
An Architecturally-Integrated,
Systems-Based Hazard Analysis for
Medical Applications

Sam Procter and John Hatcliff
SAnToS Lab

Kansas State University

http://cis.ksu.edu/~samprocter

Support:

This work is supported in part by the US National Science Foundation (NSF) (#1239543), the NSF US Food and Drug Administration Scholar-
in-Residence Program (#1355778) and the National Institutes of Health / NIBIB Quantum Program.

Health Care Involves
A Variety of System Components

Information Systems

Sensors

Actuators

Sensor Data
Displays

Clinical Protocols Clinicians

Patient !

Outline

n  Motivation
n  Report

n  Annotations
n  Generation

n  Language
n  Impacts

PCA Interlock Scenario
n  Patients are commonly given

patient-controlled analgesics
after surgery

n  Crucial to care, but numerous
issues related to safety

n  Data for disabling the pump
exists now (just a system
invariant) -- we just need to
integrate it

PCA Pump Safety Interlock

Devices

Fully leverage device data streams and the ability to control devices

Enable Pump
 for safe time window

Device
Task

controller

Enable bolus dose only
when ticket present

Combined
PCA Vitals
Monitoring

PCA Bolus “Enable”
Ticket

PCA Pump

Capnograph

Pulse Oximeter

Monitoring Data +
Alarm Information

Monitoring Data +
Alarm Information

Aggregated
Monitoring Status

Status Display
for PCA Monitoring

Application

Clinician /
Monitoring

Vision

FDA Evaluators

Assurance Case

3rd Party
Certifiers

Risk Assessment

Hazard Analysis

Requirements

Clinical Use Case /
Workflow Description

3rd Party
ICE Conformance

& Safety Certification
Submission Package

FDA 510K
Submission Package

App Deployment

Medical Application Platform

Analyses and Regulatory Artifacts

App
Developer

Language
Model

D
ev

ic
e1

D

ev
ic

e2

AADL System

AADL Process: Logic AADL Process:
Display

Thread1

Channel Delay:
50ms Period: 50ms

WCET: 5ms

Output rate: 1
sec .. 5 sec

Thread1

Thread2

Thread3

Thread2

STPA
Fundamentals

n  Fundamentals
n  Accident Levels
n  Accidents
n  System Boundaries
n  Hazards
n  Safety Constraints
n  Control Actions
n  Control Structure

Example

1.  An inadvertent “Pump Normally”
command is sent to the pump
[PatientHarmed]

2.  Commands are sent to the pump too
quickly [PCADamage]

STPA
Fundamentals

n  Fundamentals
n  Accident Levels
n  Accidents
n  System Boundaries
n  Hazards
n  Safety Constraints
n  Control Actions
n  Control Structure

Example

1.  App -> Pump: Pump Normally

2.  PulseOx -> App1: SpO2 = 95

3.  App -> Display: Patient = Ok

1: Also referred to as “Feedback”

STPA
Step 1: Identifying Potentially Hazardous Control Actions

Control
Action

Providing Not
Providing

Applied
too Long

Stopped
too Soon

Early Late

App -> Pump:
Pump Normally

PH Not
Hazardous

PH Not
Hazardous

PH Not
Hazardous

App -> Disp:
Patient Ok

BID BID BID BID BID BID

PulseOx->App:
Provide SpO2

Not
Hazardous

PH, BID Not
Hazardous

PH, BID Not
Hazardous

PH, BID

PulseOx->App:
Provide Pulse
Rate

Not
Hazardous

PH, BID Not
Hazardous

PH, BID Not
Hazardous

PH, BID

n  Hazardous Control Actions
n  Cross-product of control actions and STPA

guidewords

STPA
Step 2: Determining How Unsafe Control Actions Could Occur

Control Action: App -> Pump: Pump Normally

n  Providing:
n  Bad Data:

n  Cause:
n  Incorrect values are gathered from one of the

physiological sensors

n  Compensation:
n  Rely on multiple sensed physiological parameters to

provide redundancy

n  Not Providing:
n  Not hazardous

Hazard Analysis
Annotating our Architectural Model

Feedback or control
action is provided
in an unsafe way

How would the message be unsafe?

What hazard would be caused?

What constraint would be violated?

What should the occurrence be named?

What would cause this to occur?

How can this occurrence be compensated for?

Hazard Analysis
Annotating our Architectural Model

How would the message be unsafe?

What hazard would be caused?

What constraint would be violated?

What should the occurrence be named?

What would cause this to occur?

How can this occurrence be compensated for?

We’ll come back to these
two in a moment.

Report Generation Development

n  Development of
component architecture
using AADL / OSATE2

n  Addition of Hazard
Analysis Annotations

n  Automatic generation of
STPA-Styled Hazard
Analysis Report

AADL Component
Architecture
with Hazard
Annotations

Automatic
report

generation

Example “In Progress” Report Online at:
http://santoslab.org/pub/mdcf-architect/HazardAnalysis.html

Annotating our Architectural Model
Inside the AADL System Component

What specific fault will result?

What channel will be affected?

What can we do with our
model + specific
fault information?

Hazard Analysis
Annotating the Architectural Model

The fault is traced
to its source

component / port

Hazard Analysis
Specification Step 1: Propagation

Port the fault will propagate on

Direction of the propagation

Specific Fault

Anything missing?

Hazard Analysis
Annotating the Architectural Model

There are two
missed error
propagations!

Hazard Analysis
OSATE Remembers A Neglected Connection

Hazard Analysis

1. Report indicates analysis
incomplete

2. Developer creates
occurrence property and
supporting EMV2 annotations

Interaction between Report and Model

3. Tool highlights unconsidered
propagation paths

4. Developer creates supporting
occurrence property, considers
alternative impacts of hazard

Top D
ow

n Bo
tt

om
 U

p

Impacts

n  Automation
n  Traditionally, analysts have to mine a system

and maintain it – without tool support

n  Architectural integration
n  Faults can be “bound” to specific components

and ports

n  Future:
n  Testing + Fault Injection

n  If a compensation is claimed, we can auto-
generate a test

An Architecturally-Integrated,
Systems-Based Hazard Analysis for
Medical Applications

Sam Procter and John Hatcliff
SAnToS Lab

Kansas State University

http://cis.ksu.edu/~samprocter

Support:

This work is supported in part by the US National Science Foundation (NSF) (#1239543), the NSF US Food and Drug Administration Scholar-
in-Residence Program (#1355778) and the National Institutes of Health / NIBIB Quantum Program.

