
Error Type Refinement for Assurance of Families
of Platform-Based Systems (Extended Version)?

Sam Procter1, John Hatcliff1, Sandy Weininger2, and Anura Fernando3

1 Kansas State University, Manhattan, Kansas, USA
{samprocter, hatcliff}@ksu.edu

2 United States Food and Drug Administration, Silver Spring, Maryland, USA
sandy.weininger@fda.hhs.gov

3 Underwriters Laboratories, Chicago, Illinois, USA
anura.s.fernando@ul.com

Abstract. Medical Application Platforms (MAPs) are an emerging pa-
radigm for developing interoperable medical systems. Existing assurance-
related concepts for conventional medical devices including hazard analy-
ses, risk management processes, and assurance cases need to be enhanced
and reworked to deal with notions of interoperability, reuse, and compo-
sitionality in MAPs.
In this paper, we present the motivation for a framework for defining
and refining error types associated with interoperable systems and its
relevance to safety standards development activities in this domain. This
framework forms the starting point for the analysis and documentation of
faults, propagations of errors related to those faults, and their associated
hazards and mitigation strategies—all of which need to be addressed in
risk management activities and documented by assurance cases for these
systems. We ground these concepts by describing how such a framework
could be used in the AAMI/UL 2800 family of standards being developed
for interoperable medical systems, and how error type refinement aligns
with the envisioned 2800 refinement structures for different interoper-
ability architectures and clinical applications. We show how this notion
of refinement can potentially be supported in the AADL Error Modeling
error type system, which would provide a basis for tool-supported risk
management methodologies for platform-based interoperable systems.

Keywords: Interoperable medical systems, hazard analyses, faults, er-
rors, reusable components and assurance

1 Introduction

Modern medical devices are increasingly network-aware, and this offers the po-
tential to use middleware infrastructure to form systems of cooperating com-
ponents. Initial integration efforts in industry are focused on streaming device

? This work is supported in part by the US National Science Foundation (NSF)
(#1239543), the NSF US Food and Drug Administration Scholar-in-Residence Pro-
gram (#1355778,#1446544) and the NIH / NIBIB Quantum Program.

2 Error Type Refinement for Assurance of Families of Platform-Based Systems

data into electronic health records and integrating information from multiple
devices into single customizable displays. However, there are numerous clinical
motivations for moving beyond this to consider frameworks that, for example,
can coordinate the actions of cooperating devices to automate clinical workflows,
provide clinical “dashboards” that fuse multiple physiological data streams to
provide composite health scores, generate alarms / alerts derived from multiple
physiological parameters, provide automated clinical decision support, realize
“closed loop” sensing and actuating scenarios, or even automatically construct
and execute patient treatments.

1.1 Emerging Computational Paradigms and Dependable
Architectures

In previous work, we have introduced the notion of a medical application plat-
form. As defined in [7] a MAP is “a safety- and security-critical real-time com-
puting platform for: (a) integrating heterogeneous devices, medical IT systems,
and information displays via a communication infrastructure, and (b) hosting
application programs (i.e., apps) that provide medical utility [beyond that pro-
vided by the individual devices] via the ability to both acquire information from
and control integrated devices. . . and displays.”

Platform-based approaches to integrated systems have a number of benefits,
but they also introduce a number of safety and security challenges not addressed
by current medical safety standards. While conventional approaches to develop-
ment and deployment of safety-critical systems typically involve assessment and
certification of complete systems, with a platform approach there is a need for
(a) reuse of risk management artifacts, supporting hazard analyses, and assur-
ance cases for both infrastructure implementations and components, and (b)
compositional approaches to risk management, assurance, and certification.

Reliability Analysis and the Assurance Case Paradigm In development
and deployment of medical devices and other safety-critical systems, hazard anal-
yses play a key role in designing to achieve safety (i.e., the avoidance of harm to
the patient, operation or the clinical environment) and in assessing the residual
risk in a completed system. A hazard is often defined as “a source of harm,”
and system hazard analyses focus on identifying how hazards may arise in the
context of system development and execution. The results of hazard analyses
are typically reflected in an assurance case for a safety critical system. For ex-
ample, an assurance case will often argue that appropriate hazards have been
identified and that each hazard has been designed out, its risks controlled, or it
has been otherwise dealt with in a manner that will result in an acceptable level
of residual risk. A hazard analysis may proceed in a “bottom-up” fashion as in a
Failure Modes and Effects Analysis (FMEA) which considers how each compo-
nent may fail and how effects of component failure may propagate forward and
outward to the system boundary, giving rise to hazards; alternatively, a hazard
analysis may proceed in a “top-down” fashion as in a Fault Tree Analysis (FTA)

Error Type Refinement for Assurance of Families of Platform-Based Systems 3

which starts from a hazardous state or event at the system boundary and rea-
sons in a backward fashion to determine events and failures within the system
that could cause the top-level unwanted event [5]. Concepts that cross-cut most
hazard analyses are the notions of fault : the root cause of a component’s failure
to satisfy its specification and error : the deviation from a component’s specified
behavior [16]4. In a bottom-up analysis, consideration of possible faults initiates
the analysis and leads to an enumeration of the ways in which a component may
produce errors (e.g., corrupted values, inappropriate timing of message transmit-
tal, inability to perform a requested service, etc.) that may end up propagating
outward to the system boundary and exposing hazards. In a top-down analysis,
the analyst works backward through causality chains, considering how different
types of errors could flow through the system, until faults that correspond to
root causes are identified.

Certification, Standards, and Regulation To support the development, as-
surance, and certification of integrated medical systems, including systems built
using platform concepts, the Association for the Advancement of Medical Instru-
mentation (AAMI) and Underwriters Laboratories (UL) are developing the 2800
family of standards for safe and secure interoperable medical systems. It has been
proposed that AAMI / UL 2800 will provide a framework for specifying system
and component-level safety and security requirements and guiding vendors in
constructing objective evidence and assurance cases that demonstrate that their
components, architectures, and integrated clinical systems comply with those
requirements. 2800 is proposed to be organized as (a) a base “general” stan-
dard that provides architecture- and application-independent requirements and
(b) “particular” standards that introduce application and architecture specific
requirements by inheriting and refining the standard. It has been proposed that
particular standards will specify how the generic risk management process and
notions of faults, errors, failures, hazards, etc., in the base standard are special-
ized and allocated to the associated architectures, component kinds, and clinical
applications. Vendor assurance cases that are used to demonstrate compliance
with particular standards must provide evidence that their implementations ac-
count for, mitigate, or otherwise achieve an acceptable level of residual risk for
the error types inherited through the standard hierarchy.

Reuse and Modularization In this standards-based approach for reasoning
about the safety of interoperable systems, there is a significant need for a flexible
nomenclature framework for faults / errors. Interoperable systems include com-
ponents produced by different vendors. When risk management and assurance
case artifacts are referenced and reused among vendors as systems are composed
from components, component vendors need to be able to disclose what types
of errors may propagate out of their components and what types of errors their

4 Though these definitions are sourced from the AADL EM standard document, we
note that they align well with, e.g., the taxonomy in [4]

4 Error Type Refinement for Assurance of Families of Platform-Based Systems

components mitigate. There needs to be a standard vocabulary with a consistent
semantic interpretation for faults and errors to ensure proper composition. Some
errors are relevant to some types of components but not others (e.g., those asso-
ciated with failure to achieve message transmittal in accordance with declared
real-time and quality of service constraints are relevant to middleware but not
to medical device components). Taxonomy mechanisms are needed to organize
errors into categories according to kinds of components found in interoperable
medical systems. Safety is ultimately expressed in terms of the notions of harm
associated with a particular clinical application. Accordingly, there is a need to
extend and specialize generic errors to specific clinical applications while pro-
viding a mechanism to facilitate traceability back to generic errors to support
standard requirements that guide vendors to consider all appropriate generic
error categories.

1.2 Our Contributions

The contributions of this paper are as follows:

– we identify overall goals for organizing and standardizing error types in the
context of hierarchically organized standards for platform-based interopera-
ble medical systems,

– we illustrate how the SAE standard Architecture and Analysis Design Lan-
guage (AADL) Error Modeling framework, its open error type hierarchy,
and its built-in error library can potentially support the desired notions of
organization, extensibility, and refinement described above, and

– we describe how this open error type hierarchy would be used in the context
of broader risk management, assurance case development, and certification
regimes for platform-based interoperable medical systems.

2 Background

2.1 AAMI / UL 2800

AAMI / UL 2800 aims to define safety and security requirements to support
the paradigm of constructing integrated systems from heterogeneous interoper-
able components. These requirements address component interfaces, implemen-
tations of components, middleware and networking infrastructure, and architec-
tures that constrain the interactions between components as they are integrated
to achieve system safety objectives. The standard is not anticipated to pre-
scribe specific technologies or interface specifications for achieving integration
and interoperability. Instead, it is expected to provide a framework for speci-
fying system and component-level safety requirements and guiding vendors in
constructing objective evidence and assurance cases that demonstrate that their
components, architectures, and integrated clinical systems comply with those
requirements.

Error Type Refinement for Assurance of Families of Platform-Based Systems 5

2800-0
General

Requirements

2800-3-1-1
Application:

PCA Monitoring and
Safety Interlock --

ICE

2800-2-1
Clinical Scenario --

PCA Monitoring and
Safety Interlock

2800-2-2

2800-1-1
Architecture –

Integrated Clinical
Environment

2800-1-2
Architecture 2

2800-1
Requirements for

Specifying Architectures

Architectures

Clinical
Scenarios

2800-2
Requirements

for
Specifying

Clinical
Scenarios

Fig. 1. The AAMI / UL 2800 Family of Standards

The structure for the 2800 family of standards aims to accommodate the
following (sometimes conflicting) goals5:

– Generality: 2800 aims to provide safety requirements that are applicable to
multiple architectures and a variety of clinical systems and applications.

– Application Specificity: Hazards and top-level system safety constraints, which
typically drive the risk management and safety assurance processes, are ap-
plication specific. Thus, AAMI/UL 2800 is expected to provide a framework
for introducing specific standards that address particular systems and appli-
cations as well as stating requirements on how vendors develop and assure
specific systems.

– Architecture Specificity: Plug-and-play interoperability and other ways of
reusing system components and their assurance cannot be achieved without
defining the architecture within which components interoperate. Thus, 2800
is expected to provide a framework for documenting architectures and the
role that a specific architecture plays in (a) controlling potentially hazardous
emergent properties by constraining interactions between components, and
(b) providing safety-related services used to mitigate common errors.

5 Some text in this section has been excerpted from unpublished communications as
part of ongoing standardization efforts within the 2800 committee.

6 Error Type Refinement for Assurance of Families of Platform-Based Systems

To reconcile these potentially conflicting goals and to enable reuse of ap-
plication- and architecture-independent requirements, 2800 is proposed to be
organized into a collection of linked standards (see Figure 1). The organization
strategy is similar to that of IEC 60601 where a core set of requirements is re-
fined along multiple dimensions to create requirements that are specialized to
particular applications or implementation aspects. Specification-, application-
and architecture-independent requirements are presented in the core 2800-0
General Requirements standard while additional standards refine and extend
core requirements for particular architectures (the 2800-1-x series) or particu-
lar applications (the 2800-2-y series). The 2800-3-x-y series proposes to define
application-specific requirements that are specialized for a particular architec-
ture’s approach to interoperability. The 2800 family’s open, refinement-based
approach allows for extension to address additional architectures and applica-
tions as new interoperability technologies and clinical needs arise. This enables
manufacturers to specify an interoperable system’s behavior but does not con-
strain how it should be implemented.

2.2 The Integrated Clinical Environment Architecture

The Integrated Clinical Environment (ICE) standard (ASTM F2761-2009 [3])
defines one particular architecture for MAPs. The boxes with dashed lines in
Figure 2 present the ICE architecture. ASTM F2761 identifies an abstract “func-
tional model” that includes components such the Supervisor, Network Con-
troller, etc. with brief high-level descriptions of the role of these components
within the architecture. Future implementation standards are envisioned that
provide detailed implementation requirements and interface specifications for
these components. The ICE Network Controller provides a high-assurance net-
work communication capability, establishing virtual “information pipes” between
heterogenous devices (often from different vendors) and apps running in the Su-
pervisor.

The interface of a device is described in a domain specific language called the
Device Model (DM) language. An ICE DM is a “representation of the capabili-
ties of [a medical device] that includes information needed to qualitatively and
quantitatively describe, control, and monitor its operation” and the Network
Controller “shall provide association to and communication with each attached
[device] by interpreting the device model.” That is, the Network Controller ex-
poses the ICE Interfaces of attached devices specified using the ICE DM to
Supervisor apps. ASTM F2761 states that the Supervisor “provides a platform
for functional integration between ICE compliant equipment via the network
controller and can provide application logic and an operator interface” [3]. 2800-
1-1, currently being drafted, complements and provides guidance for the planned
ASTM F2761 implementation standards by defining safety and security require-
ments for the ICE architecture.

The Medical Device Coordination Framework (MDCF) is a prototype imple-
mentation of ICE jointly developed by researchers at Kansas State University
and the University of Pennsylvania [10]. Components added by the MDCF are

Error Type Refinement for Assurance of Families of Platform-Based Systems 7

R
es

ou
rc

e
M

an
ag

er
Lo

gg
er

App Virtual Machine

App
A2

App
A3

App DatabaseApp Manager

Admin
Service

Clinician
Service

App
A1

Device
Manager

Device
Database

Message Bus

Supervisor
Network Controller

...

ICE Interface

Medical
Device 1

ICE Interface

Medical
Device 2

Legends
ICE Arch Comp

MDCF Implementation

Fig. 2. The ICE Architecture and MDCF

presented in solid-lined boxes in Figure 2. In addition to enhancing the concept
of Apps, The MDCF provides a middleware substrate and associated services
[9], tools for authoring apps, generating executable APIs [14], and performing
risk management activities [13].

2.3 PCA Safety Interlock Scenario

We describe one example of the MAP approach—a PCA safety interlock—here as
a motivating example. After major trauma, hospital patients are often provided
pain relief via patient-controlled analgesia (PCA) pumps. These allow a patient
to press a button and request an analgesic (often an opioid narcotic) to manage
pain. Standard safety mechanisms such as button timeouts fail to account for
potential problems (e.g., opioid tolerance or human error), so various ways exist
for an overdose to occur [8]. This can lead to respiratory depression and even
death.

An ICE app can be used to implement a safety interlock that sets the PCA
pump to a known safe state (i.e., infusion disabled) if—according to monitor-
ing devices typically used in critical care situations—the patient shows signs of
respiratory distress. While the exact set of monitored physiological parameters
can vary, our example implementation uses the patient’s blood-oxygen satura-
tion (SpO2), ratio of exhaled carbon-dioxide (EtCO2) and respiratory rate (RR).

8 Error Type Refinement for Assurance of Families of Platform-Based Systems

TimingRelatedError	

SequenceTimingError	
 ServiceTimingError	
 ItemTimingError	

HighRate	
 DelayedService	

LateDelivery	
 EarlyDelivery	

EarlyService	
 RateJi<er	
 LowRate	

(a) Graphical view

1 --ErrorLibrary.aadl
2 TimingRelatedError: type set {ItemTimingError, SequenceTimingError,

ServiceTimingError};
3 ItemTimingError: type;
4 EarlyDelivery: type extends ItemTimingError;
5 LateDelivery: type extends ItemTimingError;
6 SequenceTimingError: type;
7 HighRate: type extends SequenceTimingError;
8 LowRate: type extends SequenceTimingError;
9 RateJitter: type extends SequenceTimingError;

10 ServiceTimingError: type;
11 DelayedService: type extends ServiceTimingError;
12 EarlyService: type extends ServiceTimingError;

(b) Textual view

Fig. 3. The AADL Error Model Error Type Hierarchy for Timing Errors

After determining the respiratory health of the patient using some physiological
model, the app can issue enable or disable commands to the pump. This app
has been studied extensively in prior work, e.g., [2].

2.4 AADL’s Error Model’s Error Types

The Architecture Analysis and Design Language (AADL) enables the design of
a system’s architectural aspects: its hardware (e.g., processors, buses, memory,
etc.), software (e.g., ports, processes, threads, etc.) and the bindings between the
two [17]. In addition to this core functionality, there are a number of language
annexes that extend the modeling of AADL to architecturally-related domains,
such as the behavior annex, which enables the specification of component behav-
ior, or the error modeling annex, which enables the modeling of failure-related
aspects of their systems [15,16]. One useful aspect of this error modeling an-
nex is its error definition and propagation mechanisms, which are modeled after
Wallace’s Fault Propagation and Transformation Calculus [19].

In the AADL error model, both faults and errors are represented as error
types, instances of which can be propagated between components over their
existing ports and channels (i.e., those specified in the core AADL language).
The error model comes with a pre-built type hierarchy—the error library—that
is composed of five “root” types (ServiceError, TimingRelatedError,
ValueRelatedError, ReplicationError, and ConcurrencyError) that
can be refined (through a full type lattice, created via extension, renaming, and

Error Type Refinement for Assurance of Families of Platform-Based Systems 9

aggregation) down to more specific errors. Consider Figure 3, for example, which
shows the hierarchy of the error library’s TimingRelatedError (full hierar-
chies for the other types are available in [16]). The root type TimingRelatedError
is an aggregation of three types, including ItemTimingError, which is refined
(through type extension) to both EarlyDelivery and LateDelivery; i.e.,
if a single item (e.g., a message) has incorrect timing, it must be either early or
late—it cannot be both, nor can it be neither. Finally, if the given root error
types are insufficient for some purpose, completely new ones can be created.

The exact semantics of these errors are described in the the EMV2 stan-
dard in both natural and set-theoretic language [16]. Two terms defined in the
standard are “A service S is defined as a sequence of n service items si with
n > 0” and “A service item [is] characterized by a pair (vi, δi) where vi is the
value or content of service item si and δi is the delivery time of service item si.”
Using these definitions, an ItemTimingError “represents errors where a ser-
vice item [is] delivered outside its expected time range Di of service item si” or
“∃si ∈ S|δi 6∈ Di.” These definitions are refined along with the error types, so for
example EarlyDelivery “represents errors where a service item is delivered
before the expected time range. . . ” or “∃si ∈ S|δi < Di.”

A significant strength of the AADL error modeling approach is its extensi-
bility. This is particularly evident in situations where product safety is depen-
dent on the reliability of safety-related control loops within the overall control
structure. In such situations, the error modeling annotations can be extended
to reflect reliability metrics that may be embodied in standards such as MIL
217 (Reliability Prediction of Electronic Equipment [12]) and UL 991 (Tests for
Safety-Related Controls Employing Solid State Devices [18]) for supervisory con-
trol. Thus, when an appropriately modeled error is introduced into the control
model of the system, the sensitivity of the safety control to variations in these
reliability-related parameters can be better understood.

3 Error Refinement

3.1 Supporting 2800 Goals

Developing a framework for error types within 2800 addresses multiple assurance-
related needs: (a) libraries of error types to guide hazard analyses, risk man-
agement processes, and aspects of assurance case construction, (b) appropriate
coverage and document traceability targets (embedded in error libraries) that
vendors can trace to as part of their compliance obligations, (c) a common inter-
pretation/semantics for errors across vendors in order to support interoperability,
(d) machine-readable specification of error types for automation of hazard anal-
yses, and (e) systematic specification of error types within formal architecture
descriptions to provide the basis for fault-injection testing.

Addressing (d) and (e) are beyond the scope of this paper; we propose goals
for addressing (a-c) across the 2800 hierarchy below.

10 Error Type Refinement for Assurance of Families of Platform-Based Systems

Identifying common error types: 2800-0 would provide a library of error
types in an Informative Annex that supports the 2800 risk management process.
The 2800-0 Risk Management requirements would specify that these error types
should be considered in the initiating activities for bottom-up hazard analyses
such as FMEA and would form the leaf nodes for top-down analyses such as FTA.
Compliance requirements would specify that vendors should state how error
types are accounted for in their analyses (e.g., they must use each error type or
document why any that were left out were not applicable). Authors of standards
that refine 2800-0 would be required to trace, via refinement mechanisms, newly
introduced error types to those provided in the Informative Annex. The use of
these error types in hazard analyses is discussed in more detail in Section 4.

Allocation of error types to common component categories found in
interoperable systems: 2800-0 would also identify Interoperability Compo-
nent Categories—common categories found in interoperable medical systems,
e.g., medical devices (which may be further subdivided by role, e.g., into sen-
sors and actuators), communication infrastructure, application hosting compo-
nents, health IT systems, network gateways, etc. In the 2800-1-x series, 2800-1-x
authors would indicate how their architectural components align with 2800 In-
teroperability Component Categories. Based on this association, they would be
required to specify how each component in the architecture accounts for the error
types associated with that category. This “accounting” may involving refining
the errors into more specific categories for the particular architecture.

Allocation of error types to application components and hazards: In
the 2800-2-x series, 2800-2-x authors would associate error types with specific
devices or systems used in a particular application context. This would provide
vendors seeking to comply with 2800-2-x a more precisely contextualized collec-
tion of errors, and a more accurate basis of accounting for appropriate “coverage”
of errors associated with a particular context.

3.2 Refinement by Component Category

How can we leverage the concept of error refinement (via extension, renaming,
or aggregation) from Section 2.4 given our goals from Section 3.1? We should
focus on the “leaf” error types—i.e., the fully refined error model types. For
example, authors of a 2800-1-x standard can decide whether a error type applies
to a particular component role in the system architecture. If it does, they can
extend it to one or more subtypes that better describe how the error might occur
in a generic version of the component. If it does not apply, the standard should
include justification for its exclusion it so that users of the architecture-specific
error type library can understand the rationale. Consider Figure 4, which shows
our timing errors from Figure 3 after their refinement to apps (different re-
finements would exist for other architectural elements, e.g., devices, networking
components, supervisor components, etc.). Specifically, consider line 2 of Figure

Error Type Refinement for Assurance of Families of Platform-Based Systems 11

TimingRelatedError	

SequenceTimingError	
 ServiceTimingError	
 ItemTimingError	

HighRate	
 DelayedService	

LateDelivery	
 EarlyDelivery	

EarlyService	
 RateJi<er	
 LowRate	

PhysioParamLate	

ControlAcBonFlood	

PhysioParamFlood	
 MissedControlAcBonDeadline	

MissedPhysioParamDeadline	

ControlAcBonLate	

(a) Graphical view

1 --AppErrorLibrary.aadl
2 -- Ignore EarlyDelivery, since the network never holds messages
3 PhysioParamLate : type extends ErrorLibrary::LateDelivery;
4 ControlActionLate : type extends ErrorLibrary::LateDelivery;
5 PhysioParamFlood : type extends ErrorLibrary::HighRate;
6 ControlActionFlood : type extends ErrorLibrary::HighRate;
7 -- Ignore LowRate, since it’s just an accumulation of delayed messages
8 -- Ignore RateJitter, since it’s either EarlyDelivery (which we don’t have) or

LateDelivery
9 MissedPhysioParamDeadline : type extends ErrorLibrary::DelayedService;

10 MissedControlActionDeadline : type extends ErrorLibrary::DelayedService;
11 -- Ignore EarlyService since it’s impossible

(b) Textual view

Fig. 4. The AADL EM Timing Hierarchy, refined for Apps

4b: since early delivery of messages is impossible, we eliminate it from considera-
tion by simply not extending it. We expect that MAP apps will receive two types
of input: physiological data from patient monitoring devices and commands to
the application from other apps or clinicians. Lines 3 and 4 show that these two
message types could both be late, and should be considered separately.

Of course, other types of components will have their own refinements. For ex-
ample, the networking middleware (i.e., the Network Controller in ASTM F2761)
is agnostic to message types, so its refinements to, e.g., the HighRate error type
would be generic to the types of messages being transmitted. We expect some
real-time network controllers (such as MIDAS [9]) to provide guarantees against
any particular component saturating the network, so errors refined to these net-
work controllers would reflect this.

3.3 Refinement by Component Implementation

We do not expect that all error types can be fully refined solely according to a
component’s architectural kind. While some component implementations, such
as network controllers or supervisor components, may be largely interchangeable,
others will not be. The behavior of medical devices and apps will vary consid-
erably based on actual component implementation. For these components, the
error types should be further refined. The process specified in the previous sec-

12 Error Type Refinement for Assurance of Families of Platform-Based Systems

TimingRelatedError	

SequenceTimingError	
 ServiceTimingError	
 ItemTimingError	

HighRate	
 DelayedService	

LateDelivery	
 EarlyDelivery	
 EarlyService	
 RateJi<er	
 LowRate	

ControlAc@onFlood	

PhysioParamFlood	

MissedPhysioParamDeadline	

ControlAc@onLate	

RRLate	
 PumpShutoffLate	

EtCO2Late	
 SpO2Late	

RRFlood	
 PumpShutoffFlood	

EtCO2Flood	

MissedControlAc@onDeadline	
 PhysioParamLate	

SpO2Flood	

(a) Graphical view

1 --PCAInterlockErrors.aadl
2 SpO2Late : type extends AppErrorLibrary::PhysioParamLate;
3 EtCO2Late : type extends AppErrorLibrary::PhysioParamLate;
4 RRLate : type extends AppErrorLibrary::PhysioParamLate;
5 PumpShutoffLate : type extends AppErrorLibrary::ControlActionLate;
6 SpO2Flood : type extends AppErrorLibrary::PhysioParamFlood;
7 EtCO2Flood : type extends AppErrorLibrary::PhysioParamFlood;
8 RRFlood : type extends AppErrorLibrary::PhysioParamFlood;
9 PumpShutoffFlood : type extends AppErrorLibrary::ControlActionFlood;

10 -- Ignore MissedPhysioParamDeadline because we are just a subscriber
11 -- Ignore MissedControlActionDeadline because we are just a publisher

(b) Textual view

Fig. 5. The App Timing Error Hierarchy, refined for the PCA Interlock App

tion can be continued with our new architectural information, i.e., the actual
architecture of a given component. Consider the error types from Figure 4 (as-
sociated with 2800-2-1 and 2800-3-1-x) as they might be applied to the PCA
interlock app from Section 2.3. As the app uses three physiological parameters
(SpO2, EtCO2, and RR) and one control action (PumpShutoff), the generic app
error types can be refined to be specific to these parameters, as in Figure 5.
These fully refined error types are application specific and traceable to both
the component’s category (i.e., app) and the root AADL EM library types. The
app’s developer had a starting point for deriving hazards (i.e., Figure 4) rather
than the much more ambiguous starting position of the status quo.

3.4 Using Error Types in Hazard Analysis and Testing

Hazard analyses include reasoning about where errors originate, what failures
may result, and how errors propagate through the system. While the error type
framework can aid in a more consistent presentation of these concepts, when
combined with formal architectural descriptions of systems, it can also enable
automation of some hazard analysis steps. The AADL EM error propagation
mechanisms (see Figure 6) enable developers to specify how their components

Error Type Refinement for Assurance of Families of Platform-Based Systems 13

Fig. 6. An example of AADL’s Error propagation, from [16]

create, propagate, transform and consume errors. In Figure 6, for example, the
outgoing NoData error type can result either from an incoming NoResource
error (i.e., NoResource is transformed by the component into NoData) or it
can simply be propagated from a predecessor component. The component is a
source of the BadValue error type, meaning that it can produce the error even if
its input is error-free. Note that both top-down and bottom-up analyses leverage
AADL’s error propagation mechanisms.

There are two benefits to using the error types we have identified work with
the EM error propagation mechanism. First, component developers will know
what kind of errors they’ll receive simply as a function of declaring what kind of
component they are creating (e.g., device, app, network controller, etc.). Second,
those component developers will also know the types of errors they are allowed to
propagate. In the assurance case arguing for a component’s safety-related prop-
erties, they can explain how their component handles (or fails to handle) each
incoming error, and under what conditions their component propagates partic-
ular errors. This explanation, unlike in the status quo, will not be narrative in
form, but rather can be written in the much more precise, machine-readable
format of the AADL EM error types. Tooling can leverage these precise specifi-
cations of error creation, propagation and compensation for a range of purposes,
e.g., the hazard analysis report from [13] or even more advanced techniques like
fault-injection testing [1].

3.5 Allocation of Related Concepts to 2800 Standard Documents

Table 1 provides examples of how the error type framework might be used in
2800. Table entry names that appear in square brackets represent standards
content that complies with requirements in standards higher in the hierarchy,
whereas names in parentheses represent requirements that are refined (made
more specific to a particular application or architecture). The table is not ex-
haustive; other requirements may compel, for example, vendors to capture error-
related propagation or mitigation properties on component boundaries (following
the concepts but not necessarily the AADL tooling in Section 3.4), specify how

14 Error Type Refinement for Assurance of Families of Platform-Based Systems

2800-0: General Requirements

Error Type Framework Common categories of system and clinical process errors
and semantics

System Topology Common interoperability components kinds and allocation
of 2800 errors

Risk Management Requirements that vendors address 2800 error types in risk
management

Testing Requirements for fault injection testing to test for
effectiveness of mitigation strategies

Assurance Cases Requirements for arguing for safety in the presence of
error handling and mitigation strategies

2800-1: Process/Requirements for Specifying Interoperability Architectures

Traceability Requirements that refining 2800-1-X standards map
interoperability component kinds and errors to specified
architectures

Arch. Specification Requirements that refining 2800-1-X standards associate
error types to standardized architectural viewpoints

2800-1-1: Safety and Security Requirements for ICE Interoperability Architecture

[Traceability] Map interoperability component kinds and refine error types
to ICE Architecture components

[Arch. Specification] Associate error types to standardized architectural
viewpoints for ICE Architecture

(Risk Management) Requirements that vendors address refined 2800-1-1 error
types in risk management

(Testing) Requirements for fault injection testing to test for
effectiveness of mitigation strategies for refined 2800-1-1
error types

(Assurance Cases) Requirements for arguing for safety in the presence of error
handling and mitigation strategies for refined 2800-1-1
error types

2800-2: Process/Requirements for Specifying Clinical Scenarios

Appl. Proc. Spec. Requirements that refining 2800-2-X standards associate
clinical error types to instantiations of common processes
in the clinical application’s context

Appl. Sys. Spec. Requirements that refining 2800-2-X standards refine 2800-0
system error types to kinds of system components relevant
to application

Appl. Proc. Mitigation Informative Annex of common design / mitigation
strategies for common clinical process error types.

2800-2-1: Safety Requirements for PCA Infusion Monitoring / Interlock

[Appl. Proc. Spec.] Associate clinical error types to instantiations of common
processes in the clinical application’s context.

[Appl. Sys. Spec.] Refine 2800-0 system error types to kinds of system
components relevant to application

(Testing) Requirements for fault injection testing to test for
effectiveness of mitigation strategies for refined 2800-2-1
error types

(Assurance Cases) Requirements for arguing for safety in the presence of error
handling and mitigation strategies for refined 2800-2-1
error types

Table 1. Examples of 2800 contents related to error type framework

Error Type Refinement for Assurance of Families of Platform-Based Systems 15

errors at lower levels of abstraction (e.g., at the network or middleware layer)
are manifested in terms of errors in application layers, and assign occurrence
likelihood rankings to errors at particular points in the architecture.

4 Example

In [6], Feng et al. present a high-level safety argument for the PCA interlock
scenario (reprinted as Figure 7). Briefly, this argument relies on a risk-benefit
analysis, and in analyzing the risks, they employ the strategy of “Argue over
all hazards” (S2.1 in Figure 7). Though there is a slight mismatch in both
terminology (what we term errors Feng et al. term hazards) and app structure
(their model uses a “ticket-based” approach, where the PCA pump is enabled
for some amount of time by a ticket, rather than the enable / disable approach
described in this work), it is clear that a central challenge to arguing over all
potential errors is simply enumerating all potential errors. We believe that the
technique outlined in this work can greatly help reduce (though not completely
eliminate) this epistemic challenge, regardless of if the underlying hazard analysis
used to produce the list of errors / assurance case is bottom-up or top-down in
nature.

4.1 Bottom-Up: Moving from Refined Types to Top-Level Errors

In a bottom-up analysis like FMEA, a developer would use the set of fully
refined error types by analyzing the impact of each type’s propagation into her
component. Consider Table 2, which shows an example FMEA worksheet for
the PCA Interlock example. Currently, the fourth column (“Causal Factors”) is
largely up to the system knowledge and hazard analysis expertise of the system
analyst. With the list of fully refined fault types from this work, though, this
column can be seeded before the analysis begins in earnest. For example, the set
of error types for a developer of a new PCA Interlock app implementation would
include types from Figure 5. A particularly poorly implemented app might only
use SpO2, so the impact of the SpO2Late error type, might, depending on app
implementation, be transformed by the app into PumpShutoffLate or a value
related error (i.e., the app uses stale data and issues an incorrect command). The
resulting error(s) would be propagated out by the app into the PCA Pump. Once
each error from the set of fully refined types has been analyzed in this manner,
the developer will have an increased level of confidence in the completeness of
the analysis.

4.2 Top-Down: Verifying Top-Level Errors with Refined Types

In a top-down analysis like FTA or System-Theoretic Process Analysis (STPA,
[11]), the set of fully refined error types would be used after the hazard analysis
has been completed, as a double-check of the completeness of the analysis. That
is, the result of a top-down analysis is a list of root errors (i.e., those errors

16 Error Type Refinement for Assurance of Families of Platform-Based Systems

G
1

The P
C

A
 closed-loop system

 is at
least as safe as a stand-alone
infusion pum

p, w
ith respect to the

overdose hazard

C
1.1

The closed-loop system
 is built

using an infusion pum
p for

w
hich a stand-alone safety

case exists

S1A
rgum

ent by risk-benefit analysis

G
2.1

The introduced risk due to hazards of
closed-loop system

 is acceptable

G
2.2

The residual risk of the stand-alone pum
p

is adequately m
itigated by the closed-

loop system

S2.1
A

rgue over all hazards

G
3.1

The risk of delivering
w

rong ticket is sm
all

G
3.2

The risk of not delivering
ticket is sm

all

G
3.3

The risk of pum
p having

w
rong interpretation of

ticket is sm
all

G
2.3

The benefit of closed-loop system

outw
eighs its introduced risk

C
1.2

D
efine risk-benefit analysis

C
2.1

List of hazards that
m

ay introduce risk

G
3.4

The risk due to caregiver
behaviour adaptation is sm

all

F
ig

.
7
.

A
n

ex
a
m

p
le

a
ssu

ra
n
ce

ca
se

fo
r

a
P

C
A

In
terlo

ck
sy

stem
,

rep
ro

d
u
ced

fro
m

[6
]

Error Type Refinement for Assurance of Families of Platform-Based Systems 17

Too	
 Large	
 of	

Dose	
 Allowed	

G1

Bad	

Physiological	

Data	
 Received	

Undetected	

Error	

G2

Incorrect	

Physiological	

Reading	

Message	

Garbled	
 by	

Network	

SoCware	

Encoding	
 or	

Decoding	
 Error	

G3

Physiological	

Data	
 within	

Max	
 Range	

Internal	

DiagnosEcs	
 Fail	

Fig. 8. An example of a FTA for the PCA Interlock App, reproduced from [13]

which either originate within components of the system, or enter through the
system boundary) and the ways in which they are combined, propagated, or
transformed by various system components to result in specified undesirable
events (i.e., the top level nodes of the analysis tree in FTA or the unsafe control
actions in STPA). This list of root errors would then be compared to the list of
fully refined error types for the component, and any mismatches would indicate
a problem: unaddressed errors from the set of refined types would reflect a gap in
the current analysis while a fault discovered in analysis with no analogue in the
set of refined error types would mean that the error library, or its refinements,
are incomplete.

For example, consider Figure 8. While this is an overly simplified example, it
is useful to show how the fully refined fault types might fit into a larger analysis
process. When evaluating this fault tree, a reviewer or analyst should note that
because it does not include errors from Figure 5 like “late physiological reading”
(or a more refined error, like “late SpO2 reading”), there is a good chance that
one or more faults have been missed.

5 Conclusion

Safety-critical medical systems are being developed using platform-based ar-
chitectures that emphasize multi-vendor component reuse. Work is needed to
adapt existing risk management and assurance case techniques to support this
paradigm of system development. In this paper, we have argued that there is
a need for a refinement-based framework that enables defining error types to
support safety standards for interoperable systems.

We are working with the 2800 standards committee to align these concepts
with the 2800 risk management processes. We are integrating the framework

18 Error Type Refinement for Assurance of Families of Platform-Based Systems

with our AADL-based risk management tooling environment for ICE apps [13]
and collaborating with US Food and Drug Administration (FDA) engineers as
part of the US National Science Foundation FDA Scholar-in-Residence program
to ensure that the concepts are oriented to support regulatory submissions for
MAP infrastructure implementations and apps. Although we have focused on the
medical domain, the same motivation and solution strategy is relevant to other
domains including avionics (e.g., the Open Group’s Future Airborne Capability
Environment6) and the industrial internet.

References

1. Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.C., Laprie, J.C., Martins, E.,
Powell, D.: Fault injection for dependability validation: A methodology and some
applications. Software Engineering, IEEE Transactions on 16(2), 166–182 (1990)

2. Arney, D., Pajic, M., Goldman, J.M., Lee, I., Mangharam, R., Sokolsky, O.: Toward
patient safety in closed-loop medical device systems. In: Proceedings of the 1st
ACM/IEEE International Conference on Cyber-Physical Systems. pp. 139–148.
ACM (2010)

3. ASTM International: ASTM F2761 - Medical Devices and Medical Systems - Es-
sential safety requirements for equipment comprising the patient-centric integrated
clinical environment (ICE) (2009), www.astm.org

4. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Taxon-
omy of Dependable and Secure Computing. Dependable and Secure Computing,
IEEE Transactions on 1(1), 11–33 (2004)

5. Ericson II, C.A.: Hazard analysis techniques for system safety. John Wiley & Sons
(2005)

6. Feng, L., King, A.L., Chen, S., Ayoub, A., Park, J., Bezzo, N., Sokolsky, O., Lee,
I.: A safety argument strategy for PCA closed-loop systems: A preliminary pro-
posal. In: 5th Workshop on Medical Cyber-Physical Systems, MCPS 2014, Berlin,
Germany, April 14, 2014. pp. 94–99 (2014), http://dx.doi.org/10.4230/
OASIcs.MCPS.2014.94

7. Hatcliff, J., King, A., Lee, I., MacDonald, A., Fernando, A., Robkin, M., Vasser-
man, E., Weininger, S., Goldman, J.M.: Rationale and architecture principles for
medical application platforms. In: 2012 IEEE/ACM Third International Confer-
ence on Cyber-Physical Systems (ICCPS). pp. 3–12. IEEE (2012)

8. Hicks, R.W., Sikirica, V., Nelson, W., Schein, J.R., Cousins, D.D.: Medication
errors involving patient-controlled analgesia. American Journal of Health-System
Pharmacy 65(5), 429–440 (2008)

9. King, A., Chen, S., Lee, I.: The middleware assurance substrate: En-
abling strong real-time guarantees in open systems with openflow. In:
Object/component/service-oriented realtime distributed computing (ISORC),
17th IEEE Computer Society symposium on. IEEE (2014)

10. King, A., Procter, S., Andresen, D., Hatcliff, J., Warren, S., Spees, W., Jetley,
R., Jones, P., Weininger, S.: An open test bed for medical device integration and
coordination. In: Proceedings of the 31st International Conference on Software
Engineering (2009)

6 https://www.opengroup.us/face/

www.astm.org
http://dx.doi.org/10.4230/OASIcs.MCPS.2014.94
http://dx.doi.org/10.4230/OASIcs.MCPS.2014.94
https://www.opengroup.us/face/

Error Type Refinement for Assurance of Families of Platform-Based Systems 19

11. Leveson, N.: Engineering a Safer World: Systems Thinking Applied to Safety. MIT
Press (2011)

12. Mil-Hdbk, U.: 217. Reliability Prediction of Electronic Equipment, version F, DOD,
USA (1991)

13. Procter, S., Hatcliff, J.: An Architecturally-Integrated, Systems-Based Hazard
Analysis for Medical Applications. In: Formal Methods and Models for Codesign
(MEMOCODE), 2014 Twelfth ACM/IEEE International Conference on. pp. 124–
133. IEEE (2014)

14. Procter, S., Hatcliff, J., Robby: Towards an AADL-Based Definition of App Ar-
chitectures for Medical Application Platforms. In: Proceedings of the International
Workshop on Software Engineering in Healthcare. Washington, DC (July 2014)

15. SAE AS-2C Architecture Description Language Subcommittee: SAE Architecture
Analysis and Design Language (AADL) Annex Volume 2: Annex B: Behavior An-
nex. Tech. rep., SAE Aerospace (April 2011)

16. SAE AS-2C Architecture Description Language Subcommittee: SAE Architecture
Analysis and Design Language (AADL) Annex Volume 3: Annex E: Error Model
Language. Tech. rep., SAE Aerospace (June 2014)

17. SAE AS5506B: Architecture Analysis and Design Language (AADL). AS-5506B,
SAE International (2004)

18. UL: UL 991: Tests for Safety-Related Controls Employing Solid-State Devices
(1995), www.ul.com

19. Wallace, M.: Modular architectural representation and analysis of fault propagation
and transformation. Electronic Notes in Theoretical Computer Science 141(3), 53–
71 (2005)

www.ul.com

20 Error Type Refinement for Assurance of Families of Platform-Based Systems

F
a
ilu

re
M

o
d
e

a
n
d

E
ff

e
c
ts

A
n
a
ly

sis

S
y
stem

:
P

C
A

In
terlo

ck
S
cen

a
rio

S
u
b
sy

stem
:

P
u
lse

O
x
im

eter
D

ev
ice

M
o
d
e/

P
h
a
se:

E
x
ecu

tio
n

F
u
n
c-

tio
n

F
a
ilu

re
M

o
d
e

F
a
il

R
a
te

C
a
u
sa

l
F

a
cto

rs
Im

m
ed

ia
te

E
ff

ect
S
y
stem

E
ff

ect
M

eth
o
d

o
f

D
etectio

n
C

u
rren

t
C

o
n
tro

ls
H

a
za

rd
R

isk
R

eco
m

m
en

d
ed

A
ctio

n

P
ro

-
v
id

e
S
p
O

2

F
a
ils

to
p
rov

id
e

N
/
A

N
etw

o
rk

fa
ilu

re,
d
ev

ice
fa

ilu
re

S
p
O

2
n
o
t

rep
o
rted

U
n
k
n
ow

n
p
a
tien

t
sta

te

A
p
p

P
o
ten

tia
l

fo
r

ov
erd

o
se

3
D

D
efa

u
lt

to
K

V
O

co
m

m
a
n
d

P
ro

-
v
id

es
la

te

N
/
A

N
etw

o
rk

co
n
g
estio

n
,

tra
n
sien

t
d
ev

ice
fa

ilu
re

S
p
O

2
n
o
t

rep
o
rted

U
n
k
n
ow

n
p
a
tien

t
sta

te

A
p
p

P
o
ten

tia
l

fo
r

ov
erd

o
se

3
C

D
efa

u
lt

to
K

V
O

co
m

m
a
n
d

u
n
til

n
ew

d
a
ta

a
rriv

e

P
ro

-
v
id

es
w

ro
n
g

N
/
A

D
ev

ice
erro

r
S
p
O

2

va
lu

e
in

co
rrect

In
co

rrect
p
a
tien

t
sta

te

N
o
n
e

P
o
ten

tia
l

fo
r

ov
erd

o
se

1
E

H
av

e
d
ev

ice
rep

o
rt

d
a
ta

q
u
a
lity

w
ith

sen
so

r
rea

d
in

g

A
n
a
ly

st:
S
a
m

P
ro

cter
D

a
te:

S
ep

tem
b

er
2
6
,

2
0
1
4

P
a
g
e:

3
/
1
4

T
a
b
le

2
.

A
n

E
x
a
m

p
le

F
M

E
A

fo
r

th
e

P
C

A
In

terlo
ck

A
p
p
,

rep
ro

d
u
ced

fro
m

[1
3
]

	Error Type Refinement for Assurance of Families of Platform-Based Systems
	Introduction
	Emerging Computational Paradigms and Dependable Architectures
	Reliability Analysis and the Assurance Case Paradigm
	Certification, Standards, and Regulation
	Reuse and Modularization

	Our Contributions

	Background
	AAMI / UL 2800
	The Integrated Clinical Environment Architecture
	PCA Safety Interlock Scenario
	AADL's Error Model's Error Types

	Error Refinement
	Supporting 2800 Goals
	Identifying common error types:
	Allocation of error types to common component categories found in interoperable systems:
	Allocation of error types to application components and hazards:

	Refinement by Component Category
	Refinement by Component Implementation
	Using Error Types in Hazard Analysis and Testing
	Allocation of Related Concepts to 2800 Standard Documents

	Example
	Bottom-Up: Moving from Refined Types to Top-Level Errors
	Top-Down: Verifying Top-Level Errors with Refined Types

	Conclusion

