
substitutions = {}

G No,
substitutions ≠ {}

logicalState := logicalState ∧ βK

Figure 3.12: The execution tree for the logical state conversion component of the Seen-
Before algorithm

in the current workflow state.

(B) If there are no (remaining) path conditions, this phase of the algorithm is complete,

and execution moves to the subsumption checking phase (see figure 3.13).

(C) The path conditions are iterated over, with the current condition being named α. The

number of constraints within this path condition is then checked.

(D) If there are no (remaining) constraints, then the exploration of this path condition is

complete.

(E) If there are constraints that still need to be checked, they are iterated over, with the

current constraint being named β. The number of substitutions within this constraint

44

 ¬((logicalState ∧ monitorState) → (seen1 ∨ seen2 ∨ ... ∨ seenn))

A

B C

ED

A LogicalState ≡ SymbolicState

B
Yes,
Current state is subsumed

D return true

No,
Current state is new

C

seen := seen ∪ logicalState
return false

E

Figure 3.13: The execution tree for the subsumption checking component of the SeenBe-
fore algorithm

is then checked.

(F) If there are no (remaining) substitutions, the intersection of the symbolic variables and

the current constraint is computed.

(G) If there are substitutions that need to be checked, they are iterated over, with the

current substitution being named γ.

(H) If the intersection of β and the symbolic variables is the empty set, this iteration is

complete and the next constraint can be evaluated.

(I) If the intersection of β and the symbolic variables is not the empty set, execution can

continue.

(J) All substitutions are updated to use the names from the current variable mapping.

This replaces internal, meaningless names with external, meaningful variable names.

(K) The logical state is updated to include β, which now has all of its constraint names

updated to match the workflow’s variable names.

After the logical state conversion is complete (see figure 3.12), the algorithm is ready to

see if the current state is subsumed by some previously visited state (see figure figure 3.13):

45

(A) The logical state has been updated to match the symbolic state of the workflow.

(B) The current state is subsumed, and execution continues.

(C) The current state is not subsumed, and execution continues.

(D) True is returned, and the algorithm is finished executing.

(E) The current state is added to the set of seen states (as it is now marked for exploration)

and false is returned. The algorithm is finished executing.

Path Conditions:
α1 = s1 > 1, s1 < s2 × 2
α2 = s2 = 2
α3 = s3 = 5

Constraints:
β1 = s1 > 1
β2 = s1 < s2 × 2
β3 = s2 = 2
β4 = s3 = 5

Substitutions:
γ1 = x > 1
γ2 = x < y × 2
γ3 = y = 2
γ4 = s3 = 5

Logical State:
x > 1 ∧ x < y × 2 ∧ y = 2

Symbolic State:
int x
int y

Variable Map:
s1 = x
s2 = y

Seen States:
seen1 = x > 2 ∧ x < y ∧ y = 2
seen2 = x > 0 ∧ x < y × 2 ∧ y = 2

Decision Procedure Query:
¬((x > 1 ∧ x < y × 2 ∧ y = 2) → ((x > 2 ∧ x < y ∧ y = 2) ∨ (x > 0 ∧ x < y × 2 ∧ y = 2)))

Result:
true

1

2

3

5

8

12

13

Line Relevant State Change

Figure 3.14: Execution of the SeenBefore algorithm on a simple data-aspect state

3.4.2 Data Structures

There are three data structures which are of particular importance to the implementation

of the control-aspect of Kinerja. The first, ModelCheckerState, is a representation of the

state of the model-checker. The second, SingleStep, is the information necessary to advance

46

through a workflow’s state space by one step. The third, IVarState is an interface that

workflow designers must supply an implementation of; this allows the engine to work with

their particular workflow’s state and executors.

ModelCheckerState

The ModelCheckerState class stores the state of the model-checker. That is, it holds all the

information necessary to recreate the current state of the model-checker. The class consists

of three fields and various utility functions which manipulate the fields. The fields are:

1. netState: This is an instance of the State class, and it stores the state of the net. It

is itself made up of three fields and their associated utility functions. The fields are:

(a) tokens : This is a collection of the tokens currently in the net. A token is simply

a marker on a condition (or place) in the net.

(b) netVariables : This is a mapping from a variable name (stored as a string) to

the value of the associated variable. The value is stored as an instance of the

StateObject class, which is simply a wrapper for the various types of variables a

net-designer may want to use.

(c) pathConditions : This is a field that is only used when the model-checker is in

verification mode. It stores the path conditions which must be supplied to the

theorem-prover for the symbolic variables (stored in netVariables) to maintain

their correct value(s).

2. monitorState: This is an instance of the MonitorState class, and it stores the state

of the various monitors that are being tested. It is made up of one field and utility

functions which manipulate it. The field is:

(a) varMap: This maps variable names (stored as strings) to their values (wrapped

as StateObjects). It is intuitively very similar to the net’s collection of variables,

47

except that the variables it stores are used by the various monitors that are

being tested. For example, if a net’s designer wants to test if a certain node is

reached five different times in all execution-paths, the node’s hit-count is stored

in a variable in this map.

SingleStep

The SingleStep class represents one step (through a transition / task) in the execution of

a workflow. Instances are created when the control-aspect is first determining what steps

are possible (in the Enabled method) and are passed to the data-aspect for modification.

Once a step has been completely determined, it is interpreted by the Move method to

advance the state of the workflow accordingly. The class itself is made up of five fields and

the utility methods which manipulate those fields:

1. tokens : This is an ordered set of the tokens that will be advancing. While this will

normally be only a single token, a task with an AND-Join will consume as many tokens

as it has parents, and we store references to those tokens here.

2. children: This is an unordered set of the conditions that will have a token after this

step has taken place. This will normally be only a single condition, but a task with

an AND-Split will produce as many tokens as it has children, and references to those

children are stored here.

3. transitions : This is an unordered set of the transitions that will have a token move

through them as this step executes. Note that this set will always be a singleton in

the current implementation of Kinerja, as it only supports moving a single token at a

time.

4. futureVarMap: This is the same as the previously described varMap (which maps

variable names as strings to their values as StateObjects) except that it stores the

values of variables after the step’s execution has completed.

48

5. pathConditions : This is an unordered set that is only used when the model-checker

is in verification mode. It stores the path conditions which must be supplied to the

theorem prover for symbolic variables to maintain their value(s).

3.5 Data Aspect

The data aspect of a workflow is the consideration of the data values of a workflow, as

opposed to the flow of control. While certainly there is some overlap between it and the

control aspect, there is support in the literature for giving the data generating / enforcing

parts of a workflow equal treatment20. The data aspect can be conceptualized as two

unique, equally important parts: the generation and modification of data values (termed

“executors” in Kinerja) and the modification of control-flow based on these values (termed

“flow guards”). The data aspect runs after the control aspect in Kinerja, and thus directly

modifies candidate actions generated by the control aspect. This modification can be in the

form of changing (or outright eliminating) candidate steps, or in certain modes of execution

(e.g.: verification) it can also mean the generation of additional steps.

3.5.1 Formalization of Symbolic Execution

This section holds the formal definitions of the symbolic and logical state representations

used by Kinerja. Translating between the two is straightforward, though it should be noted

that translation from a logical state to a symbolic state is never required. This translation

is sketched, at a high level, in the pseudocode of algorithm 3 and fully detailed in the code

of Kinerja.

Symbolic State

τ ∈ Types = Z

sobj ∈ StateObjects = {sobj|τ}

sop ∈ SymbolicOperators = {ADD,SUB,MUL,DIV,REM,BIT AND,BIT OR,BIT XOR}

scon ∈ SymbolicConnectives = {LE,LT,GT,GE,EQ,NEQ}

49

ssymb ∈ The set of valid identifiers

see ∈ SymbolicExternalExp = {see|Z}

sbexp ∈ SymbolicBinaryExp = {(sop ∨ scon)× sexp× sexp}

sexp ∈ Expression = {see ∨ sbexp}

netV ar ∈ netV ars = {ssymb ⇀ sobj}

pc ∈ PathConditions = {netV ar → sexp}

pcs = The set of path conditions

Logical State

lconc = Z

lsymb = The set of valid identifiers

lcon ∈ LogicalConnectives = {≤, <,>,≥,=, 6=}

lop ∈ LogicalOperators = {+,−,×,÷,%,∧,∨,⊕}

lee ∈ LogicalExternalExp = {lee|lconc ∨ lsymb}

lbexp ∈ LogicalBinaryExp = {lbexp|lexp× lop× lexp}

lexp ∈ LogicalExpression = {lee ∨ lbexp}

stmt ∈ Statement = {stmt|lee× lcon× lexp}

stmts = The ordered set of statements

3.5.2 Control Flow

There is one particularly important method in the implementation of the data aspect: Ex-

ecute. This method first runs the executor associated with a given task and then runs its

associated flow guard. It also handles various utility functions, like loading a task’s variables

from the net-state and renaming them to what the task expects.

Execute

50

Algorithm 4 The Execute algorithm

Require: nameToExec := {String → Executor}
Require: nameToF low := {String → FlowGuard}
1: preStateV ars := loadTaskV ars(taskName, controlState)
2: newStep := controlStep ∪ preStateV ars
3: if executionMode = V ERIFY then
4: executor := V erifyingExecutor
5: flowGuard := V erifyingF lowGuard
6: else if executionMode = GOV ERN then
7: executor := getAPIImplementation(nameToExec{taskName})
8: flowGuard := getAPIImplementation(nameToF low{taskName})
9: end if

10: execSteps := executor.exec(controlState, newStep, nameToExec{taskName})
11: postF lowSteps := flowGuard.checkF low(execSteps, nameToF low{taskName})
12: return postFlowSteps

ExecMode?

A

B C

A
preStateVars := loadTaskVars(taskName, s)
newStep := controlStep ∪ preStateVars

B
ExecMode = VERIFY
exec := VerifyingExec
flow := VerifyingFlow

D

D
execSteps := exec(s, newStep, getExec(taskName))
postFlowSteps := flow(preFlowSteps, getFlow(taskName))

D

ExecMode = GOVERN
exec := getExec(taskName)
flow := getFlow(taskName)

C

Figure 3.15: The execution tree for the Execute algorithm

The Execute algorithm calculates and enforces the requirements of the data aspect.

It does this is two main steps – running a task’s executor, and then running that task’s

flow guard. The steps which are generated by the executor and then modified (and deemed

possible) by the flow guard are returned to the main algorithm and execution continues.

There are two external data structures used by Execute. The first, nameToExec,

maps a task’s name to an instance of its executor. An executor is a custom java class

which implements the IExecutor interface, and fully describes the behavior of the task.

51

Similarly, the second external data structure is nameToFlow, a mapping from a task’s name

to an instance of its flow guard. This guard implements the IFlowDetail interface, and

is a custom java class which fully describes the requirements a token must meet before it

advances out of the given task.

The steps the algorithm takes are:

(A) The task’s variable map is loaded. This consists of mapping the values of net variables

to task variables, and modifying the names as appropriate. A new step is then created

which is identical to the step created by the control aspect except it has the task’s

variable names and values loaded.

(B) If the system is in verification mode, the executor and flowGuard are initialized to

instances of the VerifyingExecutor and VerifyingFlowGuard class (respectively).

(C) Alternatively, if the system is in governance mode, the executor and flowGuard are

bound to the specific instance of the GoverningExecutor / GoverningFlowGuard class

associated with the current task. This allows the governance-mode executors to be

stateful.

(D) The executor is then run, taking as arguments:

(a) The state, as generated by the control aspect.

(b) The next step, as generated by the control aspect and modified to have the task’s

variables.

(c) The actual executor implementation.

The flow guard is then run, with the steps generated by execute as well as the actual

flow guard implementation as arguments. It returns a subset of potentially modified

steps.

Finally the generated, checked steps are then returned.

52

3.5.3 Data Structures

The only important data structure in the implementation of the data aspect is the interface

IVarState, which must be implemented by the designer of a workflow’s back end.

IVarState

Implementations of the IVarState interface hold the state representations of any user-defined

executor. It contains a number of utility methods which are used for accessing and modifying

the variables that make up the state of a workflow. It is far simpler than the other imple-

mentations of a net’s state, and is thus appropriate for use by Kiasan, Kinerja’s symbolic-

execution back-end6.

3.6 Monitors

Kinerja’s monitors can be thought of as small state machines whose transitions are activated

via hooks into the workflow engine. These state machines can then be checked after execu-

tion of a workflow (or even during) to see if certain desirable properties hold. A workflow

designer might, for example, have a very simple requirement that no execution through her

workflow enters a certain undesirable state. Alternatively, her requirements might get quite

complex, and specify things like a response condition that must be reached if a particular

action condition gets executed. The monitors Kinerja supports are a subset of the patterns

identified by Dwyer, Avrunin and Corbett9.

Figure 3.16 shows how a very basic monitor works on a very basic workflow (the state

of the monitor and workflow is shown before execution on the left, and after execution on

the right):

The workflow (the directed-flow diagram on the left) starts at the initial condition (the

green circle), moves through the task (the white square), and concludes in the sink condition

(the red circle). The current state is indicated by the token, denoted with a yellow star (?).

The workflow communicates with the monitor via an engine event announcement, which

53

Figure 3.16: A simple monitor

takes place when control flow enters the task (denoted by the blue rectangle).

The monitor (the directed-flow diagram on the right) starts at the top state (indicated by

the sourceless incoming arrow) and terminates at the second state (the concentric circles).

When the workflow executes the token moves from the source condition through the task

(triggering the announcement, which moves the monitor into its accepting state) and into

the sink / final state.

More complex monitors work in a similar fashion – there can be (many) more states in

each monitor (which allows for interesting behavior like scoping), multiple active monitors,

much larger workflows, and (potentially) more types of engine announcements.

Figure 3.17 shows two example monitors, M1 and M2. The monitors are the finite state

machines on the sides of the YAWL diagram (which is our persistent example, though nodes

have been renamed for clarity). The blue zones at the top of tasks are engine events; they

serve as guards for the transitions between monitor states. Note that engine events can

guard any number (ranging from zero up) of monitor transitions.

M1 shows an example of a scoped existence pattern9. It checks for the existence of

node D in the scope of B through H (this is referred to as a “between” scope). The finite

state machine has three states – out of scope (which is also the initial state), in scope, and

existence (which is also the accepting state). When the workflow enters task B, the first

transition in M1 is activated, and the monitor (in state 2) is said to be “in scope.” When

54

A

B C

D E F

G

H

1

2

3

4

5

6

M1 M2

Figure 3.17: Two example monitors

the workflow enters task D, the existence is verified, and M1 moves to its accepting state,

3. When the workflow enters H, nothing happens if D has already been visited or if B has

never been visited. Had B been visited but D not, the monitor would rest in an unaccepting

state, and the property it was checking would have been found to be violatable.

M2 shows a “response” pattern9 – in this pattern, C is referred to as the “action” and

F the “response”. It checks that every time task C is executed, task F is also, subsequently

executed. When task C is executed, M2 moves from its initial state, 4, to state 5. If F is

executed, M2 will move to its accepting state, 6. If F is never executed, this monitor would

55

have detected a violatable property.

3.7 User Interface

Figure 3.18: The Kinerja (named Lambda when this screenshot was taken) web interface.

Kinerja is controlled entirely through the command line. There exists, however, a so-

phisticated framework for extending and implementing different user interfaces via XML

communication over encrypted sockets.

As a test of this interface, a full web interface was built for a previous release of the

software with the traditional three-tier web architecture. The front end, built in PHP, was

displayed in a user’s browser via the standard combination of HTML and AJAX. Kinerja

56

took the place of the data processing layer, and instead of using files as input and output,

a PostgreSQL database was used to store workflows and monitors.

Development of the interface framework included introducing threading to Kinerja, to

allow for multiple, concurrent jobs. Security and privacy were also large concerns, so various

types of encryption, logging, and user tracking were implemented. These features can be

used on any future user interface implementation, regardless of the interface type (web,

desktop, mobile, etc.).

The author would like to thank Scarlett Sidwell for her part in creating the web-based

user interface.

57

Chapter 4

Benchmarks

While the previous chapters respectively discussed the need for and functionality of Kinerja,

we now turn our attention to how the software functions on actual input. This chapter

discusses the performance of Kinerja on two workflows, one which was created solely to

demonstrate the set of features Kinerja supports and the other which is sourced from a

developing clinical scenario.

4.1 Synthetic Benchmark

This workflow was created to showcase the capabilities of Kinerja, and is not of clinical

interest. The workflow, shown in figure 4.1, should be “read” in a roughly top-to-bottom

manner, and has three different “paths,” which increase in complexity as they progress from

left-to-right. That is, the flow of execution is roughly top-down, can take any of the three

branches, and the features a given branch demonstrates are more complex the farther to the

right the branch is.

4.1.1 Description

Control Flow

Execution begins at the green circle with a green triangle located in the top center of the

workflow. Execution continues into P1, and then into A. Node A contains an XOR-split

(denoted by the outward facing triangle pointing towards the source of the three outgoing

58

A

S G XDC

E

B

I

P2P1

S Net

F

X Net

H

Figure 4.1: The synthetic benchmark for Kinerja, as laid out in YAWL.

arcs). Execution will proceed down one of the three subsequent paths (B, C, D, E; S; or G,

X), each of which demonstrates a different feature of Kinerja. When the flow of execution

arrives at node I, it will either terminate or loop back to node P2, which will allow the

workflow to be re-executed (and potentially but not necessarily take a different path).

Nodes S and X are composite tasks, meaning that they are essentially placeholders

for sub-nets (a concept quite similar, at a superficial level, to function calls in procedural

59

programming). Node S maps to the sub-net S Net, similarly, X maps to X sub-net.

Data Flow

It may now be clear why a description of the control-flow aspect of a particular workflow,

absent any consideration of the involved data, is incomplete – any branching necessarily

depends on the values of the workflow’s variables. Unfortunately, the data aspect of workflow

is much more difficult to represent in a way that is as easily read as the graphical layout of

control flow, and as such takes longer to either scan or peruse.

The synthetic workflow’s data aspect can be described simply, though interesting nuances

appear upon closer examination. Node P1 initializes a variable, x, such that 1 ≤ x ≤ 15. x

is then tested by A to determine which path to take.

As the goal of the B, C, D, E branch is to demonstrate parallel / asynchronous flow,

no modification of the variable x is necessary. Node and net S (and the embedded task

F), however, do modify x (by doubling it); this demonstrates the flattening of sub-nets.

The G, X branch has the potential to, but does not necessarily, modify x and demonstrates

exceptional control flow.

If x is odd, task I directs execution to node P2, which re-initializes x to a subset of its

original range (2 ≤ x ≤ 14). This allows for a succinct demonstration of the subsumption

detection capabilities of Kinerja. If x is even, however, execution proceeds to the output

condition and terminates.

Splits, Joins, and Parallel Execution

The first branch, consisting of nodes B, C, D and E, shows the basic control flow mechanisms

for YAWL, and Kinerja’s interpretation of them. Node B has an AND-split (denoted by

the inward-facing triangle at the source of outgoing arcs) which means that C and D will

be available for execution simultaneously.

In practice this does not require their simultaneous execution, rather it signifies that

there is no order of execution dependency between them. Nodes C and D thus can be done

60

in any order – sequentially (with either C or D preceding the other) or simultaneously.

Node E can be thought of as “collecting” the parallel execution, since it has an AND-join

(denoted by the inward-facing triangle at the sink for incoming arcs) which tells the Kinerja

engine to wait for all immediately preceding nodes to complete before execution continues.

Had node B been labeled with an XOR-split, rather than an AND-split, only one of

either C or D would have been executed. Node E would have to be similarly equipped (that

is, with an XOR-join) because with an AND-join it would deadlock execution, since it is

impossible for both node C and node D to complete.

Sub-nets and Embedded Workflow

The middle execution path, consisting of the composite node labeled S, was made to demon-

strate how embedded workflows function. Node S is a stand in for an entire net, which could

itself have sub-nets. In this case, however, node S is linked to the eponymous S net which

contains only one (atomic) task, F.

Kinerja “flattens” as it parses, producing a final workflow without nesting. While this

eliminates a great deal of complexity (in that it’s no longer necessary to define semantics for

moving between levels) it creates some issues as well, namely the possibility of variable-name

collisions and the necessity of defining intermediate transitions which simulate moving from

a composite node to its associated workflow. They are dealt with as follows:

• Variable name collisions – There currently is no facility for automated variable name

collision elimination; this must be handled manually. It should be noted, however,

that YAWL’s automatic naming policy still applies to nodes, and thus conditions and

tasks are guaranteed to have globally unique names.

• Intermediate transitions – Kinerja’s parser will automatically generate transitions be-

tween a composite node’s parent transition and the input condition of its associated

workflow, as well as the embedded workflow’s output condition and the immediate suc-

cessor of the composite node. Without these transitions, conditions would be linked

61

directly to conditions, which would violate the structure of the parsed workflow. The

transitions’ names are automatically generated, and they take the form of either “Com-

positeNodeNameIN” or “CompositeNodeNameOUT” depending on whether they are

transitioning into or out of the nested workflow.

The sub-net thus completely replaces the composite node in the flattened workflow,

and the original node has no singular representation.

Exception Handling

The third route through the workflow, consisting of the atomic task G and composite task

X, shows how exceptions can be represented in Kinerja. It is important to note that there is

no “true” exception handling in Kinerja, in that there is no special construct which allows

for the interruption of normal execution. Thus, the only exceptions checkable in Kinerja are

those which can be detected through the evaluation of statements (e.g.: if some variable is

outside of a defined acceptable range).

The route shows a typical pattern for detecting an exception (in this case if our variable

state somehow indicated x ≤ 0), executing a compensatory sub-net (which might make x

positive), and resuming typical execution.

4.1.2 Execution

Figure 4.2 shows the Kinerja parser’s reduction of the workflow into a flattened petri-net.

Note that the arcs which join the various nodes are anonymous.

Note also that transitions are represented as rectangles, and are labeled with their user-

assigned name (e.g.: A) and, following an underscore, the YAWL-assigned number which

guarantees name uniqueness (e.g.: 3); these combine to form names like “A 3”.

All conditions in this workflow are implicit (that is, they were not created by the workflow

designer, and will not show up in YAWL’s workflow editing program) and as such have auto-

generated names. A condition’s name is generated by simply concatenating the condition’s

predecessor and successor transitions’ names.

62

NetGraph -- Tue Aug 23 14:46:09 CDT 2011

Net

Sub_Net_4IN

InputCondition_11

Pre_20A_3

A_3

Exception_Net_15IN

InputCondition_16

Pre_19

Pre_19A_3

F_13

H_18

A_3Sub_Net_4A_3B_5

B_5

G_14Exception_Net_15

Sub_Net_4I_10

I_10

G_14

G_14I_10

C_6E_8

E_8

Sub_Net_4OUT

Pre_20

C_6 D_7

D_7E_8

B_5D_7B_5C_6

E_8I_10

InputCondition_1 OutputCondition_2

Exception_Net_15OUT

Exception_Net_15G_14

OutputCondition_17

OutputCondition_12

I_10Pre_19

A_3G_14

Figure 4.2: Kinerja’s parser’s final interpretation of the synthetic workflow

63

StateGraph -- Tue Aug 23 14:46:09 CDT 2011

State

B_5C_6&B_5D_7

B_5C_6&D_7E_8

D_7

B_5D_7&C_6E_8

C_6

OutputCondition_12

Sub_Net_4I_10

Sub_Net_4OUT

Pre_20A_3

A_3G_14

A_3

A_3Sub_Net_4

A_3

A_3B_5

A_3

I_10Pre_19

Pre_19A_3

Pre_19

C_6E_8&D_7E_8

E_8I_10

E_8

OutputCondition_17

Exception_Net_15G_14

Exception_Net_15OUT

InputCondition_11

F_13

C_6

G_14Exception_Net_15

G_14

G_14I_10

G_14

D_7

G_14

G_14

InputCondition_16

H_18

Sub_Net_4IN

B_5

Exception_Net_15IN

I_10

InputCondition_1

Pre_20

I_10

OutputCondition_2

I_10

A_3A_3 A_3

I_10

I_10

Figure 4.3: The states of the Synthetic workflow

64

Figure 4.3 shows one version of the states reached by Kinerja when executing the syn-

thetic workflow. Note, however, that this graph shows a deceptively small number of states

as it matches based on the state of the control-flow aspect alone – that is, while the data

aspect is used in the execution trace, it is not considered when rendering the graph.

As execution cannot “stop” when a token is in a transition or, alternatively, the atomicity

of execution is not reducible below a single “step,” (which is defined as movement through

a transition and into a set of resultant conditions), transitions are no longer represented as

nodes on the graph. Instead, they are labels for arcs – to see what state is a successor to

another state, one can simply see which are linked together. To determine which transition

should be taken to move from one state to another, it suffices to read the label on the arc

between nodes.

Note that nodes no longer represent conditions explicitly, but rather those conditions

which are “marked” by tokens in a given workflow state. As the majority of the execution

steps consist of moving single tokens, many states in this state graph have the name of only

a single node. There are four, however, which consist of two tokens (corresponding to those

nodes which can be executed in parallel) whose names are joined with an ampersand, e.g.:

the name B 5D 7&C 6E 8 means that there are two tokens, one at B 5D 7 and a second at

C 6E 8.

Execution Statistics

The synthetic workflow, with both data and control aspects considered, consists of 25 states.

Kinerja creates and explores these states in slightly under six seconds, with roughly .15

second going toward the parsing and flattening of the workflow. Less than .1 second is

spent in the decision procedure, which is queried 15 times – the vast majority of time, over

5.5 seconds, is spent in Kiasan, updating and examining the data-aspect state.

65

Pause

Setup

Check Patient

Notify Doctor

DetermineSuppl
OxyStatus

AttachPO
Probe

DetermineAdult
Status

Attach
Oxy

Skip
OxyAttach

Setup Net

Figure 4.4: The clinical benchmark’s overview net and Setup subnet.

4.2 Clinical Benchmark

The second example workflow considered here is less interesting from a software demonstra-

tion point of view, but more interesting from the perspective of a domain expert – e.g. a

clinician, doctor, or anyone else involved in the medical industry.

4.2.1 Description

This workflow details the steps a clinician might go through to check on a patient whose

heart rate, respiratory rate, and blood-oxygen saturation are being monitored. There are

a number of phases, or groups of actions, described: the setup of the equipment which

monitors the vital signs of the patient, the actual monitoring of the patient, and a pause

which simulates the passage of time between “spot checks.”

The majority of actions which require work external to Kinerja are defined in the SAnToS

66

Check Patient Net

AppSpO2Limit
AlarmReading

DeactivateSpO2

LimitAlarm

AppRapidSpO2

DeclineAlarmReading

AppRapidSpO2

DeclineDeactivate

AppSuppOxyDerived
AlarmReading

AppSuppOxy
AlarmDeactivate

AppHRLimit
AlarmReading

DeactivateHR
LimitAlarm

Notify
Doctor

NotifyDoctor
Check

Figure 4.5: The clinical benchmark’s Check Patient subnet.

technical report “Pulse Oximeter Monitoring Smart Alarms” by John Hatcliff13. Modified

descriptions of these tasks are reprinted here.

Setup

The steps required to begin monitoring a patient’s heart rate, respiratory rate, and blood

oxygen saturation are described in the task Setup. It is a composite task which unfolds to

67

a net of the same name.

This subnet has three tasks (or, in the case of supplemental oxygen work, a task group):

1. DetermineSupplOxyStatus – This determines if a patient is to be placed on supple-

mentary oxygen. After this determination, one of two actions is taken:

(a) AttachOxy – If necessary, supplemental oxygen is attached.

(b) SkipOxyAttach – Similarly, some patients don’t need supplementary oxygen.

In addition to physically attaching an oxygen line, this check is necessary for set-

ting alarms correctly – an oxygenated patient’s blood oxygen saturation will read as

abnormal to a person or device expecting a non-oxygenated patient, and vice-versa.

2. DetermineAdultStatus – This determines if a patient is to be classified as an adult for

the purpose of configuring the app smart alarm button. As this is simply determining

a value which will be used elsewhere, there are no follow-up tasks.

3. AttachPOProbe – This directs the clinician to attach a pulse oximeter probe to the

patient and confirm that there are valid readings registering.

Check Patient

After setting up the patient, and periodically thereafter, the clinician will actually check

on the patient. This is a straightforward check, consisting of monitoring for alarms and

reacting appropriately if any are active.

This subnet has four task groups, however they all have a parallel structure. Each group

consists of an alarm check and (potentially) the deactivation of that particular alarm, which

of course is dependent on the alarm’s state. The tasks groups are:

1. AppSpO2LimitAlarmReading – This alarm is a “dumb” alarm which activates when

a patient’s blood oxygen saturation goes outside of some given range.

68

2. AppRapidSpO2DeclineAlarmReading – This alarm is a “smart” alarm (which might

run on some ICE32-compliant architecture, like the MDCF15). “... an alarm event

will be generated if the SpO2 moving average decreases by an amount greater than

the decrease bound within the configured time interval13.”

3. AppSuppOxyDerivedAlarmReading – This is also a smart alarm, which will be trig-

gered if the moving average of a patient’s SpO2 value, less some adjustment, falls

below a lower limit parameter. Note that this parameter will be modified depending

on whether or not the patient is receiving supplementary oxygen.

4. AppHRLimitAlarmReading – This is a dumb alarm which activates when a patient’s

heart rate is outside of a prescribed range.

After checking the state of the various alarms, a doctor is notified if necessary, and the

spot check cycle is concluded. Naturally, the workflow can be restarted at some future

point, though this requires re-executing the setup tasks and re-starting any necessary alarm

systems.

If notifying a doctor is deemed unnecessary, then there is a pause for some amount of

time, after which the patient and any attached alarms are re-checked.

4.2.2 Execution

Note that as this example is considerably larger than the synthetic workflow, the flattened

net and state diagrams cannot be formatted to fit in this report, or render legibly on standard

paper.

With the data aspect disabled, Kinerja generates and explores 1,333 states in three

minutes and two seconds on a standard laptop. Of this, roughly .1 second was spent parsing

and flattening the workflow, and the rest was spent exploring possible states. With the data

aspect enabled, the execution space and time increase dramatically – it takes Kinerja nearly

54 minutes to create and explore all 10,328 states. In running this example, Kinerja makes

69

a total of 44,941 queries to the decision procedure, and spends nearly 18 minutes waiting on

their results. Another 28.5 minutes were spent maintaining the symbolic state via Kiasan,

and the remaining time was spent in Kinerja itself.

4.2.3 Evaluation

When modeling and executing the clinical workflow, a number of strengths and weaknesses

of Kinerja become apparent.

Strengths

Kinerja performs well in a number of areas where other model checkers and execution

environments are less successful.

• Completeness of verification – Kinerja fully explores a version of the supplied workflow

that completely integrates data and control aspects.

• Integrated verification and governance – Rather than complete verification in a tool

external to the execution environment (or skip either governance or verification alto-

gether) Kinerja allows a seamless switch between environments.

• State subsumption – By using Kiasan6, Kinerja is able to execute tasks symbolically,

which allows for the testing of far more possible states than explicit enumeration.

Kinerja also tests for state subsumption rather than state matching, which allows

workflows that would be otherwise untestable to be verified.

Weaknesses

While this example demonstrates a number of Kinerja’s strengths, it also reveals a number

of missing features / weaknesses:

• Event handling – Demonstrated particularly clearly by this workflow, the somewhat

awkward “polling” for events does not match the reality of event-based notifications.

This mismatch at best creates workflows that are challenging (beyond any inherent

70

complexity) to read, and at worst can create a disconnect between the workflow and

the real world, which can allow errors to occur.

• Lack of an OR-join – The subset of YAWL which Kinerja treats does not include an

OR-Join (due to its non-local semantics). This lack becomes very apparent, though,

because it requires all splits (both AND and XOR) to be matched with a sibling join.

Thus, in the case where a sub task is only necessary part of the time (e.g., deactivating

an alarm) a “dummy” task, which completes no actions, must be created.

• Speed – In the model-checking world, slightly over 10,000 states is not a terribly

substantial achievement, and shouldn’t take nearly an hour. Ideally verification would

be quick enough that it could be run as a simple test for errors, allowing iterative

testing and development.

71

Chapter 5

Conclusion

This thesis offers a brief survey of technologies which compete in the workflow-automation

space, and offered a new entrant, Kinerja. Existing technologies were compared and dis-

cussed, and found to be lacking chiefly in the area of formal verification. What formal

options exist are poorly integrated with larger execution environments.

Kinerja integrates the concepts of verification and governance into a unified infrastruc-

ture. A number of components have also been built to interact with Kinerja, including one

that enables symbolic execution of the data aspect of workflows.

Finally, two exemplary workflows were produced and analyzed. Together they showcase

the capabilities of Kinerja, and enable a discussion of both the strengths and weaknesses of

Kinerja.

5.1 Future Work

There are three main directions that the immediate next steps could focus on:

1. Increased language support – As demonstrated by the clinical workflow example (and

discussed in section 4.2.3), the small size of Kinerja’s supported language makes mod-

eling some workflows tedious. This could be remedied by adding support for more

powerful language constructs. These might be features of YAWL (that were excluded

from Kinerja’s treated subset, like the OR-join, or the cancellation region) or they

72

might be features not yet in YAWL (like message passing).

2. Optimizations – Kinerja performs relatively slowly given the size and complexity of

its inputs. This is a result of little attention being paid to optimizations during the

development of the system, and it’s likely that an optimization pass over the codebase

could result in a considerable speedup. There are also algorithmic improvements that

could be made, such as partial-order reduction11.

3. Consideration of additional aspects – Kinerja currently only supports control and data

aspects, but there are many more views of fully developed workflows. A workflow

designer might also want to consider:

(a) Resource management – A workflow step (or set of steps) might use a given

machine or device, and it should be unavailable to other users while it completes

its task.

(b) Agent management – A workflow step might need to be delegated to an individual

user or device which is capable of completing it. Task allocation strategies have

been studied and implemented by the authors of YAWL21.

or a number of other workflow aspects.

5.2 Clinical Impact

Though considerable work remains, the benefits of a fully realized, integrated clinical envi-

ronment which is managed by Kinerja are impressive. The idea of an operating room where

devices communicate and a great deal of work is handled by closed-loop systems is futuristic

indeed.

In the short term, any decrease in the rate of medical errors – which kill as many as

98,000 Americans each year30 – would be beyond welcome. Adoption of Kinerja, or a similar

system, would help bring about this decrease via a combination of two factors: first, by

73

reducing human-device interaction (e.g.: by facilitating device to device communication for

the creation of closed-loop medical systems), and second, by assisting clinical care workers

with complex tasks. This assistance could aid not only with tasks that are intrinsically

complex, but also tasks which involve a new and unfamiliar device or modified procedure.

74

Bibliography

[1] Michael Adams and Arthur ter Hofstede. Yawl - user manual. User manual, The YAWL

Foundation, September 2009. Version 2.0f.

[2] TRANSFLOW Nederland BV. Workflow patterns cosa workflow software. Technical

report, TRANSFLOW Nederland BV, 2003.

[3] Bin Chen, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil. Automatic fault

tree derivation from little-jil process definitions. In Proceedings of the Software Process

Workshop, volume 3966, pages 150–158. Springer Berlin / Heidelberg, July 2006.

[4] F. Curbera, Y. Goland, J. Klein, F. Leymann, Thatte, and S. Weerawarana. Business

process execution language for web services, version 1.1. Technical report, IBM, 2003.

[5] Gero Decker, Hagen Overdick, and Mathias Weske. Oryx an open modeling platform

for the bpm community. In Marlon Dumas, Manfred Reichert, and Ming-Chien Shan,

editors, Business Process Management, volume 5240 of Lecture Notes in Computer

Science, pages 382–385. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-85758-

7 29.

[6] Xianghua Deng, Jooyong Lee, and Robby. Bogor/kiasan: A k-bounded symbolic exe-

cution for checking strong heap properties of open systems. In Proceedings of the 21st

IEEE International Conference on Automated Software Engineering, Tokyo, Japan,

2006. IEEE Computer Society.

[7] Xianghua Deng, Jooyong Lee, and Robby. Efficient and formal generalized symbolic

execution. Technical report, Kansas State University, April 2011.

75

[8] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Formal semantics and anal-

ysis of bpmn process models using petri nets. Information and Software Technology,

50(12):1281–1294, November 2008.

[9] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property

specifications for finite-state verification. In Proceedings of the 21st international con-

ference on Software engineering, ICSE ’99, pages 411–420, New York, NY, USA, 1999.

ACM.

[10] Matthew B. Dwyer, Lori A. Clarke, Jamieson M. Cobleigh, and Gleb Naumovich. Flow

analysis for verifying properties of concurrent software systems. ACM Transactions on

Software Engineering and Methodology, 13(4):359–430, October 2004.

[11] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems

- An Approach to the State-Explosion Problem. PhD thesis, 1995.

[12] Object Management Group. Business process model and notation. Technical report,

Object Management Group, January 2011.

[13] John Hatcliff. Pulse oximeter monitoring smart alarms. August 2011.

[14] A.H.M. Hofstede, W.M.P. Aalst, M. Adams, and N. Russell. Modern Business Process

Automation: YAWL and Its Support Environment. Springer, 2009.

[15] Andrew King, Sam Procter, Dan Andresen, John Hatcliff, Steve Warren, William Spees,

Raoul Jetley, Paul Jones, and Sandy Weininger. An open test bed for medical device

integration and coordination. In ICSE Companion, pages 141–151, Vancouver, Canada,

May 2009. IEEE.

[16] James C. King. Symbolic execution and program testing. Commun. ACM, 19:385–394,

July 1976.

76

[17] Paul B. Langevin, Vashti Hellein, Susan M. Harms, William K. Tharp, C. Cheung-

Seekit, and S. Lampotang. Synchronization of radiograph film exposure with the

inspiratory pause effect on the appearance of bedside chest radiographs in mechani-

cally ventilated patients. American Journal of Respiratory and Critical Care Medicine,

160(6):2067–2071, 1999.

[18] Inc. PECTRA Technology. Technical report, PECTRA Technology, Inc.

[19] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. Workflow

control-flow patterns a revised view. Technical report, BPM Center, 2006.

[20] Nick Russell, Arthur H.M. ter Hofstede, David Edmond, and Wil M.P. van der Aalst.

Workflow data patterns. Technical report, Queensland University of Technology, Bris-

bane, Australia, 2004.

[21] Nick Russell, Arthur H.M. ter Hofstede, David Edmond, and Wil M.P. van der Aalst.

Workflow resource patterns. Technical report, Queensland University of Technology,

Brisbane, Australia, 2004.

[22] Nick Russell, Arthur H.M. ter Hofstede, and Wil M.P. van der Aalst. newyawl: Speci-

fying a workflow reference language using coloured petri nets. In Eighth Workshop and

Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools. CPN Group at

the Department of Computer Science, University of Aarhus, Denmark, October 2007.

[23] Stefan Seidel, Michael Rosemann, Arthur ter Hofstede, and Lindsay Bradford. De-

veloping a business process reference model for the screen business – a design science

research case study. In Proceedings of the 17th Australasian Conference on Information

Systems, number 17, Adelaide, Australia, December 2006. Australasian Conference on

Information Systems.

[24] William W. Stead and Herbert S. Lin, editors. Computational Technology for Effective

77

Health Care: Immediate Steps and Strategic Directions. The National Academies Press,

2009.

[25] Bernhard Steffen, Tiziana Margaria, Ralf Nagel, Sven Jörges, and Christian Kubczak.

Model-driven development with the jabc. In Proceedings of the 2nd international Haifa

verification conference on Hardware and software, verification and testing, HVC’06,

pages 92–108, Berlin, Heidelberg, 2007. Springer-Verlag.

[26] Kontinuum Specification Team. Implementation of standard workflow control patterns

using web and flos kontinuum version 2006. Technical report, Web and Flo Pty Ltd,

August 2006.

[27] Antoine Toulme. How to get the most of the bpmn modeler. Technical report, Intalio,

Inc., 2008.

[28] W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: Yet another workflow language

(revised version). Technical report, Queensland University of Technology, Brisbane,

2006.

[29] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Work-

flow patterns. Distributed and Parallel Databases, 14(1):5–51, July 2003.

[30] N Saul Weingart, Ross McL Wilson, Robert W Gibberd, and Bernadette Harrison.

Epidemiology of medical error. BMJ, 320(7237):774–777, 3 2000.

[31] Stephen A. White. Introduction to bpmn. White paper, IBM Corporation, 2004.

[32] Susan F. Whitehead and Julian M. Goldman. Medical device plug-and-play. Patient

Safety & Quality Healthcare, February 2008.

[33] Alexander Wise. Little-jil 1.5 language report. Language report, University of Mas-

sachusetts, Amherst, MA, USA, October 2006.

78

[34] Alexander Wise, Aaron G. Cass, Barbara Staudt Lerner, Eric K. McCall, Leon J.

Osterweil, and Jr. Stanley M. Sutton. Using little-jil to coordinate agents in software

engineering. In Proceedings of the 15th IEEE International Conference on Automated

Software Engineering, pages 155–163, Washington DC, USA, 2000. IEEE Computer

Society.

[35] M.T. Wynn, M. Dumas, C. J. Fidge, A.H.M. ter Hofstede, and W.M.P. van der Aalst.

Business process simulation for operational decision support. In Proceedings of the

Third International Workshop on Business Process Intelligence, pages 66–77, Brisbane,

Australia, September 2007. Springer-Verlag. In conjunction with Business Process

Management Conference.

79

	Abstract
	Table of Contents
	List of Figures
	List of Algorithms
	Acknowledgements
	Dedication
	Introduction
	What is Workflow?
	Workflow in Health Care
	Contributions

	Literature Review
	Execution of Workflow
	Status Quo
	Future Developments

	Evaluation Metrics
	Workflow Language Examples
	BPMN
	Little-JIL
	YAWL

	Symbolic Execution

	Kinerja
	Design Overview
	Description of YAWL-Subset
	Informal Description
	Formal Description

	Evaluation Metrics Revisited
	Control Aspect
	Control flow
	Data Structures

	Data Aspect
	Formalization of Symbolic Execution
	Control Flow
	Data Structures

	Monitors
	User Interface

	Benchmarks
	Synthetic Benchmark
	Description
	Execution

	Clinical Benchmark
	Description
	Execution
	Evaluation

	Conclusion
	Future Work
	Clinical Impact

	Bibliography

