
An Architecturally-Integrated, Systems-Based
Hazard Analysis for Medical Applications

Sam Procter
Kansas State University

samprocter@ksu.edu

John Hatcliff
Kansas State University

hatcliff@ksu.edu

Abstract—Medical devices are increasingly being developed
not as standalone units but as network-aware machines that can
be integrated via high-assurance middleware and coordinated
with software into clinically useful applications for Medical
Application Platforms (MAP apps). While this concept is still
emerging, both regulators and vendors recognize that these apps
can be as powerful as purpose-built medical devices, and they are
struggling to understand the appropriate techniques to support
risk assessment and safety claims. Before being approved for
market, the reliability of medical devices is typically ascertained
by performing one of a number of hardware-centric, reliability-
focused analyses. However, these techniques are not a good fit for
the combined hardware and software systems that are defined by
MAP apps, nor is their emphasis on reliability appropriate when
the end goal is safety.

In this work, we tailor a modern, systems-based hazard
analysis technique (STAMP / STPA) to the domain of MAP
apps by leveraging our prior work in safety-critical systems
engineering for medical software. We also build on our previously
developed AADL-based language and tooling for the semi-formal
modeling of MAP app architectures to provide a proof-of-concept
tool that aids the transition between design and analysis. This
tool takes as input an architectural model annotated with both
new and re-purposed constructs from AADL (as well as its error
modeling annex) and produces as output a report in our proposed
format. We ground our approach by using a clinically-sourced
scenario that serves as a motivating example: we provide an
annotated architectural model and hazard analysis report that
serve as exemplars of our technique and tooling.

I. INTRODUCTION

Medical device manufacturers, which have long devel-
oped their products as standalone units, are now beginning
to develop devices capable of interacting with each other
over a network. These interactions, which range from simple
information-forwarding applications to sophisticated closed-
loop medical systems, have attracted increasing regulatory
attention on a global basis. The resulting research has focused
on a number of aspects of these “systems of systems” as well
as the software platforms that enable them (termed medical
application platforms, or MAPs[1]): the devices themselves,
the software that governs their interactions (apps), as well as
the underlying network infrastructure upon which the systems
are composed. Additionally, there is an increasing understand-
ing that the application of traditional system safety analysis
techniques to the apps that run on these platforms is at best
awkward and at times wholly inappropriate.

Consider, for example, the “PCA Interlock” scenario de-
scribed in Figure 1, which details a situation where a patient

A 49 year old woman underwent an unevent-
ful operation. Postoperatively, the patient com-
plained of severe pain and received intravenous
morphine via a continuous infusion of morphine
from a PCA pump. A few hours after leaving
the post anesthesia care unit she was found pale
with shallow breathing, a faint pulse, and pin-
point pupils. The nursing staff called a “code,”
and the patient was resuscitated and transferred
to the intensive care unit on a respirator. Based
on family wishes, life support was withdrawn
and the patient died. Review of the case by
providers implicated a PCA overdose.

Fig. 1. An example STPA Report context, adapted from [2]

died due to the lack of interaction between her physiological
monitors and her patient-controlled analgesia (PCA) pump.
Had the monitors, typically a pulse oximeter (which tracks
blood-oxygen saturation (SpO2) and pulse rate) and a capno-
graph (which monitors exhaled CO2 (EtCO2) and respiratory
rate) been able to command the PCA pump to run at a minimal
rate (i.e., form an interlock) via straightforward application
logic, the patient’s life may have been saved. Though this
application logic would not be difficult to develop, making
a strong argument about the resulting system’s safety would
be. Integrating the outputs of numerous devices, each of which
can fail in a number of ways, to control a PCA pump which is
itself fallible requires sophisticated error handling procedures.
Since failure could mean serious injury or loss of life, a
strong argument for safety must be made before the system
is deployed.

There exists work, by both regulators and researchers,
on the architectural aspects of MAPs. ASTM International
has developed their F2761-09 standard, which describes the
functional architecture for an “Integrated Clinical Environ-
ment” (ICE) [3]. There have also been proposals for a MAP-
specific architecture description language based on the Society
of Automotive Engineer’s (SAE’s) Architecture Analysis and
Description Language (AADL) [4]. What has not yet been
addressed, though, is how best to argue for the safety of MAP
apps. While some standards exist that address safety and risk
management for medical devices and medical device software,
(e.g., ISO 14971 and IEC 80001) most were written before the
concepts of MAP apps and ICE were well known and may not
be well-suited to the domain.

What is needed, then, is a proposal for a hazard analy-

sis technique that is germane to MAP apps. Fortunately, a
considerable amount of work in this area has already been
done—a large number of hazard analyses (see, e.g., [5])
have been developed and refined over the years, and many
are recommended (if not required) by medical device safety
standards. However, since the field of hazard analysis continues
to evolve (see, e.g., the Systems-Theoretic Accident Model
and Processes (STAMP) and its associated hazard analysis
technique, System-Theoretic Process Analysis (STPA) [6]), the
issue of the most appropriate hazard analysis technique for
MAP apps merits discussion. Further, many of the criticisms
of existing hazard analyses such as informal (i.e., “word file”)
formatting, manual construction, and a lack of integration with
development artifacts [7] are especially problematic in the
domain of MAP apps, as many of them tend to be relatively
small, simple programs whose value lies partially in a quick
time to market.

In light of these issues, we present in this paper a
description of work which integrates cutting-edge hazard-
documentation technologies with a similarly modern hazard
analysis technique. Specifically, we describe the following
contributions in this work:

1) A proposed format for MAP app hazard analysis which
is based on the STAMP causality model and refined by
our experience in the domain, and

2) An encoding of the information required by the report for-
mat from 1) using both AADL’s error-modeling (EMV2)
annex and the AADL subset described in [4], and

3) An implementation of an automated translator that takes
as input the EMV2 and AADL annotations from 2) and
produces the report described in 1), and

4) A hazard analysis of the PCA Interlock MAP app, doc-
umented in the format described in 2) (which serves
as expected input to our translator) and in the format
described in 1) (which serves as expected output).

The remainder of this paper is organized as follows. Section
II describes the background of regulations and technologies
relevant to this work. Section III explains our vision for a
regulatory regime suited to MAP apps. Section IV describes
our proposed STAMP-based report format. Section V describes
our proposed use of EMV2 and the AADL subset from [4] as
well as the tool which converts these annotations to our report
format. In Section VI we conclude and discuss future work.

II. BACKGROUND

Like many interdisciplinary projects, our work is both in-
formed and constrained by a number of different technologies.
Some of these, like AADL, are quite close to core computer
science topics (e.g., model-driven development) while others,
like hazard analysis and the regulatory infrastructure, are
external to the field. Though this can add an initial barrier
to working in the domain [8], understanding the entire MAP
ecosystem is vital to making an impact in the real world.

A. Regulatory Authorities

Hatcliff et al. explain that “. . . society’s confidence in
safety-critical systems is typically established by government
regulation, including requirements for licensing and certifi-
cation” [8]. Relevant regulations include United States 21

C.F.R. §820.30(g) et seq. which specifies that “Each [medical
device] manufacturer shall establish and maintain procedures
for validating the device design. Design validation shall. . .
include software validation and risk analysis, where appro-
priate.” Similarly, in the European Union, Council Directive
93/42/EEC Concerning Medical Devices states that “The man-
ufacturer must lodge an application for assessment [which]
must include. . . the design specifications, including the stan-
dards which will be applied and the results of the risk analysis.”

The question then is, how is “risk analysis” evaluated? For
the purpose of these regulations, typically a “mark” (e.g., CE)
must be earned through the application of a relevant standard.
For work in the medical device domain, this often means
adherence to ISO 14971, which describes risk management for
medical devices. When applied to software, application of ISO
14971 can be guided by the non-normative IEC 80001. There
are a number of other relevant standards (e.g., IEC 62304:
Medical device software – Software life cycle processes, IEC
60601: Medical electrical equipment, etc.) as well as emerging
standards (e.g., AAMI/UL 2800: Interoperable Medical Device
Interface Safety).

Hatcliff et al. note later in [8] that “The presence of so
many standards. . . can be bewildering to anybody operating
in [the safety critical] domain, and can be a significant barrier
in the education of new practitioners and researchers.” Indeed,
we hope that our more formal, tool-supported efforts in this
area can guide future revisions of related standards towards a
more practicable approach.

B. Hazard Analysis Techniques

Underlying many of the previously mentioned risk-
management standards are hazard analysis techniques. A num-
ber of broadly-applicable techniques have been developed
and used successfully in range of safety-critical engineering
domains. Two of the most common are Failure Modes and
Effects Analysis (FMEA) and Fault Tree Analysis (FTA); a less-
common third technique, STAMP/STPA, has been developed
more recently.

1) Failure Modes and Effects Analysis: Originally devel-
oped in 1949 by the U.S. military, FMEA is a bottom-up analy-
sis that considers the individual components (i.e. the hardware,
software, or “functional” elements of a system) of a system
and analyzes how they could fail [5]. Depending on the type
of component under analysis, different failure mode keywords
are suggested (e.g., for software components Ericson lists
examples like “unsent messages” or “software hangs”) though
practitioners will likely also want to introduce domain-specific
failure modes as well. Table I shows an excerpted example of
what an FMEA might look like for the PCA Interlock scenario,
based on the format provided in [5]. It examines what might
happen if the pulse oximeter fails to provide accurate SpO2

data to the application logic for various reasons. A full analysis
would cover all required functionality for the scenario’s various
subsystems (e.g., devices and application logic). Note that
FMEA is primarily a reliability1 analysis that typically focuses
on failures with a single cause, and it relies on experientially

1As explained in [8], it is a common misconception that safety and reliability
are synonymous. Reliability’s definition can be paraphrased as “ability to
perform required functions” while safety is “freedom from harm.”

Failure Mode and Effects Analysis
System: PCA Interlock Scenario Subsystem: Pulse Oximeter Device Mode/Phase: Execution
Func-
tion

Failure
Mode

Fail
Rate

Causal Factors Immediate
Effect

System
Effect

Method of
Detection

Current
Controls

Hazard Risk Recommended Action

Provide
SpO2

Fails to
provide

N/A Network failure, device
failure

SpO2 not
reported

Unknown
patient state

App Potential for
overdose

3D Default to KVO command

Provides
late

N/A Network congestion,
transient device failure

SpO2 not
reported

Unknown
patient state

App Potential for
overdose

3C Default to KVO command
until new data arrive

Provides
wrong

N/A Device error SpO2 value
incorrect

Incorrect
patient state

None Potential for
overdose

1E Have device report data
quality with sensor reading

Analyst: Sam Procter Date: September 26, 2014 Page: 3/14

TABLE I. EXCERPTS FROM AN EXAMPLE FMEA WORKSHEET FOR THE PCA INTERLOCK APP

Too	 Large	 of	
Dose	 Allowed	

G1

Bad	
Physiological	
Data	 Received	

Undetected	
Error	

G2

Incorrect	
Physiological	
Reading	

Message	
Garbled	 by	
Network	

SoCware	
Encoding	 or	

Decoding	 Error	

G3

Physiological	
Data	 within	
Max	 Range	

Internal	
DiagnosEcs	 Fail	

Fig. 2. An excerpt of an example fault tree

derived (typically published in aggregate) failure rates [9] that
may not be available—or even appropriate—for purpose-built
software components.

2) Fault Tree Analysis: Fault Tree Analysis is a top-down
analysis technique that begins with a definition of an undesired
event and then has the analyst consider what contributory
faults could cause that event [5]. Unlike FMEA, FTA is a
graphical analysis where faults are joined together (enabling
the consideration of multiply-sourced failures) using logic
gates (e.g., AND and OR) and can be repeated iteratively until
a desired level of depth / rigor has been achieved. An excerpt
of an example FTA for the PCA interlock scenario is shown in
Figure 2. The top event corresponds to what should be avoided,
and both of the contributory events (joined by AND-gate G1)
must happen for the top-level event to occur. Only one of the
contributory events joined by G2 would be necessary, though,
as it is an OR-gate. A full FTA would likely trace down farther
(i.e., it would include more levels of contributory events) and
include a number of trees—one corresponding to each event
or system state to be avoided.

3) STAMP / STPA: After examining a number of failings
with safety-critical systems (and the engineering processes that
guided their designs) Leveson recently (2011) described the
Systems Theoretic Accident Model and Processes (STAMP)
causality model and an associated hazard analysis, System
Theoretic Process Analysis (STPA) [6]. As their names imply,
STAMP and STPA differ most significantly from previous

Sensor:	 Pulse	 Oximeter	
	

Inadequate	 Opera-on:	 SpO2	 value	 incorrect	
Inadequate	 Opera-on:	 SpO2	 value	 late	

Actuator:	 PCA	 Pump	
	

Inadequate	 Opera-on:	 Doesn’t	 respond	 to	
commands	

Controller:	 App	 Logic	
	

Process	 Model	 Incorrect:	 Wrongly	 believes	 pa:ent	 to	 be	 healthy	
Flaw	 in	 Crea-on:	 Messages	 are	 parsed	 incorrectly	

Controlled	 Process:	 Pa:ent	

Control	 Ac8on:	 PulseOx	 –>	 App	
	

Delayed	 opera-on:	 Messages	 late	
Missing	 feedback:	 Messages	 dropped	

Control	 Ac8on:	 App	 –>	 PCA	 Pump	
	

Delayed	 opera-on:	 Messages	 late	
Missing	 feedback:	 Messages	 dropped	

Fig. 3. An example control loop annotated according to STPA

hazard analyses in their use of systems theory, which is defined
by Leveson as an approach that “focuses on systems taken as
a whole, not on the parts taken separately.” Unlike FMEA,
which has component failures as its central notion, or FTA,
which focuses on avoidance of certain events, STPA is driven
by the avoidance of unsafe control actions (i.e., actions that
can affect the state of the system).

Once a list of unsafe control actions has been identified,
potential causes can be analyzed and prevented / mitigated. A
complete list of control actions can be automatically created
given a thorough architectural description—reducing the haz-
ard analysis expertise required and streamlining the develop-
ment process. STPA contextualizes control actions by placing
them in control loops, which by definition contain one or
more a) actuators, b) sensors, c) controllers, and d) controlled
processes. Figure 3 shows an excerpt of an annotated control
loop for the PCA interlock scenario. Each element and link
between elements is annotated with potentially unsafe actions;
note the associated guide-phrases in italics.

C. AADL

The Architecture Analysis and Design Language (AADL)
is a model-based architecture description language developed
in 2004 by the Society of Automotive Engineers (SAE)
[10]. It enables a developer to completely model a system’s
architecture—from the software that performs the required
functionality, to the hardware that the software runs on, as

well as the binding from the latter to the former. It is supported
by a number of tools, including the open-source OSATE2, a
powerful, Eclipse-based IDE, and has previously been used
to describe and analyse medical device architectures [11],
[12], [13]. In our previous work we have examined AADL’s
applicability to MAP apps and identified a usable subset [4].

One reason that AADL is a particularly attractive language
for describing safety-critical systems is because it has a num-
ber of language annexes that extend its modeling power to
certain non-architectural system aspects. One such extension
is the error modeling annex (in its second version, abbreviated
EMV2) [14]. The error modeling annex, which is based on
Wallace’s fault propagation and transformation language and
algorithm [15], enables a developer to model error types,
sources, propagations, behavior, detections, etc. Larson et al.
have previously examined the application of EMV2 to a safety-
critical medical device, and found that it enabled the realization
of a number of benefits, including a) formal, machine-readable
inputs, b) tight integration with the architectural model, and
c) automated construction of FTA and FMEA-like reports [7].

III. VISION

The hazard analysis work here is a component of the larger
app development environment (ADE) vision outlined in [4].
That vision lays out our plans for creating an ADE which
supports all aspects of MAP-app development—including the
creation of architectural, behavioral, hazard analysis, and
safety-argumentation artifacts which will aid in the app’s
regulatory approval process.

A. Apps as System Integrators

In traditional safety-critical development, a system’s var-
ious components are integrated by a systems expert before
deployment. The MAP vision is unique, though, because while
a MAP app’s functionality is safety-critical (that is, people may
die as a result of errors), the system integration is specified by
the app developer and the assembly is done at the time of app
launch. That is, the app itself defines the system schematically
by its set of assumptions and constraints. At app launch, the
platform guarantees that an instantiation of this app meets these
constraints. MAP apps specify the components (both software
and hardware) used, as well as how those components are
connected and any real-time or quality-of-service settings that
are required for safety.

This compositional style of construction requires a corre-
spondingly compositional safety argument—if regulators were
to only certify apps as safe when instantiated in certain
exact configurations (i.e., with specific devices as opposed to
types of devices), it would greatly limit the usefulness and
impact of the MAP vision. Compositional hazard analysis is
a complex problem, though, and one that has only recently
begun to be addressed (see, e.g., [15]). We will address the
full compositional safety vision elsewhere; in this paper we
focus on hazard analysis activities that would be carried out
within the app boundary.

B. Envisioned Regulatory Regime

We believe that arguments for an app’s safety should come
from first principles, but we recognize that a full system

STPA Report Format
• Background:
◦ Clinical context
◦ Assumptions
◦ Abbreviations

• Fundamentals:
◦ Accident levels
◦ Accidents
◦ System boundaries
◦ Hazards
◦ Safety constraints
◦ Control actions
◦ Control structure

• Unsafe Control Actions:
◦ Causes and compensations

Fig. 4. The sections of the proposed STPA report format

analysis—involving not only the app’s software components
but also the medical devices, composed system, and clinical
process in which it would be used—is likely too high of
a safety burden for app authors. Instead, we believe that
most apps will be certified as members of app families (as
in, AAMI/UL 2800, which addresses safety issues with the
PCA interlock scenario) which will have notions of safety
determined by standardization bodies. An app family would
include things like devices and hardware components used,
system-level hazards and safety constraints (to which app-level
hazards and safety constraints would be traced), as well as the
intended use of the app.

IV. STPA REPORT FORMAT

In Engineering a Safer World, Leveson presents a flexible,
broadly-applicable hazard analysis that is suited to a range
of safety-critical systems [6]. This original presentation is not
tailored to any specific category of system, but since we know
the various properties and architectural constraints of MAPs,
we believe that the technique can be specialized somewhat
to the domain. In particular, we believe that the somewhat
prescriptive format presented here will provide guidance to
analysts, and produce a more uniform final product.

In this section we present a walkthrough of a proposed
report format2 and associated process which apply both STPA
and a number of lessons we have learned to the PCA interlock
scenario. As discussed earlier, we will confine ourselves to
notions of harm that are contributed to by the app itself. At a
high level, the STPA-based report format we have developed is
divided into three sections: a background, STPA fundamentals,
and unsafe control actions and their causes (see Figure 4).

A. Background

Though not mentioned in [6], we believe that before
any actual hazard analysis is performed, it is important to
contextualize the effort. This can be done with a brief narrative
that introduces the scenario and explains the clinical need,

2Full report available at: http://santoslab.org/pub/mdcf-architect/
HazardAnalysis.html

http://santoslab.org/pub/mdcf-architect/HazardAnalysis.html
http://santoslab.org/pub/mdcf-architect/HazardAnalysis.html

System Accident Levels
1) L1: A human is killed or seriously injured

System Accidents
1) A1: Patient is killed or seriously injured [L1]

App-Contributed Hazards
1) H1: Commands for dosage exceeding the patient’s

tolerance are sent to the pump [A1]
↪→ SH1: The pump administers more drug than the

patient can safely tolerate. [A1]
2) H2: Incorrect information is sent to the display [A1]
↪→ SH2: The clinician is misinformed of the patient’s

health status. [A1]
App Safety Constraints

1) C1: The app must command the pump to stop if the
patient’s vital signs indicate over-infusion. [H1]

↪→ SC1: The pump must not administer more drug than
the patient can safely tolerate. [SH1]

2) C2: The app must inform the display of the status of
the patient’s vital signs. [H2]

↪→ SC2: The clinician must be informed of the patient’s
status. [SH2]

3) C3: The app must inform the display of the pump
command status. [H2]

↪→ SC3: The clinician must be informed of the pump
command status. [SH2]

Fig. 5. Accident levels, accidents, hazards and constraints associated with
the PCA interlock app and their system-level sources

as in Figure 1. After this context, standard front matter
should be included: assumptions, abbreviations, and any other
information necessary for an intended reader to understand the
app. For the PCA interlock, we have one assumption: that our
pump can run at either a normal rate or at a minimal KVO
rate, and one abbreviation: KVO means “keep-vein-open.”

B. Fundamentals

After the background, a number of basic concepts need to
be established before diving into hazard analysis. In her work,
Leveson refers to these as fundamentals3 (see page 181 of
[6]); in this paper we provide a set of examples tailored to the
MAP domain. Specifically, our derivative, prescriptive format
for report fundamentals is composed of: a) accident levels,
b) accidents, c) system boundaries, d) hazards4, e) safety
constraints, f) control actions, and g) the control structure [6].

On page 181 of [6], Leveson explains that “[the] first step
in any safety effort involves agreeing on the types of accidents
or losses to be considered.” Figure 5 shows some fundamentals
for the PCA interlock scenario, including both accidents and
accident levels. Our one accident level is the loss of human
life (other apps may need to consider things like, e.g., damage
to equipment) and we have only one way that humans could

3Note that Leveson’s definitions of these terms differ somewhat from
standardized definitions used by medical risk-management standards. (e.g.,
those in ISO 14971). We use her definitions in this paper.

4In the style of IEC 80001, we do not consider certain classes of hazards,
e.g., electric shock. We assume that all devices used by our apps are IEC
60601 compliant, i.e., we only will be reasoning about newly-created hazards.

Process	 Boundary	
Pa.ent	

App	 PCA	
Pump	

Pulse	
Oximeter	

Capnography	
Device	

Display	

App	 Boundary	

Clinician	

System	 Boundary	

Fig. 6. The PCA interlock app, system and process boundaries

be harmed: if the pump administers too much drug (A1). How
our app could cause this, though, depends on where we draw
the app and system boundaries.

Figure 6 shows the three boundaries present in the PCA
interlock scenario. The outermost process boundary includes
all scenario components, actors, as well as the clinical envi-
ronment. The middle system boundary includes the system as
defined by our app developer—all the devices and software
components. The innermost app boundary includes only the
messages sent to and from the software components developed
by our app author.

Once these boundaries have been established, Leveson
says that the next step is to start identifying hazards, which
she defines as “[a]. . . set of conditions that, together with a
particular set of worst-case environmental conditions, will lead
to an accident (loss).” We find that our app can cause accident
A1 either by failing to stop the pump (H1 in Figure 5) or by
misinforming the clinician of the patient or app status (H2).
In order to prevent these hazards, we then establish safety
constraints, which Leveson describes (on page 191 of [6]) as
“. . . design constraints necessary to prevent the hazards from
occurring.” Note that while accidents and accident levels are
shared between a system and its components, the app will have
its own hazards and safety constraints. These should be traced
to their system-level source—shown in Figure 5 by the ↪→
symbol.

After the safety constraints have been identified, we are
ready to identify the control actions and place them into the
control structure as in Figure 7. Control actions are all the
inputs and outputs of the system’s components, and typically
include information on their range of possible values. For
simple binary actions (e.g., “pump normal”/“pump KVO”) the
values can be enumerated; for non-binary actions (denoted by a
? in Figure 7), a range of inputs should be defined: e.g., 0% <
SpO2 < 100%. Once the control actions have been defined,
the analyst should use them as labels on the communication
links between system components. Next, the process model of
the app should be broken down into its component variables,

Display	

Pa*ent	

PCA	
Pump	

Pulse	 Oximeter	

Capnography	 Device	

Clinician	

★
 Physiological	 Data	

Device	 O
k	

Device	 Error	

Pump	 Normal	
Pump	 KVO	

★
 Physiological	 Data	

Pum
p	 N

orm
al	

Pum
p	 KVO

	
Device	 O

k	
Device	 Error	

★Physiological	 Status	

★
	 P
ro
vi
de
	 P
re
sc
rip

<o
n	

Au
th
or
ize

	 O
ve
rr
id
e	

Verify	 Prescrip<on	

Re
qu

es
t	 M

or
e	 Pum

p	 Status	

App	
Process	 Model	
Physiological	 Data	 Status	
	 Healthy	

Overdosed	
Unknown	
	

Device	 Status	
	 Ok	

Error	
	

★ View	 Pa<ent	 Status	
View	 Device	 Status	

Fig. 7. The PCA interlock app process model. The ? signifies compound
variables that were not separated or discretized due to space constraints

which themselves should be discretized into meaningful states
like “too high” or “no error.” The control actions and process
model combine to give a high-level overview of the inputs and
outputs to each component.

C. Identifying Unsafe Control Actions

Now that the control actions are documented, we can begin
determining which of them could be provided in potentially
unsafe ways, examples of which are shown in Tables II and
III. Leveson notes that this is where STPA actually begins,
and explains that it has two steps: first, the identification of
which control actions could be provided in unsafe ways; and
second, a determination of how these actions could be provided
in unsafe ways.

The first step—finding control actions that could be pro-
vided in unsafe ways—is done by simply examining each
control action individually and reasoning about whether or
not it could be performed in an unsafe way. This reasoning
is driven by a number of guidewords that Leveson provides
(see page 218 of [6]), e.g. “Not Providing Causes Hazard,”
which guides the analyst to consider the case where the control
action is not provided even though it should be. The results
are then compiled into a table, an excerpt of which is given in
Table II. Consider the first row of this table, which looks at the
command from the app to the pump to run at a normal rate. If
this command is provided at an incorrect time (e.g., when the
patient is experiencing respiratory depression) it could lead to
an overdose and the patient’s death—hazard H1 from Figure
5. If it is not provided when it should be, though, there is
no way for the patient to overdose, so the “Not Providing”
column has “Not Hazardous.” There are no timing or ordering
requirements, so the “Wrong Timing or Order” column has
“N/A” but there are duration requirements: if the pump is given
the command to run at a normal rate for too long, it could lead
to an overdose, so a note is made in the duration (“Too Long
or Too Short”) column.

Note that for ranged (i.e., non-binary) control actions, a
second table should be used to analyse the impact of a value
being incorrectly high or low. An example of this discretization
is provided in Table III. Complex control actions (i.e., those

Complex Control Action Value High Value Low
PulseOx → App: Provide SpO2 H1, H2 H2
PulseOx → App: Provide Pulse Rate H1, H2 H2
Capnograph → App: Provide EtCO2 H2 H1, H2
Capnograph → App: Provide Respiratory Rate H1, H2 H2

TABLE III. EXCERPT OF DISCRETIZED RANGED CONTROL ACTIONS

Hazard Causes & Compensations
Control Action: PulseOx → App: Provide SpO2

• Providing:
◦ Stale values:

Cause: Stale values from physiological sensors
incorrectly indicate the patient is healthy
Compensation: Physiological values have as-
sociated timestamps, and will time out after 3
seconds

◦ Wrong values:
Cause: Incorrect values are gathered from the
physiological sensors
Compensation: ???

• Not Providing: Not hazardous
• Wrong Timing or Order: Not applicable
• Too Long or Too Short:
◦ Too Long: Network Drop

Cause: Network drops out, leaving the pump
running normally regardless of the patient’s
health
Compensation: Commands to pump normally
have an associated maximum time, after which
the pump returns to KVO

Fig. 8. Hazard causes and compensations for the Pulse oximeter to App
Logic SpO2 channel

that encode record types or have parameterization require-
ments) can be similarly discretized in a process described in
[16].

D. Specifying Causes and Compensations

Once hazardous control actions have been identified, it
is time to consider how these actions could occur; some
examples are shown in our proposed format in Figure 8.
Here Leveson again provides a number of guidewords (e.g.,
“inadequate control algorithm,” or “control input. . . wrong or
missing;” see page 223 of [6]) that are helpful, as is experience
building similar systems. We differ slightly from Leveson’s
documentation strategy here, as her examples use causes as
annotations on a diagram of the control loop, as in Figure 3. We
believe that while this is a reasonable documentation strategy,
it would also suffice to use a simple list (as in Figure 8), as
graphical layouts can be difficult to read with large numbers
of causes, and do not have space for compensatory actions.

Note that some hazards can be “designed-out,” i.e., ren-
dered impossible through clever design as in the final “Too
Long: Network Drop” section of Figure 8. In this case, the
pump normally command is applied longer than it should
be—that is, even after the patient shows signs of respiratory
depression—because the network becomes unavailable while
the pump is running at the normal rate. In this situation, the

Control Action Providing Not Providing Wrong Timing or Order Too Long or Too Short
App → Pump: Command Normal H1 Not Hazardous N/A Too Long: H1
App → Pump: Command KVO Not Hazardous H1 N/A Too Short: H1
App → Disp: Command Normal H2 H2 N/A Too Long, Too Short: H2
App → Disp: Command KVO H2 H2 N/A Too Long, Too Short: H2
? Dev → App: Physio Data Not Hazardous H1, H2 Late: H1, H2 Too Short: H1, H2

TABLE II. EXCERPT OF POTENTIALLY UNSAFE CONTROL ACTIONS

command to run at the KVO rate would never arrive at the
pump. If a ticket-based approach were used instead (described
in detail in [17]), where a ticket with a timeout is given to
the pump (e.g., “pump normally for six minutes”), it would be
impossible for a network drop to lead to an overdose as the
pump would simply return to the KVO rate after a set period
of time. Other hazards, though, cannot be compensated for by
the app—e.g., when undetectably wrong (i.e., incorrect but in-
range) values are received from physiological monitors—these
faults will be propagated to other system components.

V. EMV2 ANNOTATIONS

We have previously written about the subset of AADL
we created to enable semi-formal descriptions of MAP app
architectures and how these descriptions can be leveraged
for code generation [4]. It seems natural to also evaluate
additional capabilities of the language in light of other (i.e.,
non-architectural) desirable app design criteria. Chief among
these is the desire for error modeling capabilities, particularly
if those capabilities can be made to align with the STPA
report format discussed in Section IV. Without this alignment,
hazard analysis will remain an informal activity and the created
artifacts will not be integrated with the app architecture.

The use of EMV2—which enables developers to specify
error causes, effects, and propagations in an AADL model—for
MAP apps would bring a number of benefits, both those dis-
cussed in [7] (e.g., machine-readable inputs, close integration
with the architectural model, automated report generation) and
some degree of compositionality; since errors can be declared
to propagate between components, we would move closer to
the compositional vision described in Section III. That said,
there are also disadvantages to applying the EMV2 language
annex directly, primarily that EMV2 is designed for a) a
bottom-up analysis style and b) older, potentially inappropriate
hazard analyses (e.g., FMEA).

In this section we describe our proposal for the use of
EMV2 with the top-down, control-loop driven focus of STPA
as well as a tool developed by the authors to automatically gen-
erate a report from these annotations in the format discussed
in Section IV. This proposal is guided by two key realizations
about the intersection between EMV2 and STPA:

1) Port connections are equivalent to control actions: In
AADL, port connections are directed links between com-
ponents over which messages with typed payloads are
sent. These payloads are, in the parlance of STPA, “con-
trol actions,” i.e., actions capable of “[affecting] the state
of the system.” [6]

2) Error types are equivalent to hazard causes: EMV2’s
error types—the different ways that things can go wrong
with a given component—are equivalent to the causes of
hazardous control actions found when performing STPA.

1 Accident_Level : type record (
2 Level : aadlinteger;
3 Description: aadlstring
4);
5

6 Accident : type record (
7 Number : aadlinteger;
8 Description : aadlstring;
9 Level : MAP_Error_Properties::Accident_Level;

10);
11

12 Hazard: type record (
13 Number : aadlinteger;
14 Description : aadlstring;
15 Accident : MAP_Error_Properties::Accident;
16);

Fig. 9. Definitions of STPA fundamentals as AADL properties

1 AL1 : constant MAP_Error_Properties::Accident_Level => [
2 Level => 1;
3 Description => "Death or serious injury to a human";
4]
5

6 A1 : constant MAP_Error_Properties::Accident => [
7 Number => 1;
8 Description => "Patient is killed or seriously injured.";
9 Level => PCA_Shutoff_Error_Properties::AL1;

10];
11

12 H1 : constant MAP_Error_Properties::Hazard => [
13 Number => 1;
14 Description => "Commands for dosage exceeding the patient’

s tolerance are sent to the pump.";
15 Accident => PCA_Shutoff_Error_Properties::A1;
16];
17

18 H2 : constant MAP_Error_Properties::Hazard => [
19 Number => 2;
20 Description => "Incorrect information is sent to the

display.";
21 Accident => PCA_Shutoff_Error_Properties::A1;
22];

Fig. 10. Uses of STPA fundamental properties in AADL

A. Annotation Walkthrough

The process for annotating an architectural model is an
iterative one, and one that is aided by tooling. We have
developed our examples in OSATE2 as it provides rich support
for modeling errors with EMV2.

1) Modeling Background and Fundamentals: Recall from
Section IV-B that there are seven components of STPA’s
“fundamentals,” ranging from accidents (and their associated
severity levels) through the control structure of the system
under review. Four of the first five fundamentals (accident
levels, accidents, hazards and safety constraints) are essentially
informal, plain-language statements that are organized in a
hierarchical tree. We implemented these components using
AADL’s built-in, extensible property notation. The result is a
straightforward set of properties that can be quickly navigated
using an AADL development tool like OSATE2 [11]. Elements
of the background—context, abbreviations and assumptions—
were also modeled as basic AADL properties, although their
relations to one another form no particular structure.

An excerpt of the property definitions we have created is

1 system implementation PCA_Interlock_System.imp
2 subcomponents
3 appLogic : process PCA_Interlock_Logic::InterlockProcess.

imp;
4 pcaPump : device PCAPump_Interface::PCAPumpInterface.imp;
5 connections
6 pump_cmd : port appLogic.cmd -> pcaPump.cmd;
7 annex EMV2 {**
8 use types PCA_Interlock_Errors;
9 connection error

10 od_cmd_err: error source pump_cmd;
11 end connection;
12 properties
13 MAP_Error_Properties::Occurrence => [
14 Kind => AppliedTooLong;
15 Hazard => PCA_Shutoff_Error_Properties::H1;
16 ViolatedConstraint => PCA_Shutoff_Error_Properties::C1;
17 Title => "Network Drop";
18 Cause => "Network drops out, leaving the pump running at

the normal rate";
19 Compensation => "Pump commands have a maximum time,

after which the pump runs at the KVO rate";
20 Impact => reference(CmdOD);
21] applies to od_cmd_err;
22 **};

Fig. 11. An excerpt of an AADL System Implementation component
annotated with an EMV2 connection error and occurrence property

shown in Figure 9, and some example uses (corresponding to
Figure 5) are presented in Figure 10. Lines 12-15 of Figure 9
specify the information required to define a hazard: a unique
identifier (line 13), a human-readable description (line 14), and
the accident that the hazard is associated with (line 15). Two
uses of this definition are shown in lines 12-22 of Figure 10.

2) Generating the set of Control Actions: Since an app’s
control actions are architectural constructs, they do not need
to be specified as part of a hazard analysis. Rather, it is a
straightforward process to identify an app’s control actions
from an architectural model specified in the language from
[4]. The control actions are equivalent to connections between
components, as these specify the type, direction, and name
of the control action. Unfortunately, the graphical nature of
the system boundary and process model components of the
report format from Section IV make auto-generation of these
difficult,5 and for the time being, these must be created manu-
ally. Once created, they will be coupled with the automatically
generated list of control actions and be included in the report
generated by our translator.

3) Modeling Hazardous Control Actions and their Causes:
Beginning with the first key realization discussed above (that
port connections are equivalent to control actions), a natural
starting point for documenting a STAMP-based hazard analysis
is the EMV2 connection error construct, which enables a
developer to specify a named error that can occur on a specific
port connection. Once our potentially hazardous control action
has been defined, we need to do three things: a) link it to
the “fundamental” elements we have previously defined (e.g.,
accidents, hazards, constraints, etc.), b) define how it could
occur, and c) specify the impact of the occurrence, i.e., how
it will affect the system itself.

All of these tasks are accomplished using a new property
we have created, termed “occurrence,” an example of which

5While there is a graphical editor for OSATE2, neither it nor AADL itself
is designed to model the system environment / context (though there is work
in this area, see [18]) nor are either designed to model relevant variable states
(though again, behavior annexes exist [19], [20]).

Error Type Renames Error Library Type
Errors with Physiological Monitors

LatePhysioDataError LateDelivery
WrongPhysioDataError IncorrectValue
PhysioDeviceFailure N/A

Errors with Controlled Devices
DeviceCommission ServiceCommission
DeviceOmission ServiceOmission

Errors with App Logic
AppCommission ServiceCommission
AppOmission ServiceOmission

Errors with App Display
WrongInfoDisplayedError N/A
WrongInputReceivedError IncorrectValue

TABLE IV. MAP APP ERRORS AND ERROR LIBRARY EQUIVALENTS

(corresponding to the “network drop” problem discussed in
Section IV-D) is given in Figure 11. Lines 3-4 of Figure 11
specify our two components: a PCA pump and the applica-
tion logic. They are connected via a port connection
(line 6) which has an associated connection error named
od_cmd_err (line 10). The occurrence property (lines 13-
21) then links a) the relevant fundamentals (lines 14-16) with
b) human-readable information about the error (lines 17-19),
c) the impact (line 20) and d) the associated connection error
(line 21). Note that the occurrence in Figure 11 has been
“designed out;” that is, it has a defined compensation that is
reflected in the system’s architecture, and no longer poses the
same risk. Other occurrences (e.g., boxes 2 and 4 in Figure
12—note the empty compensation component) may have
no compensation, in which case the associated fault is still
possible within the system.

B. Integration with AADL EMV2

The “impact” component of the occurrence property (line
20 of Figure 11) contains a reference to an EMV2 error type.
EMV2 error types inherit from a carefully constructed error
type hierarchy [7], and as part of this work, we have defined
a number of domain specific error types that we believe will
be useful to MAP app developers (see Table IV). We expect
that developers may want to extend or rename these types
into app-specific errors. For example, the error type CmdOD
on line 20 of Figure 11 extends from the MAP Error Type
AppOmission which itself aliases the EMV2-standard error
library type ServiceOmission.

Once created as part of an occurrence property definition
EMV2 error types should be fully traced through the system
from their generative source, through any transformations,
to their sink (shown graphically in Figure 12). While error
type definitions are typically written in a separate file, their
propagations must be attached to individual, affected compo-
nents. These propagations follow a predictable pattern of first
declaring a propagation direction (e.g., in or out) and then
realizing the propagation with an error flow component (e.g.,
a source, transformation, or sink). For example, the
SpO2ValueHigh error could occur in the pulse oximeter’s
interface (box 1 in Figure 12) as an out propagation realized
by a flow source. Error transformations, as their name
implies, represent the conversion of one error type into another,
as in box 3 of Figure 12. Note that in addition to the
transformative flow specification there are two propagations:

Sensor:	 Pulse	 Oximeter	
	

SpO2	 reading	 high	

error propagations
 SpO2: out propagation {SpO2High};
 flows
 SpO2HighFlowSource: error source SpO2
end propagations;

Actuator:	 PCA	 Pump	
	

Con0nues	 pumping	 normally	

error propagations
 PumpCmd: in propagation {CmdOD};
 flows
 ODCmdFlow: error sink PumpCmd {CmdOD};
end propagations;

Controller:	 App	 Logic	
	

Believes	 pa0ent	 to	 be	 healthy,	 does	 not	 shut	 off	 pump	

error propagations
 SpO2: in propagation {SpO2High};
 PumpCommand: out propagation {CmdOD};
 flows
 HighSpO2ToOD: error path SpO2{SpO2High} -> PumpCommand {CmdOD};
end propagations;

Controlled	 Process:	 Pa0ent	

Control	 Ac8on:	 PulseOx	 –>	 App	
	

Wrong	 SpO2	 Value	 sent	 to	 App	 Logic	

connection error
 spo2_high_err: error source spo2_logic;
end connection;
properties
 MAP_Errors::Occurrence => [
 Kind => TooHigh;
 Hazard => PCA_Error_Props::H1;
 Constraint => PCA_Error_Props::C1;
 Description => “Wrong values”;
 Cause => “Incorrect values are
received from the physiological sensors”;
 Compensation => “???”;
 Impact => reference(SpO2High);
] applies to spo2_high_err;

Control	 Ac8on:	 App	 –>	 PCA	 Pump	
	

Shutoff	 command	 is	 not	 sent	

connection error
 cmd_od_err: error source pumpcmd_logic;
end connection;
properties
 MAP_Errors::Occurrence => [
 Kind => Providing;
 Hazard => PCA_Error_Props::H1;
 Constraint => PCA_Error_Props::C1;
 Description => “No shutoff command”;
 Cause => “App should command pump to
shutoff, but it doesn’t”;
 Compensation => “???”;
 Impact => reference(CmdOD);
] applies to cmd_od_err;

1	

3	

2	 4	

5	

Fig. 12. A control loop annotated with a complete error trace

the consumption of the original error type (SpO2ValueHigh)
and the production of the new error type (CmdOD). Finally, er-
ror sinks (box 5) have an in propagation with a corresponding
sink flow.

C. Putting it All Together

The connection between a model’s architecture and the
potentialities for unsafe control actions identified by STPA
is formed via the “impact” sub-property (line 20 of Figure
11). More specifically, the impact of an occurrence must be
an error type that is propagated between the two AADL con-
structs joined by the port connection that the occurrence
property is applied to. Box 1 of Figure 12, the pulse oximeter,
contains an EMV2 error source: it declares its SpO2 port to
be a source of the SpO2High error; i.e., it is possible for
its sensor to read incorrectly high SpO2 data from the patient.
Box 2 is an occurrence property that documents this error, and
links it to previously created hazards and constraints; it has
SpO2High as its impact. Box 3, the app logic, declares the
previously discussed error transformation. Box 4 is another
example of an occurrence property; note that the “impact”
component now references CmdOD—if this occurrence comes
to pass, the result will be the app failing to shut down the
pump even though the patient is showing signs of respiratory
depression. Finally, box 5 is the PCA pump declaring an error
sink for the CmdOD error, it is the final stopping point for this
error chain.

We believe that the feedback that OSATE2 provides when
using these EMV2 annotations is an invaluable component
of the hazard-documentation process. As unhandled incoming
error propagations are recognized statically and highlighted
in a similar fashion to syntax errors, it is our experience
that developers will create an error type as the impact of

one hazard, but upon considering the effects of that error’s
propagation to other—thought to be uninvolved—components
discover additional hazards. This iterative interaction between
the top-down, control-action focused STPA and the bottom-up,
component-failure driven EMV2 drives the analysis forward.

D. Report Generation

Using as a base both OSATE2’s EMV2 support and the
MAP app targeted subset of AADL and associated tooling
described in [4], we have implemented a translator which takes
as input an architectural model with the annotations described
here and produces a report in the format described in Section
IV. This translator is open-source, and is available as a plugin
to OSATE26.

E. Comparison with Prior Approaches

We believe that our proposed report format, when generated
from the annotations discussed in this section, represents an
advancement of the state of the art for hazard analysis of MAP
apps. We now briefly compare our approach to the previously
discussed hazard analyses.

1) Versus FMEA: Though FMEA has been in use for
some time and has positive aspects, like its keyword-based
guidance for analysts, there are a number of known problems
with it. Ericson cites several, including a “[focus] on single
failure modes rather than failure mode combinations” and a
“[requirement of] expertise on the product or process under
analysis” [5]. Additionally, at least one study has performed an
in-depth gap analysis between a STAMP-based hazard analysis
and one based on FMEA, and found that when analyzing
a system the STAMP-based analysis identified more hazards
(175 vs 70) including those that were “complex and non-
linear” yet still consumed “[considerably] less time and [fewer]
resources” [21].

2) Versus FTA: While FTA avoids many of the problems
that affect FMEA, we believe our proposal still has some
key advantages. One of the largest advantages comes from
the keyword-based approach that the STAMP causality model
advocates (and that we have encoded in our annotation defini-
tions). We believe that these keywords, combined with the list
of control actions that a developer gets “for free” by simply
developing her architectural model in the supported AADL
subset, will provide a straightforward set of potential faults that
can be iterated over. In an FTA, however, analysts are given
considerably less guidance. Events to be avoided are placed at
the top level of fault trees and it is up to the analyst’s system
understanding—and to some extent creativity—to determine
the myriad ways that the failures can occur.

VI. CONCLUSION

Our objective for this work, as described in Section I, was
to a) describe a hazard analysis report format that would be
both germane to MAP apps and based on the STAMP causality
model, b) describe annotations in AADL’s EMV2 annex that
would enable the encoding of the information required by the
report, c) document a tool that will generate the report, and
d) use as a motivating example the PCA interlock scenario.
We believe our effort was, on the whole, successful.

6http://santoslab.org/pub/mdcf-architect

http://santoslab.org/pub/mdcf-architect

A. Lessons Learned

Perhaps the most pleasantly surprising result was how well
the top-down approach of STPA and the bottom-up approach
of EMV2 / FMEA can work together to iteratively drive not
only the hazard analysis but the system design itself forward.
The need for, and benefits of, this iteration are discussed in [6],
and we believe our work in this area realizes and appropriately
specializes Leveson’s work to the MAP app domain.

With this work, our previous work [4] on semi-formal ar-
chitectural specifications of MAP apps has begun to bear fruit.
We believed that, in addition to the immediately realizable
benefits like code generation and automatic interface confor-
mance checking, there would be additional reason to define
an app’s architecture in a subset of AADL. The ease with
which some tasks in this work were accomplished, e.g., the
identification of an app’s control actions, is validation of those
beliefs. Additionally, some of what we learned reinforces the
findings from [8], specifically that tooling and automation are
vital to the development of safety-critical, software-dependent
systems.

That said, there were some problems encountered. Support
for AADL’s EMV2 annex—as well as the language itself—is
not yet mature; not only did we, in the course of developing our
tool, have to submit a patch to the OSATE2 developers, but
the annotation style can at times be awkward. Additionally,
our report format currently relies on a number of graphical
system layouts which we cannot automatically generate. This
may impede the adoption of our report format and tooling.

B. Future Work

Our next steps in this area will be to both inform and be
informed by ongoing standardization and regulatory efforts.
Though we believe our work can bring considerable safety-
critical software engineering expertise to such groups, we
are very much reliant on them for clinical experience and
feedback. Additionally, it is through our efforts with these
organizations that we expect to see the largest and most
tangible results of this work.

We also plan on examining other techniques previously
used in system safety attestation, e.g., the construction of
safety / assurance cases. The role of these techniques in future
standards, research, and above all industry will largely be
determined by how successful we (as a community) are at
applying existing software engineering knowledge in the form
of tool-supported processes for the development of safety-
critical, software-based systems.

ACKNOWLEDGMENT

This work is supported in part by the US National Science
Foundation (NSF) (#1239543), the NSF US Food and Drug
Administration Scholar-in-Residence Program (#1355778) and
the National Institutes of Health / NIBIB Quantum Program.
The authors also wish to thank Anura Fernando of Underwrit-
ers Laboratories for his feedback on an earlier version of this
work.

REFERENCES

[1] J. Hatcliff, A. King, I. Lee, A. MacDonald, A. Fernando, M. Robkin,
E. Vasserman, S. Weininger, and J. M. Goldman, “Rationale and
architecture principles for medical application platforms,” in 2012
IEEE/ACM Third International Conference on Cyber-Physical Systems
(ICCPS). IEEE, 2012, pp. 3–12.

[2] DocBox and MDPnP, “Clinical Scenario #1 Patient Controlled Anal-
gesia Part 1: Narrative Description ,” National Institute of Biomedical
Imaging & Bioengineering, Tech. Rep., August 2012.

[3] ASTM International, “ASTM F2761 - Medical Devices and Medical
Systems - Essential safety requirements for equipment comprising the
patient-centric integrated clinical environment (ICE),” ASTM Interna-
tional, West Conshohocken, PA, 2009.

[4] S. Procter, J. Hatcliff, and Robby, “Towards an AADL-Based Def-
inition of App Architectures for Medical Application Platforms,” in
Proceedings of the International Workshop on Software Engineering in
Healthcare, Washington, DC, July 2014.

[5] C. A. Ericson II, Hazard analysis techniques for system safety. John
Wiley & Sons, 2005.

[6] N. Leveson, Engineering a Safer World: Systems Thinking Applied to
Safety. MIT Press, 2011.

[7] B. Larson, J. Hatcliff, K. Fowler, and J. Delange, “Illustrating the
aadl error modeling annex (v. 2) using a simple safety-critical medical
device,” in Proceedings of the 2013 ACM SIGAda annual conference
on High Integrity Language Technology. ACM, 2013, pp. 65–84.

[8] J. Hatcliff, A. Wassyng, T. Kelly, C. Comar, and P. Jones, “Certifiably
safe software-dependent systems: Challenges and directions,” in Pro-
ceedings of the on Future of Software Engineering. ACM, 2014, pp.
182–200.

[9] N. G. Leveson and J. Diaz-Herrera, Safeware: System Safety and
Computers. Addison-Wesley Reading, 1995, vol. 680.

[10] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The Architecture Analysis &
Design Language (AADL): An introduction,” DTIC Document, Tech.
Rep., 2006.

[11] SEI, “An extensible open source aadl tool environment,” SEI AADL
Team Technical Report, 2004.

[12] B. Kim, L. T. Phan, O. Sokolsky, and L. Lee, “Platform-dependent
code generation for embedded real-time software,” in 2013 International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES). IEEE, 2013, pp. 1–10.

[13] A. Murugesan, M. W. Whalen, S. Rayadurgam, and M. P. Heimdahl,
“Compositional verification of a medical device system,” in Proceedings
of the 2013 ACM SIGAda annual conference on High integrity language
technology. ACM, 2013, pp. 51–64.

[14] SAE AS-2C Architecture Description Language Subcommittee, “SAE
Architecture Analysis and Design Language (AADL) Annex Volume
3: Annex E: Error Model Annex,” SAE Aerospace, Tech. Rep., April
2013.

[15] M. Wallace, “Modular architectural representation and analysis of
fault propagation and transformation,” Electronic Notes in Theoretical
Computer Science, vol. 141, no. 3, pp. 53–71, 2005.

[16] J. Thomas and N. Leveson, “Performing hazard analysis on complex,
software-and human-intensive systems,” in Proceedings of the 29th
International Conference on Systems Safety, 2011.

[17] D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and
O. Sokolsky, “Toward patient safety in closed-loop medical device
systems,” in Proceedings of the 1st ACM/IEEE International Conference
on Cyber-Physical Systems. ACM, 2010, pp. 139–148.

[18] Y. Qian, J. Liu, and X. Chen, “Hybrid AADL: A Sublanguage Extension
to AADL,” in Proceedings of the 5th Asia-Pacific Symposium on
Internetware, ser. Internetware ’13. New York, NY, USA: ACM, 2013.

[19] Carnegie Mellon University Software Engineering Institute. (2014)
Graphical editor for osate. [Online]. Available: https://github.com/
osate/osate-ge

[20] SAE AS-2C Architecture Description Language Subcommittee, “SAE
Architecture Analysis and Design Language (AADL) Annex Volume 2:
Annex B: Behavior Annex,” SAE Aerospace, Tech. Rep., April 2011.

[21] V. H. Balgos, “A systems theoretic application to design for the safety
of medical diagnostic devices,” Master’s thesis, MIT, 2012.

https://github.com/osate/osate-ge
https://github.com/osate/osate-ge

	Introduction
	Background
	Regulatory Authorities
	Hazard Analysis Techniques
	Failure Modes and Effects Analysis
	Fault Tree Analysis
	STAMP / STPA

	AADL

	Vision
	Apps as System Integrators
	Envisioned Regulatory Regime

	STPA Report Format
	Background
	Fundamentals
	Identifying Unsafe Control Actions
	Specifying Causes and Compensations

	EMV2 Annotations
	Annotation Walkthrough
	Modeling Background and Fundamentals
	Generating the set of Control Actions
	Modeling Hazardous Control Actions and their Causes

	Integration with AADL EMV2
	Putting it All Together
	Report Generation
	Comparison with Prior Approaches
	Versus FMEA
	Versus FTA

	Conclusion
	Lessons Learned
	Future Work

	References

