
Demonstration of a Medical Device Integration and Coordination Framework∗

Andrew King, Sam Procter†

Dan Andresen, John Hatcliff‡, Steve Warren
Kansas State University

{aking,samuel3,dan,hatcliff,swarren}@ksu.edu

William Spees, Raoul Jetley
Paul Jones, Sandy Weininger

US Food & Drug Administration
{William.Spees,Raoul.Jetley,PaulL.Jones,

Sandy.Weininger}@fda.hhs.gov

Abstract
This tool demonstration presents a framework for inte-

grating and coordinating the activities of medical devices.
The framework uses a publish-subscribe framework for com-
municating with and controlling devices and a model-driven
component-based development environment for rapid imple-
mentation of device coordination tasks. A multi-faceted
graphical user interface supports activities such as de-
vice/driver registering and installation, model-based devel-
opment of device integrations, and monitoring system ac-
tivities/performance. The framework also includes a con-
trol/display environment that clinicians would use to (a) dis-
play integrated information pulled from multiple devices and
(b) launch and interact with device coordinations that auto-
mate clinical workflows. The distribution of the framework
includes a collection of mock medical devices, and instruc-
tions for integrating real devices. The codebase is freely
available under an open source license.

1. Introduction
Medical devices historically have been monolithic units –

developed, validated, and approved by regulatory authorities
as stand-alone entities. Modern medical devices increasingly
incorporate connectivity mechanisms that offer the potential
to stream device data into electronic health records, integrate
information from multiple devices into single customizable
displays, and coordinate the actions of groups of cooperating
devices to realize “closed loop” scenarios and automate clin-
ical workflows. However, it is not clear what middleware and
integration architectures may be best suited for these possi-
bly numerous scenarios. More troubling, current verification
and validation techniques used in the device industry are not
targeted to assuring groups of integrated devices.

To facilitate industry, academic, and government explo-
ration of these issues, we are developing an open Medical
Device Coordination Framework (MDCF) for designing, im-
plementing, verifying, and certifying systems of integrated
medical devices. This framework uses publish-subscribe ar-

∗This material is based upon work supported by the National Science
Foundation under Grants # 0454348 and 0734204 and by the Air Force Of-
fice of Scientific Research.

†Author’s current affiliation: University of Nebraska, Lincoln
‡Corresponding Author.

chitectures and component-based model-driven development
along with standards-compliant open-source code-bases to
provide a full featured and scalable system for integrating
both real and mock medical devices in realistic clinical ap-
plications. This tool demonstration will explain current chal-
lenges that are driving this research, describe the architecture
of the framework, and provide live walkthroughs of the pri-
mary MDCF modules.

This tool demo paper supplements our ICSE 2009 Expe-
rience track paper [2]. The Experience paper gives a detailed
discussion of benefits and challenges of medical device in-
tegration/coordination and describes our experience in using
the MDCF in multiple configurations that correspond to re-
alistic clinical deployments. By presenting this material at
ICSE, we seek to (a) directly engage the software engineering
community with initial experience and challenge problems
associated with this emerging paradigm of medical systems
and (b) overcome community barriers that have previously
inhibited interactions between the software engineering re-
searchers/practitioners, industrial medical device developers,
and government regulatory authorities. The MDCF is avail-
able for public download at [3].

2 Examples
Our tool demonstration will illustrate how the MDCF can

support the following examples of device integration.
Workflow Automation: Integration of a X-ray machine

and ventilator is an example of useful coordination that ad-
dresses the problem of acquiring chest X-rays of patients on
ventilators. To keep the lungs’ movements from blurring the
image, doctors must manually turn off the ventilator for a few
seconds while they acquire the X-ray image, but there are
risks in inadvertently leaving the ventilator off for too long.
These risks can be minimized by automatically coordinating
the actions of the X-ray imaging device and the ventilator:
specifically, the ventilator can identify when the lungs are at
full inhalation or exhalation (and thus experiencing minimal
motion) so that the X-ray image can be automatically cap-
tured at the optimal point in time.

Integrated medical device displays: A typical hospital
room in an intensive care ward hosts a number of stand-alone
devices. Many modern rooms are integrated with an Elec-
tronic Health Record (EHR) database to log clinical activ-



ities, lab data, treatment plans, and information for patient
billing. Connections to drug dosing databases may also be
available to facilitate correct drug dispensing. In such con-
texts, a number of factors reduce efficiency, degrade the qual-
ity of the patient’s encounter, and increase error likelihood.
Each device in the room has its own user interface, and these
interfaces are non-uniform – potentially leading to mental
overload and confusion on the part of the caregiver. The
MDCF allows traditional medical devices to be viewed as
data producers that publish periodic or streaming data to sev-
eral types of data consumers. An EHR database serving as
a data consumer allows information from individual devices
to be integrated directly into the EHR. A single “heads up”
display serving as a data consumer takes information from
multiple devices and an EHR database (in this case, acting as
a data producer) and formats it on one or more large monitors
near the patient bed.

3 Primary Functional Components
Device and Driver Database: A MySQL database stores in-
formation about device types (e.g., X-Ray, Ventilator, Pulse
Oximeter, Blood Pressure Cuff) and specific models of de-
vices supported by the framework. Each device model has
a driver associated with it. Due to the safety-critical na-
ture of the application, connection to the system is limited
to approved devices with pre-installed drivers. The database
stores a list of approved devices identified by unique identi-
fiers based on, e.g., MAC addresses. Our demo will illustrate
the MDCF console for maintaining this device information.
In addition, we will overview the construction of drivers for
both real and mock devices.
Middleware Layer: MDCF uses an open-source the Java
Messaging Service (JMS) implementation to support publish-
subscriber style communication. On top of JMS, we have
developed interfaces to support common clinical data for-
mats such as Health Level 7 (HL7) and the DICOM medical
imaging format. [2] reports on a variety of experiments that
confirm the effectivness of MDCF for communicating sam-
ple clinical data conforming to these formats. Our demo will
show a monitoring console that allows one to observe the flow
of events and data across the JMS infrastructure.
Model-based Coordination Development: We have built an
integration scenario development environment[3] for eclipse
based on our Cadena framework [1]. The demonstration of
this environment will be the primary focus on the demo. Ca-
dena provides component-based meta-modeling that enables
us to define a domain-specific language of components for
building device integration scenarios. Given a meta-model of
the component language, Cadena generates a component in-
terface editor that allows one to define component types and a
system scenario editor that allows one to allocate and connect
component instances to form an executable system. Cadena’s
rich type system allows one to define different type languages
for component ports that capture specific properties of data
communicated between components. Cadena provides a no-
tion of “active typing” that continuously checks for type cor-

rectnesss as a system scenario is constructed in the graphical
scenario editor.

We have also built a type system defining the abstract
‘shapes‘ of different component types such as (DeviceDriver,
DataTransformer, DataSink) found in integration scenarios.
Given a Cadena type signature for an MDCF component, au-
tocoding facilities generate a Java skeleton/container for the
component. The skeleton contains all logic required by the
framework to enable the component implementation to con-
nect to the framework as a framework component (this in-
cludes automatically generating the subscription assignment
and publishing logic). The component developer then only
needs to implement the “business logic” – the code that pro-
cesses medical information (such as a data transformer or ren-
dering routine) or device access logic (interaction with actual
device sensor hardware). Similar in spirit to CORBA Com-
ponent Model (CCM)’s deployment and configuration infras-
tructure, MDCF can also analyze a Cadena coordination sce-
nario model and generate a MDCF specificiation file. This
XML-based file is used by the MDCF to locate the appropri-
ate MDCF component class files and execute the coordination
scenario.
Clinician Console: A caregiver chooses a coordination sce-
nario to run from the coordination library using the Clinician
Console. This console guides the caregiver in selecting de-
vices of the appropriate type from among those that are cur-
rently connected to the framework. The console supports a
variety of data panels that can serve to integrate data from
one or more devices or the EHR database and allow the care-
giver to guide device coordination activities. Our demo will
follow the typical workflow of a caregiver as they select, ex-
ecute, and oversee coordination scenarios.

4 Conclusion
We believe the MDCF framework provides a rich setting

for experimenting with design, development, and verification
techniques in a challenging real-world context. The contents
of this paper should not be interpreted as an endorsement by
the FDA of any particular technology, software infrastructure,
or direction for regulatory policy. However, we expect experi-
ence with frameworks like the one presented here to provide
science-based input to ongoing regulatory policy and stan-
dards development efforts.

References
[1] A. Childs, J. Greenwald, G. Jung, M. Hoosier, and J. Hat-

cliff. CALM and Cadena: Metamodeling for component-based
product-line development. Computer, 39(2):42–50, February
2006.

[2] A. King, S. Proctor, D. Andresen, S. Warren, J. Hatcliff,
W. Spees, R. Jetley, P. Jones, and S. Weininger. An open test
bed for medical device integration and coordination. In Pro-
ceedings of the 31st International Conference on Software En-
gineering (ICSE 09), 2009. To appear.

[3] Medical Device Coordination Framework (MDCF) – Kansas
State University. http://mdcf.santos.cis.ksu.
edu/.


