Samuel C. Procter Research Vision

As software becomes more ubiquitous in systems of all types, so too does software
engineering, even in fields where system developers have not traditionally considered
themselves software engineers. Extending software engineering techniques — both by
custom-creating novel concepts and applying well-established ones to new domains
— to all people doing all types of system development is an area ripe for productive
research. Though I have traditionally worked within safety-critical systems engi-
neering (specifically in medical device interconnectivity), the techniques I've learned,
adapted, and developed extend more broadly into other safety-critical domains (nu-
clear, automotive, etc.) and beyond into all fields where tool support and automation
can improve the lives of those who interact with the development of software-based
systems.

My doctoral work was initially focused on creating a software development environ-
ment for a specific type of medical application which governed clinical device interac-
tions. While at first the project focused on standard software engineering technologies
like model-driven development and automated code generation, the scope expanded
to include architecturally-analyzable program aspects. As ensuring the safety of the
developed system became increasingly important, and as I recognized the opportu-
nity to include a systems-theory based hazard analysis technique in the development
environment I was creating, I began to consider how development artifacts beyond
code could be generated in a model-driven fashion. Seeing significant opportunities
for formalization, I developed a pair of processes (one manual and one tool-assisted)
which leveraged both the new, theoretically-grounded hazard analysis techniques and
the deep architectural integration enabled by model-driven development.

Going forward, I am interested in continuing my work in three main ways. First,
though I have established initial connections between my theoretical work and that
of others both inside of and external to safety-critical software engineering, I would
like to strengthen those connections by further developing the theories as well as
performing detailed case studies. Second, I believe that the hierarchical nature of
software-based systems can be exploited for significant developments in both the an-
alytical power and ease-of-use of hazard analyses. Third, the compositional nature of
modern systems represents a significant challenge to safety assessments, but a chal-
lenge that a formal grounding of certain key principles may be able to overcome. In
all aspects of this work, I believe that grounding research in a formal or semifor-
mal description of a system’s architecture will not only achieve significant savings in
developer and analyst effort, but will also act as a “sanity check” that will prevent
analyses from becoming unhinged from the real-world systems they examine.



