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ABSTRACT
Safety-critical system engineering and traditional safety analyses
have for decades been focused on problems caused by natural or
accidental phenomena. Security analyses, on the other hand, fo-
cus on preventing intentional, malicious acts that reduce system
availability, degrade user privacy, or enable unauthorized access.
In the context of safety-critical systems, safety and security are
intertwined, e.g., injecting malicious control commands may lead to
system actuation that causes harm. Despite this intertwining, safety
and security concerns have traditionally been designed and ana-
lyzed independently of one another, and examined in very di�erent
ways. In this work we examine a new hazard analysis technique—
Systematic Analysis of Faults and Errors (SAFE)—and its deep in-
tegration of safety and security concerns. This is achieved by ex-
plicitly incorporating a semantic framework of error “e�ects” that
uni�es an adversary model long used in security contexts with a
fault/error categorization that aligns with previous approaches to
hazard analysis. This categorization enables analysts to separate
the immediate, component-level e�ects of errors from their cause
or precise deviation from speci�cation.

This paper details SAFE’s integrated handling of safety and se-
curity through a) a methodology grounded in—and adaptable to—d-
i�erent approaches from the literature, b) explicit documentation
of system assumptions which are implicit in other analyses, and
c) increasing the tractability of analyzing modern, complex, compo-
nent-based software-driven systems. We then discuss how SAFE’s
approach supports the long-term goals of of increased composition-
ality and formalization of safety/security analysis.

CCS CONCEPTS
• Security and privacy → Software security engineering; • Com-
puter systems organization → Reliability; • Software and its
engineering → Software defect analysis;
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1 INTRODUCTION
Safety-critical systems have become both more common and in-
creasingly sophisticated in recent years, driven by the desire for
additional functionality, component-based design and reuse, net-
working capability, and increased scale [9, 13]. Sophistication and
features lead to additional complexity, and while this brings sig-
ni�cant bene�ts, it also makes systems more challenging to build
and more di�cult to verify for safety properties. The challenge of
determining whether or not a system is acceptably safe to use is
sometimes addressed by performing hazard analyses, which are
systematic ways of exploring the potential safety-related issues in a
system. Problematically absent from many popular hazard analysis
techniques, though, is any consideration of the security aspects of
a system. Despite the fact that the end result—a decrease in system
safety—is the same regardless of the intentionality of the cause,
traditional hazard analyses consider how the safety of a system
could be a�ected by component degradation or accidental misuse,
but they do not consider possibilities of sabotage or intentionally
destructive behavior.

Popular hazard analysis techniques like Failure Modes and Ef-
fects Analysis do not explicitly include security aspects, focusing
instead on hardware reliability issues. Young and Leveson explain
that most commonly-used techniques are several decades old, and
were designed when the absence of software made systems far
simpler than those that are being built now [26]. Hazard analysis
techniques have matured considerably since then, but even Leve-
son’s own technique—a systems-theory based analysis known as
STPA—does not explicitly address security concerns [12]. Leveson
and Young have introduced a security-focused derivative, STPA-Sec,
to remedy this [25]. Unfortunately, maintaining separate analyses
for safety and security means that overlaps between the e�orts
cannot be exploited, leading to redundant work at best and possibly
missed safety issues [6].

System development techniques have also evolved in previous
decades; this evolution has in some ways increased the exposure
of newly-built systems to safety and security issues [12]. Not only
are modern systems more complex and sophisticated than their
counterparts from previous years, but they are also increasingly
built as networks of cooperating, semi-independent elements; a
notion nicely summarized in the term systems-of-systems. These
distributed, networked, system topologies increase construction
�exibility but also introduce a range of vectors through which
errors—whether caused intentionally or accidentally—may be intro-
duced to the running system. Additionally, well-de�ned interfaces
enable the construction of components by multiple vendors so the
provenance of an individual component may not be immediately
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veri�able by users; the system itself must be able to manage the
trust of its components [8].

One domain where these issues—the bene�ts and challenges
presented by an increasing reliance on interconnectivity between
heterogeneous elements—are particularly acute is in the critical-
care medical space. Speci�cally, a vision is emerging of interopera-
ble, connected medical devices that could automatically perform
some of the mundane, though vital, tasks currently required of
human clinicians by forwarding sensor readings, enabling multi-
device safety interlocks, and supporting closed-loop control [7].
This vision is centered around the concept of a Medical Application
Platform (MAP), a safety- and security-critical real-time middleware
[7]. Such systems can bring signi�cant improvements to patient
safety and e�cacy of care, but the requirement of network-capable
medical devices presents a challenge. The promotion of patient
sensors and actuators—from standalone components whose inter-
actions are mediated by a clinician to automated elements that
are potentially responsible for independently determining the ve-
racity of their inputs—qualitatively changes the nature of safety
vulnerabilities in the critical care context. Not only will medical
devices now require exposing sensing and actuating functionality
over a network interface—which enables new privacy and integrity
threats (due to, e.g., malicious control)—but the code hosting and
execution capabilities inherent in a MAP introduce a previously
nonexistent adversarial path.

As a result of considering the safety of MAP applications, a heav-
ily modi�ed form of STPA called Systematic Analysis of Faults and
Errors, or SAFE, was recently developed and described by Procter
[16]. At a high level, SAFE is comprised of recursively performing
two activities on each element in a system in order to determine
how it could negatively impact the overall safety:

(1) Considering external errors: In this step, analysts consider
the e�ects of erroneous (e.g., early, missing, incorrect, etc.)
input on the component’s declared interaction points, i.e.,
its ports.

(2) Considering internal faults: In this step, analysts consider
all other problems caused either by internal issues (e.g.,
deterioration, compromised hardware or software, etc.) or
external input that does not arrive via declared interaction
points, e.g., heat, liquids, radiation, etc.

(A more extensive introduction to SAFE is provided in Section 4,
but the reader should refer to [16] for full details.)

Unlike existing hazard analysis techniques, SAFE not only in-
cludes security considerations, but treats them as �rst-class citizens
on par with more traditional safety concerns. It more tightly inte-
grates safety and security than existing techniques, which we argue
is a natural progression resulting from the realizations discussed
by Young and Leveson [25], and is in the spirit of—but more �exi-
ble than—the analysis proposed by Friedberg et al. [6]. This work
expands on SAFE to provide:

(1) Introduction of a uni�ed set of semantic error/e�ect concepts,
based on Dolev-Yao’s model [5] that address both safety and
security: On the safety side, we show how the model’s
semantic concepts can be given a safety-related interpre-
tation akin to “guidewords” used in previously proposed
frameworks. On the security side, embracing a widely used

adversary model helps with acceptance of our proposed
technique and helps relate the analysis to traditional think-
ing in the security space. More fundamentally, by the na-
ture of its design, Dolev and Yao’s model aims for a measure
of both completeness and minimality, i.e., it attempts to suc-
cinctly cover all the ways that a component could observe
its input deviating from its speci�cation.

(2) Parametricity with regards to adversarial capabilities: SAFE’s
Activity 2 can be con�gured according to the capabilities
described by the adversarial threat model an analyst or
organization prefers to use. This gives the analysis consid-
erable �exibility and allows it to be tuned to the speci�c
circumstances of a system’s safety needs, but it also re-
quires that the assumptions that underlie the threat model
are made explicit.

(3) Worked Example: We extend a portion of the analysis of
a canonical MAP application from Procter [16] to demon-
strate the utility of these improvements.

2 RELATEDWORK
There are a number of established safety and security analyses,
some of which are security-focused derivatives of safety techniques
[26] as well as integrated safety and security analyses [6]. While
any consideration of security problems is preferable to an exclu-
sive focus on safety when analyzing a critical system, even having
separate analyses perpetuates a divide between the two �elds. This
division has a detrimental impact on the system’s overall avoidance
of loss [6], and it is one that has persisted since the two communities
typically operate independently of one another [26]. The primary
di�erence between safety and security is the intent of whoever
caused the loss [26]: security events are caused by malicious actors,
while safety events are caused by random, accidental failures or
incorrect component interactions. There is a growing recognition
that safety and security can be designed into systems in such a
way that accidents are prevented (or mitigated) regardless of the
intentionality of their cause [26]. We survey three system-theoretic
techniques in this section, but direct the reader to a more complete
literature review by Schmittner et al. [21].

2.1 STPA: System Theoretic Process Analysis
STPA, developed by Leveson takes the fairly radical approach of bas-
ing its analysis on systems theory, which leads to a more holistic
view of system safety [12]. In particular, the focus of the analy-
sis shifts from �nding root causes of safety issues to identifying
safety constraints that would prevent problems regardless of their
cause. Security is not an explicit focus of STPA, however. While
it is applicable to security problems to the extent that safety and
security issues can be mitigated by common safety constraints, a
security-oriented version of STPA, known as STPA-Sec, is under
development by Young and Leveson [25, 26].

2.2 STPA-Sec
STPA-Sec is a top-down process that, as a security-oriented de-
rivative of STPA, is focused on identifying constraints that would
prevent the system from being in vulnerable states [25]. Fried-
berg et al. identify three issues with STPA and STPA-Sec, though:
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System Safety Dolev-Yao Network Security

None Read Violate Privacy
Corrupt Value Modify Existing Craft Arbitrary Packets
Late/Dropped Msg. Delay/Drop Inc. Latency/Packet Loss
Early Message Craft & Send Impersonate, Deny Service
Table 1: Mapping between system safety, Dolev-Yao, and net-
work security concepts

a) The two are not designed to be used as a single, uni�ed analysis,
b) There’s no guidance on how to integrate safety and security
into an analysis process as equals, and c) There’s no guidance on
how to secure critical elements of the system once they’ve been
identi�ed [6]. Thus, even though the authors of STPA are aware of
the need for security and safety to be considered simultaneously,
the primary goal of an integrated safety and security analysis has
not been achieved.

2.3 STPA-SafeSec
STPA-SafeSec is a derivative of STPA that deeply integrates safety
and security [6]. It extends and re�nes the core modeling tech-
nique of STPA to better consider security of network-based systems,
and introduces lists of “general integrity” and “general availability”
threats including notions of message injection, drop, manipulation,
and delay. However, the technique does not address STPA’s need
for increased rigor in analysis. Additionally, there is no discussion
of how the identi�ed threats were developed, or the assumptions
that underlie the identi�ed threats/how to make those assumptions
explicit. Procter identi�es the sources and bene�ts of SAFE’s in-
creased rigor (as compared to STPA, from which STPA-SafeSec
is derived), including: a) a �rm theoretical grounding, b) deriva-
tion and re�nement of guidewords from existing literature (rather
than ad-hoc terminology lists), c) deep integration with a system’s
architecture, d) component-orientation / partial compositionality,
e) partial parallelizability, and f) tool support [16].

Ultimately, of the approaches discussed in this section, STPA-
SafeSec appears most promising due to its recognition of the need
for deep integration between system safety and security. While its
safety and security integration is an improvement over STPA-Sec,
its analysis lacks the rigor and functionality of SAFE, and would
bene�t from a more careful consideration of how it identi�es threats
and their e�ects.

3 DOLEV AND YAO’S ADVERSARY MODEL
Dolev and Yao developed a model that enables analysis of messag-
ing protocols on a network which has been compromised by an
adversary [5]. This adversary can obtain messages, send messages
to any other user, and receive messages sent by any user—regardless
of their intended recipient. These capabilities let the adversary read,
modify, delay/drop, or send a new message crafted from already
known information. One of the key observations of this paper is
that whether or not communication is perturbed due to a malicious
actor (i.e., a security issue) or due to a fault in the communications
infrastructure (i.e., a safety problem), what a receiving component

Accident (Loss) Hazard

Overdose Pump Runs When Unsafe
Loss of Privacy Cleartext Data
Unmanaged Pain Pump Fails to Run When Necessary

Table 2: Example accidents and associated hazards derived
from SAFE Activity 0 for the PCA Interlock

observes is the same regardless of the origin of the problem. Because
communication attacks and faults have the same e�ect from a re-
ceiving component’s viewpoint, we can unify safety and security
“e�ects” in a hazard analysis to a small set of semantic concepts.
Table 1 summarizes how the semantic concepts provided by the
Dolev-Yao model can be given both a communication safety and a
network security interpretation; note that the concept of privacy
violation does not exist in system safety.

By allowing the attacker to control the network with no restric-
tions [10], Dolev and Yao’s model gives rise to a notion of complete-
ness: intuitively, every way that something could go wrong with
communication is covered. Moreover, the model also has a notion
of minimality, in that no concept can be described as a combination
of the others. Thus, a second key observation of this paper is that
even though the Dolev-Yao semantic concepts were originally in-
troduced for security reasoning, one can leverage the completeness
and minimality properties in safety analysis as well. In particular,
the Dolev-Yao work provides a semantic foundation for a complete
and minimal set of “guidewords” for safety reasoning about com-
munication errors—which is especially important for our focus
on analysis of interoperability via networked components. While
SAFE is parametric with regards to the set of concepts used to guide
analysis, mapping the guidewords an analyst chooses to use to the
Dolev-Yao model is a valuable �rst step in enabling the bene�ts
discussed in Section 5: a) deep safety and security integration, b) re-
duced analysis space, c) partial compositionality/parallelizability,
and d) bridging the formal methods and system safety communities.

4 BACKGROUND
In this section we discuss two topics that are integral to this e�ort:
�rst, the exemplar medical application used to create SAFE that we
extend in the following sections; second, an overview of SAFE.

4.1 PCA Interlock
Though a number of MAP applications have been proposed, the
most studied is the PCA Interlock. Patients who have undergone
surgery or experienced major trauma are often given devices known
as patient-controlled analgesia (PCA) pumps. These devices have
two primary elements: a pump with a reservoir of a strong—typically
opioid—analgesic, and a “bolus trigger,” which a patient can use to
give himself a dose of analgesic. Though these devices have a num-
ber of safety features (i.e., maximum allowable doses, timeouts to
prevent trigger “mashing,” etc.), overdoses resulting in respiratory
depression that can lead to serious injury or death still occur [11].

A PCA Interlock, however, would use the device-interconnectivity
and control features of a MAP to disable the PCA pump when sensor
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Figure 1: Developer’s view of a PCA Interlock application,
adapted from / Copyright Procter [16]

readings of the patient’s respiratory health, e.g., his blood-oxygen
saturation (SpO2), respiratory rate (RR), and/or exhaled carbon
dioxide (ETCO2), showed signs of decline. This enabling/disabling
of the pump would be done by having a software controller poll
sensor readings, calculate windows of time where it is safe or un-
safe for the PCA pump to run, and issue “tickets” with time-length
values, which would begin counting towards zero once received. If
the bolus trigger is activated when the pump has a positive ticket
value, the pump runs normally and administers a dose. If the pump’s
ticket has expired (i.e., the ticket length is zero: the pump doesn’t
know the patient’s status) or has a negative value (signifying that
it is currently unsafe for the pump to run), then the pump does not
respond to the trigger activation. Figure 1 shows one possible imple-
mentation of this application, in the clinical-care context, from the
point of view of the developer. This application has been studied
extensively within medical device-interconnectivity research [1, 2],
and was explicitly considered in the construction of SAFE [16]. The
application logic is simple, but application construction requires
dealing with a number of complexities, including:

(1) Heterogeneous Components: The MAP vision expects that
applications can be constructed using medical devices from
di�erent manufacturers, if they provide appropriate sens-
ing and actuating functionality at required levels of quality
of service. This is in contrast to current practices, where
medical devices that interoperate are typically designed
and produced by a single organization and certi�ed for
safe use as a single unit.

(2) Variability: To achieve interoperability goals, the exact com-
bination of components that will de�ne the MAP system
may vary: one device may be replaced by another from the
same class as long as the functionality and performance are
su�cient for supporting the overall system assurance. In
contrast, current state-of-the-art practices in safety-critical
system engineering typically de�ne a “system integrator”
role, where an expert or group of experts guides the com-
position of the �nal system of a �xed set of components.

(3) Network-Enablement: Because the devices need to be inte-
grated with one another over a common network, they are
in turn exposed to network-based attacks. Network connec-
tivity is central to the MAP vision, so the typical defense
of making a device “standalone” is no longer applicable.

We have identi�ed three potential accidents associated with the
closed-loop control aspects of the PCA Interlock1, shown on the left
side of Table 2. The �rst, titled “Overdose,” describes the situation
where the PCA pump runs when it should not, and provides more
analgesic than the patient can safely tolerate. The second, “Loss of
Privacy,” is used to denote a situation where private patient data is
readable by an adversary. The third, “Unmanaged Pain,” describes
a patient who is in pain (and is activating the PCA pump’s bolus
trigger) but receives no medication. These accidents, and their
associated hazards, are used as a running example throughout this
work.

4.2 Systematic Analysis of Faults and Errors
In 2016, Procter introduced the Systematic Analysis of Faults and Er-
rors, or SAFE [16]. It is a highly-modi�ed form of Leveson’s System
Theoretic Process Analysis (STPA), applicable to the hardware- and
software-based subsystems used in a larger socio-technical system.
SAFE does not apply to the social elements of a system.

4.2.1 Activity 0: Fundamentals and Modeling. Like STPA, the
�rst activity in a SAFE analysis of a system is to de�ne what are
known as a system’s “fundamentals”—essentially a top-down view
of the possible losses (or accidents) of concern. These losses are
caused by hazards, which Leveson carefully de�nes as a system
state and its worst-case environmental conditions [12]. Put another
way, system states or actions are rarely always unsafe, but are more
typically unsafe given some particular environmental conditions.
In the PCA Interlock, for example, running the PCA pump is not
always unsafe, but doing so when the patient is showing signs of res-
piratory failure will clearly cause serious injury. The fundamentals
for the PCA interlock are summarized in Table 2.

Once these fundamentals have been de�ned in the �rst step of Ac-
tivity 0, the system’s control structure is modeled in the second step.
In STPA, this modeling is often done using box-and-line diagrams,
similar to Figure 1 [12], which will su�ce for SAFE, though SAFE
can also be used with the more rigorous modeling supported by a
semiformal architecture description language like the Society of
Automotive Engineer’s Architecture Analysis and Design Language
(AADL) [16]. Once the system has been modeled, work begins with
Activity 1, Step 1 analysis of the system element closest2 to the
controlled process.

4.2.2 Activity 1: Externally Caused Dangers. Activity 1 is per-
formed from the “point of view” of an individual component in its
system context. Prior to performing this step, the analyst will know
the outputs that the current component under analysis should avoid;
these can be thought of as the safety constraints that the component
must uphold, or alternatively, its guarantees. In SAFE, violations
of these constraints are referred to as successor dangers; this term

1Other accidents involving, e.g., the clinician and/or display are elided for space.
2“Closest” here is shorthand for “shortest path through the control structure,” or closest
in the control-theoretic ordering of the system
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0 Analysis begins by 

identifying potential ways 

safety constraints could be 

violated (termed Successor 

Dangers).

Information Flow

1 Analysis then considers 

whether certain classes of 

input errors would cause 

successor dangers (termed 

Manifestations).

2 The potential of internal 

failures to cause successor 

dangers can then be considered.

The analysis can then move to the preceding system 

component, using this component’s manifestations as its 

successor dangers.

Analysis Direction

Figure 2: A high-level overview of the component-level ac-
tivities in SAFE. The rectangles represent components, the
lines between them connections, and the lightning bolts are
potential safety issues.

is used to emphasize the fact that the outputs to be avoided are
dangerous because of how they are consumed by the component’s
successor in the control-theoretic ordering of the system. As part
of the Activity 1 analysis of a component, the safety constraints of
the component(s) that provide its input are derived. These can be
thought of as the assumptions this component relies on to uphold
its safety constraints, or the successor dangers of the predecessor
component(s). Note that analysis of the component closest to the
controlled process focuses on upholding the system-level safety
constraints identi�ed in Activity 0—as it does not control any other
components within the system boundary—while all subsequently
analyzed components must avoid causing problems in the compo-
nents they provide input to, i.e., their successors.

It is this aspect of SAFE—the derivation of component-speci�c
input errors and their subsequent use in analysis of the component’s
predecessors—that gives rise to its backward-chaining structure.
An analyst cannot know what particular outputs a component must
avoid without having �rst considered how those outputs are used
by the component that they are sent to. That is, in the PCA Interlock
example, we do not know a priori that sending a “run” command
to the PCA pump when the patient is showing signs of respiratory
distress is unsafe (though our engineering expertise might suggest
as much). Rather, we derive this knowledge by �rst considering the
behavior of the pump. In doing so, we learn that the pump running
while the patient is distressed should be avoided, and then that “run”
commands from the application logic cause the pump to engage.

Consider Figure 2, which shows the Activity 1 and 2 analysis of a
single component. The initial state—known successor dangers from
the predecessor component—is labeled with a 0. Activity 1 then
considers the ways that input errors would manifest in the current
component, and those erroneous inputs are used as the outputs to
be avoided for the preceding component.

Table 3 shows a highly-condensed version of the relationship
between the successor dangers and derived input requirements
for the PCA Pump in Figure 1. The analyst will determine that
the pump needs good3 commands from the application logic in
order to provide all necessary analgesic doses to the patient as

3We will expand on what “good” means in Section 5

Successor Danger Input Requirement

Unsafe Run-Command Good Controller Commands
Cleartext Encrypted Controller Commands
Missed Run-Command Good Controller Commands

Table 3: Example input requirements derived from SAFE Ac-
tivity 1 for the interlock’s Pump Component (cf. Table 2).

Entire System (Fundamentals: Activity 0)

Pump (External: Activity 1) Pump (Internal: Activity 2)

Logic (External: Activity 1) Logic (Internal: Activity 2)

Pulse Ox (External: Activity 1)

Pulse Ox (Internal: Activity 2)

Capnograph (External: Activity 1)

Capnograph (Internal: Activity 2)

Figure 3: The steps in a SAFE analysis of the PCA Interlock
system from Figure 1. Arrows represent viable next steps.

well as avoid overdoses.4 The analyst will also determine that the
pump’s inputs—which are patient medical data—should not be sent
in cleartext. This example is admittedly simple, but it gives a taste
for the structure of SAFE’s analysis.

SAFE’s Activity 1 is broken down into three steps, which we
summarize here. Full descriptions, which are beyond the scope of
this work, are available in [16]. Note that after this activity is com-
plete, analysis can proceed either “into” the current component (via
Activity 2), or “backwards” into the component(s) that provides the
current component’s input via Activity 1 analysis of that preceding
component. The �rst option is labeled with a 2 and the latter with
a→ in Figure 2. Thus, after performing Activity 1’s �rst two steps
on a component, analysis can either focus on internal problems,
external problems in the component’s predecessor, or—if multiple
analysts are available—both simultaneously. Figure 3 shows the
forking analysis paths when analyzing the highlighted elements
of the PCA Interlock control loop from Figure 1. The end result of
applying Activity 1 to a component is a collection of input require-
ments and the e�ects if input fails to meet those requirements.

Step 1: Process Models. The �rst task in analyzing a compo-
nent is simply to document what is known as its process model,
which is the model the component has of the controlled process.
This model (or model condition) is what Procter summarizes as
the expected relation between a system’s internal actions and its
external e�ects [16].

Step 2: Deriving Dangerous Inputs. The next task is to con-
sider the various ways that inputs to the component can manifest
as errors, and if those errors could cause the component to produce
any of its successor dangers. There are various schemes that can
be used to classify these possible manifestations. We emphasize
classi�cations derived from Dolev and Yao’s model in this work,
but Procter used Avžienis et al.’s service failure domains [3, 16] in
the original SAFE text.

4In Procter’s formalisms, the analyst is deriving IPCAPump
Overdose,Underdose [16]
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Step 3: Documenting External Interactions. The work of a
system analyst/designer does not stop once a problem has been
identi�ed, but rather only once the system design has been up-
dated to include compensatory measures. This �nal step in Activ-
ity 1 involves not only documenting how the dangerous inputs
could cause a particular successor danger, but also how the system
might be designed to prevent or mitigate the problem. It is these de-
sign changes—which SAFE splits into detection and compensatory
measures—that are the �nal outputs of the system analysis.

4.2.3 Activity 2: Internal Faults. SAFE’s Activity 2, which like
Activity 1 is also performed from the point of view of an individual
component, considers sources of component error other than the
arrival of input on known interaction points. It is labeled with a 2 in
Figure 2. A similar constraint-informed-requirement relationship
exists here as in Activity 1, except that the requirements gener-
ated in this activity constrain the component’s design and runtime
environment rather than its input speci�cation.

Step 1: Fault Class Elimination. As with the error classi�ca-
tions used in Activity 1, SAFE’s Activity 2 uses standardized fault
classi�cations. The activity is designed to exploit the hierarchy often
found in these classi�cations by eliminating entire classes of faults
that are not relevant to the system under analysis. For example, if
the PCA pump will be physically inaccessible to non-authenticated
personnel, then we do not ask the analyst to consider the class of
faults involving malicious actors gaining access at runtime. The
results of this approach are discussed in Section 6.

Step 2: Documenting Internal Faults. Like Activity 1’s Step
3, the �nal step of Activity 2 consists of documenting how internal
faults can cause the successor dangers in the current component,
and how the faults might be detected or prevented at either design-
or run-time.

5 ACTIVITY 1: INPUT SPACE COMPRESSION
One of SAFE’s primary objectives is to make the analysis of mod-
ern systems—which are often component-based, distributed, and
software-driven—more tractable. As systems grow more complex,
analysis of them takes more time as there are more interactions and
more ways for accidents to occur [22]. Secondary to this objective
is the desire to reduce the cost (measured in time, analyst e�ort,
etc.) of safety/security analysis. One key technique used by SAFE
to support both objectives is input space compression, where the
possible erroneous inputs to a component are categorized based on
their e�ect on the receiving component itself, rather than either
their source or precise deviation from the speci�cation. This is also
important when automating analysis steps using model-checking
techniques: reducing the cardinality of the set of errors considered
at each communication link can reduce the combinatorial explo-
sion of states when reasoning about all possible error scenarios
of the system. We note that this technique is not unprecedented
within hazard analyses, but this paper’s explicit recognition and
discussion of its impacts is, to the best of our knowledge, novel.
The technique and its bene�ts are discussed in Section 5.1. Further,
SAFE is agnostic to the categorization technique that an analyst
uses; a discussion of possible candidates is presented in Section 5.2.

T
im

in
g

C
o

rr
e

c
t

Value High

Value Low

V
a
lu

e

C
o

rr
e

c
t

Too Early

Too Late

N
o

th
in

g
 

C
o

rr
e

c
t

C
o

m
p

o
n

e
n

t

Correct, Timely InputUniverse 

of inputs Possible values

Erratic

Halted

Figure 4: Compression of a component’s input space into the
service failure domains identi�ed byAvižienis et al., adapted
from / Copyright Procter [3, 16].

5.1 Input Space Compression in SAFE
Input space compression is the categorization of erroneous inputs
based not on their source or exact deviation from a component’s
input speci�cation, but instead their e�ects on the receiving com-
ponent. As an example, rather than focus on a particular erroneous
value such as an SpO2 reading of 97% when the actual value is 90%,
the input would be categorized as incorrectly high. Similarly, rather
than analyze the case where input arrives 104ms after dispatch
when the input speci�cation requires sub-100ms latency, the input
is simply classi�ed as “late.” This is similar to the approach used by
Walter and Suri in their Customizable Fault / Error Model [24].

The technique has three e�ects on an analysis: a) it enables the si-
multaneous consideration of errors that are traditionally considered
strictly “safety” or “security” problems, b) it compresses the space
of possible erroneous component inputs into a handful of possible
values, and c) it severs the dependency of a particular component’s
analysis from the analysis of the components that generate its input.
Additionally, this technique also represents a �rst step in bridging
the system safety and formal analysis communities.

5.1.1 Merging Safety and Security Concerns. Rather than deter-
mining the cause and/or source of errors, analysts using SAFE can
focus strictly on the e�ects of input errors. Indeed, in a distributed
system, developers of a component often cannot know what other
component(s) will provide its input. Since speci�c causal scenarios
are unknowable, analysts are forced to disregard the “root cause” of
any potential input errors. An approach that focuses on the e�ects
of input errors rather than their causes leads naturally to a com-
bined view of safety and security, since the intentionality (or lack
thereof) underlying unsafe input can be disregarded. For example,
from the point of view of analyzing impacts on the application
logic, it doesn’t matter if an incoming SpO2 value is corrupted by
a networking fault or if the value has been maliciously altered by
an attacker. Leveson and Young come to the same realization,5
and suggest that the focus must instead be on broadly-applicable
compensatory actions [26]. The speci�c mechanisms for classifying
input errors are discussed in Section 5.2.

5.1.2 Analysis Space Reduction. The compression of possible
inputs also reduces the impact of what those in the model-checking
community would recognize as the state-space explosion problem.6
That is, rather than consider the impacts of each possible input value
outside of a component’s input speci�cation, only representative
5Young and Leveson write “The key understanding is that from a strategy perspective,
the physical (or proximate) cause of a disruption does not really matter.” [26, p. 35]
6In the language of Pelánek, we use a State Based Reduction technique [14].
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values need to be analyzed. As there are a number of ways to
classify input errors, SAFE has been designed to be agnostic to the
exact classi�cation technique used. Procter used Avižienis et al.’s
service failure domains in his dissertation, and Figure 4 shows the
resulting compression graphically [3, 16]. In the �gure, two failure
“dimensions” are considered: input arrival time and value. These
dimensions assume both a real-time system where messages to a
component can be either too early or too late, and that the messages
are carrying payloads of an ordered type that can be either too high
or too low. The six resulting domains stem from the presence of
one or both of these failure dimensions.

5.1.3 Independence of “E�ects-Based” Analyses. An additional
bene�t to an approach where the cause of input error is disregarded
is that it signi�cantly increases the independence of component
analysis. Full independence of analysis would have a number of
positive e�ects; chief among them is the enabling of truly compo-
sitional analysis where a system’s global properties can be com-
pletely determined via local reasoning. While SAFE is does not
fully meet this objective—and, in fact, such completely composi-
tional safety/security reasoning may not even be possible except in
limited cases—component-basis and process compositionality are
not binary. Rather, they are a spectrum: SAFE is more component-
focused, and thus more compositional, than other system-theoretic
techniques, like STPA [16]. Speci�cally, a component can be an-
alyzed independently of the component(s) that provide its input
(i.e., those that precede them in the control-theoretic ordering dis-
cussed in Section 4.2.2), but it is fully dependent on analysis of the
component(s) it provides input to. Consider Figure 1: analysis of
the application logic requires that the PCA pump has been fully
analyzed, but does not require anything to be known about the
capnograph or pulse oximeter.

A risk—or what might be called a “process hazard”—in using
informal guide words is that di�erent organizations (e.g., compo-
nent vendors) might interpret them di�erently. If the results of
hazard analyses performed by di�erent vendors who used di�erent
interpretations for guidewords are then brought together, there is
a potential for a loss of soundness, i.e., a loss of the integrity of the
analysis. Thus, the bene�t of using the Dolev-Yao-derived guide-
words is potentially two-pronged: a) we conjecture that since the
number of guidewords used is smaller than in other presentations
(meaning than e�orts in explaining/comprehending the methodol-
ogy are simpler) they can be treated with greater precision and clar-
ity, and b) Dolev-Yao and subsequent authors provided a rigorous
semantic interpretation in terms of a computational model which
can be used to help “normalize” the interpretation/understanding
across multiple vendors. These bene�ts support distributed risk
management which is required for multi-vendor interoperability.

5.1.4 System Safety and Formal Methods. The fourth, and per-
haps most signi�cant bene�t is that categorization of a component’s
inputs based on how they are used in the component itself provides
a notion of completeness that is unavailable when considering only
concrete error values derived from bottom-up causal chains. Be-
cause the error categories are considered independently of their
potential sources or actual values, unknown sources or potential
deviations are not left unconsidered. For example, suppose there
was an undiscovered issue resulting in delayed message output

from the PCA Interlock’s sensors. Analysis of the application logic—
which depends on those sensors for its input—will have already
considered the issue (due to, e.g., the “Late Arrival” failure domain)
and if necessary designed appropriate safeguards.

The line of reasoning here is similar to the justi�cations for the
use of symbolic values rather than an exhaustive set of concrete
values when performing model checking: rather than explicitly enu-
merating and considering all possible inputs, analysts can instead
derive representative values that cover paths through a component.
Indeed, Rushby’s Assumption Synthesis [18] style of system develop-
ment can be seen as this approach taken to its extreme. Assumption
synthesis describes a style where a component’s postconditions are
�rst speci�ed, and then the component’s behavioral speci�cation is
used to check, using some automated tool, if those postconditions
can be met. At �rst this is unlikely, but by adding additional precon-
ditions (i.e., assumptions), a minimal set of assumptions required
for the postconditions can be derived [18]. Thus we argue that our
work here represents a step in bridging system safety analysis and
the more formal style proposed by Rushby. Though we do not be-
lieve the box-and-line diagrams used in hazard analyses like SAFE
and STPA are readily model-checkable,7 this work is a recognition
of the common ground between the communities.

5.2 Aligning with Existing Concepts
Recall from Section 4.2.2 that SAFE’s Activity 1, Step 1 involves
considering how the input to a component could be erroneous ac-
cording to some set of guidewords. The exact set of guidewords used
is up to the analyst: Procter used the service failure domains from
Avižienis et al. when describing SAFE, but a number of techniques
may be appropriate. As an example of the use of these guidewords,
consider the SpO2 input to the application logic from Figure 1. One
of the failure domains is “Value High;” applying that guideword to
the SpO2 input would require the analyst to consider the e�ects
of an incorrectly high SpO2 value. Once those e�ects had been
documented, the analyst would consider the same guideword ap-
plied to the other inputs (in the case of the application logic, this
would be respiratory rate, pulse rate, and ETCO2). Then, the pro-
cess would repeat for the other guidewords (timing errors, halted
service, content value errors, etc.).

As discussed in Section 3, the input space compression used in
SAFE’s Activity 1 has precedents in the security domain as well. One
of the justi�cations for the original use of Avižienis et al.’s taxonomy
was that it was targeted at the intersection of the safety and security
communities [3]. This makes for a fairly straightforward mapping
from those failure domains and concepts to notions from both
security and safety; an informal version of this mapping is given in
the top part of Table 4.8

By repeatedly analyzing the PCA pump component of the PCA
Interlock, we derived a number of possible design improvements
(listed in the central part of Table 4) and the ease with which each set
of guidewords—when used with SAFE—detected problems which
led to those improvements (listed in the lower part of Table 4).

7Tooling supports the execution of SAFE directly on top of architectural models
speci�ed in AADL; these models enable a considerable amount of automated analysis.
8We note that the informal nature of Avižienis et al.’s failure domains prevents a formal
mapping. However, the Dolev-Yao model is formal, and other formal taxonomies (not
discussed here) like AADL’s EMv2 Error Library [19] exist.
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Dolev-Yao [5] Avižienis et al. [3] STPA-SafeSec [6] STPA/STPA-Sec [12, 25]

Guideword Mapping
Early Message Craft New & Send Early Arrival Injection Providing
Late Message Delay Late Arrival Delay Late

High Value Modify Existing Value High Manipulation None
Low Value Modify Existing Value Low Manipulation None

Service Stopped Drop Halted Drop None
Babbling Idiot Craft New & Send Erratic Injection Providing

Con�dentiality Violation Read None None None

Design Improvements
Alarming The pump should be able to issue an alarm to notify a clinician of a problem it cannot independently resolve.
Timeouts The pump shouldn’t listen for new tickets before the current ticket value reaches 0 to prevent message “�ooding.”

Timestamps The pump gets a ticket after signi�cant network delay, meaning it is enabled after the safe time window.
Negative Ticket Values Tickets should specify unsafe time windows as negative values to prevent enabling the pump when unsafe.

Hashed/Signed Messages Messages should be signed and hashed. This prevents forged tickets.
Encrypted Tickets Messages should be encrypted. This prevents snooping on ticket values.

Likelihood of Suggesting Design Improvements
Alarms 3 3 3 3

Timeouts ? 3 ? 3

Timestamps 3 3 3 3

Negative Ticket Values ? ? ? ?
Hashed/Signed Messages 3 7 3 ?

Encrypted Tickets 3 7 7 7

Table 4: Informal mapping of, design improvements by, and evaluation of error concepts from the literature.

In our evaluation, if a technique would clearly suggest a problem
that would lead to a particular design improvement we gave it a
“3,” if a skilled/experienced analyst might discover the impetus for
an improvement we marked it with a “?,” and if a technique was
unlikely to prompt an issue’s discovery we used a “7.” 9

5.2.1 Avižienis et al.’s Taxonomy of Dependable and Secure Com-
puting. The left two columns of the top of Table 4 map the Dolev-
Yao adversary’s capabilities to the Avižienis failure domains. The
concept of “early” message arrival is not clearly describable in the
Dolev-Yao model, but the ability to broadcast arbitrary messages
can be used to simulate this threat. Additionally, the Dolev-Yao
model is the only one of the four considered in Table 4 that includes
privacy violations; Avižienis et al. did not list an equivalent failure.

In Section 4.2.2 we discussed how an analyst would derive the
need for the PCA Interlock’s application logic to receive “good”
sensor data (see Table 3). “Good” is, of course, quite general—so
an analyst would want to enhance the speci�city of her analysis
by incorporating an adversary model that can classify ways that
input can be in error. The running example in this paper assumes
a) complete trust of hardware and software development, b) physi-
cal protection of the application logic’s hardware and software at
runtime, but c) no protection of the network itself. This may seem
like a signi�cant assumption, but it is the result of adopting the
Dolev-Yao model: we allow our adversary full access to the net-
work, but not to the application logic or system hardware. The lower

9The full evaluation is available online at http://santoslab.org/pub/safe/
Safe-SecureExample.pdf.

portion of Table 4 summarizes the success of Avižienis et al.’s taxon-
omy’s concepts in suggesting system design improvements. SAFE
analysis based on the Avižienis guidewords is likely to recommend
timestamped tickets and minimum inter-arrival periods (derived
from the absolute value of the ticket length) between message ar-
rival. This leaves out more security-centric design improvements
suggested by the Dolev-Yao model and STPA-SafeSec.

5.2.2 STPA-SafeSec’s General Integrity Threats. A second po-
tential alternative to the Avižienis et al. service failure domains
originally used by SAFE is given by Friedberg et al. in their work on
STPA-SafeSec [6], discussed previously in Section 2.3. The terms are
shown in the middle-right column of Table 4. The authors describe
how, starting from STPA’s set of causal factors, they derived addi-
tional guidewords that address integrity and availability concerns
[6]. As a security-focused set of guidewords, these terms align well
with the concepts provided by Dolev and Yao though they do not
address con�dentiality concerns. They guide the analyst to con-
sider the impacts of command and/or measurement messages being
injected, dropped, manipulated, or delayed by an adversary.

5.2.3 STPA and STPA Sec. STPA and its security-focused deriv-
ative, STPA-Sec, (introduced in Sections 2.1 and 2.2) also contain a
number of hazard/threat identi�cation guidewords. As the under-
lying system model used by STPA is derived from control theory,
it assumes that component interactions are binary signals (i.e., no
value high/low errors) and non-discrete (i.e., errors of “too long”
and “too short”). Extensions to the technique exist, however, which
add new guidewords to support additional types of problems such
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No. Guideword Possible Compensation Description

3 Compromised Software TPM-Like + Chain-of-Trust Adversary tampers with software in development
4 Compromised Hardware “Exotic” Adversary tampers with hardware in development
12 Adversary Accesses Hardware Physical Security, “Exotic” Adversary tampers with hardware at runtime
13 Adversary Accesses Software Access Control, Physical Security Adversary tampers with software at runtime
Table 5: The four security related fault classes used by SAFE and their suggested compensatory actions [16].10

Successor Danger Design Requirement

Unsafe Run-Command TPM-Like + Chain-of-Trust
Cleartext TPM-Like + Chain-of-Trust
Missed Run-Command TPM-Like + Chain-of-Trust

Table 6: Example design req’s from SAFE’s guideword 3

as value errors [23]. The rightmost column of Table 4 shows the
mapping (top portion) and evaluation (bottom portion) of STPA and
STPA-Sec. As STPA is a very abstract analysis, it relies more heavily
on analyst skill/experience than the other techniques. This is advan-
tageous when analyzing less well-de�ned aspects of socio-technical
systems (as the analyst has more �exibility) but is a disadvantage
in more well-de�ned, technical systems like the PCA Interlock.

6 ACTIVITY 2: ADVERSARY MODEL
PARAMETRICITY

A signi�cant part of the challenge in safety-critical system devel-
opment comes not from implementing the required functionality
but from ensuring the system’s functioning within its environment.
Di�erent systems not only have a unique set of objectives but they
also must perform their tasks given di�erent resources: di�erent
hardware might be in use, di�erent software installations present,
and varying levels of access might be granted to users. These envi-
ronmental realities can be included in di�erent models of a system:
its deployment model might take into account available hardware
and software resources, and user capabilities might be incorporated
into a threat model.

SAFE’s Activity 2 was designed with these models in mind, and
we refer to the resulting adaptability as adversary model parametric-
ity. Recall from Section 4.2.3 that this activity considers either
a) faults internal to a component or b) external issues other than
those arriving via declared interaction points (i.e., ports) that cause
safety or security problems. The exact set of issues is therefore
partially derived from the adversary model used by an analyst.

6.1 Parameterization and Fault Classes
SAFE’s Activity 2 guidewords, which are partially derived from the
fault classes11 proposed by Avižienis et al., are shown in Table 5
[3]. At a high level, faults can be introduced by adversaries into a
component’s hardware or software at either design/build time or at
10In some cases, compensation is di�cult or relies on currently-unavailable implemen-
tations of theoretical solutions, these are referred to as “exotic” compensations
11Note that these are distinct from Avižienis et al.’s service failure domains, which are
used as guidewords in SAFE’s Activity 1.

Successor Danger Environment Requirement

Unsafe Run-Command Physical Security, Access Control
Cleartext Physical Security, Access Control
Missed Run-Command —′′—, Alarm Monitoring

Table 7: Example environment req’s derived fromDolev-Yao

runtime; the four security-related guidewords are the cross product
of those concepts. Individual terms or sets of guidewords can be
eliminated from consideration if the adversary model used by the
analyst includes no capabilities relating to a particular time/element.
Exactly what a system must be designed to avoid should be dictated
by an explicit adversary model—either a general purpose model
such as Dolev-Yao’s, or a domain speci�c model akin to the one
proposed by Ponikwar et al. [15]—rather than being left unstated,
as in most hazard analysis techniques. For example, if the system’s
software development organization can be completely trusted (i.e.,
secure facility, no network access, etc.) and the developed artifacts
can be delivered via a secure channel, then guideword 3 can be
eliminated and its compensatory actions need not be taken.

In the real world, system development (including that of MAP
applications like the PCA Interlock) will likely take place in a more
standard environment. Thus, we should consider SAFE’s guideword
3, which asks the analyst to consider the case where an adversary
gains access to the component’s software either while it is being
built or delivered to the end user. In this case, that would mean that
its application logic is compromised, which could lead to nearly any
type of problem, including the three hazards originally identi�ed
in Table 2. Table 6 shows the new design requirements. SAFE’s sug-
gested compensations would direct the analyst to ensure that there
is a chain-of-trust—relying on cryptographic trust mechanisms like
a Trusted Platform Module (TPM) [4]—in place to ensure that the
delivered software is the same as what was developed and/or cer-
ti�ed for use. This particular compensation stems from work by
Salazar, who explained the need for this approach and provided a
prototype implementation [20].

As a second example, guidewords 12 and 13 ask the analyst to
consider an adversary who gains access to the system’s hardware
or software at runtime. If we adopt the Dolev-Yao model, we should
also incorporate its environmental assumptions into our analysis—
meaning we should disallow the actions the adversary cannot take.
Example environmental requirements are shown in Table 7; note
that these are requirements that cannot be discharged to the appli-
cation software itself. They include the need for physical security
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(to prevent tampering with the software by non-users), access con-
trol (to prevent tampering with the software by underprivileged
users), and alarm monitoring (to notify clinicians of problems that
can’t be automatically compensated for by the system).

Recall that SAFE’s Activity 2 is designed to work with—and is
dependent on—the results of Activity 1: the outputs of this activity
are only potential causes of previously identi�ed unsafe compo-
nent outputs. The e�ects of the identi�ed faults as well as any
causal links are determined as part of the repeated performance
of SAFE’s Activity 1 that forms its backwards-chaining analysis
process. To that end, the lack of network-based guidewords (e.g.,
“Adversary Accesses Network”) is not an oversight: network-based
inputs would arrive via a component’s interaction points, and thus
be analyzed as part of Activity 1.

6.2 Expanding Analysis Scope
The primary impact of this approach is a careful expansion of the
system engineering activities treated by a hazard analysis. While
many hazard analysis techniques involve creating an environment
model, explicitly incorporating an attacker model, as described
in this section, builds on the notion of completeness discussed
in Section 3. Not only does an explicit adversary model tell the
analyst what an attacker can and cannot do, it also makes clear
what actions have not even been considered. Thus, a component
analyzed using an exclusively run-time, network-based adversary
model like Dolev and Yao’s must still be protected against design-
time and non-network-based threats.

7 CONCLUSION AND FUTUREWORK
In this work, we have discussed how a new hazard analysis tech-
nique known as SAFE enables an integrated approach to safety and
security analysis. A key contribution of this work was the argument
that the Dolev-Yao model provides a uni�ed view of safety and se-
curity “e�ects” that has important completeness and minimality
properties as well as a rigorous semantic interpretation. We then
justi�ed the usefulness of SAFE’s approach (i.e., its breadth of appli-
cability) by showing how other causal taxonomies (guideword sets)
[3, 6, 25] could be mapped to the Dolev-Yao concepts. In addition
to our ongoing desire to apply the technique to new systems from
varying domains, there are two exciting directions for next steps.

First, there are a large number of models and guidewords avail-
able in the academic, system engineering, and standardization com-
munities. Ultimately, which models and concepts a particular analy-
sis should use will be system and domain speci�c, though we believe
academia, industry, and government/regulatory/standardization
authorities can provide guidance. This guidance would ideally be
deeply integrated with the tooling and techniques used, an approach
outlined by Procter and Hatcli� [17].

Second, we are very interested in exploring ways to move the
system safety and security community closer to the formal methods
community. Though both groups have at a high level the same goals,
they use di�erent de�nitions for common terms (e.g., safety as free-
dom from loss versus avoidance of a particular state) and operate at
di�erent levels of abstraction. We believe that potential connections
between the communities, such as assumption synthesis (Section
5.1.4), are important opportunities for collaboration.
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