
Systematic Analysis of Faults and Errors

Sam Procter, John Hatcliff; Kansas State University

General Tips
1. These instructions are designed to be used with publically-available ​templates
2. A partially-worked ​example​ is also available
3. The templates often assume one element where there may be multiple. In

nearly all cases, the analyst can simply add rows.
4. Spreadsheet cells are quite small, so...

– Cells can be made multiline by setting Text-Wrapping to "Wrap"
– Using the name as an index, fill in all notes in the "Explanations" Section

5. Reference cells can (and should) be actual references to keep the worksheet
elements synchronized

6. When the term "element" is used, it signifies either a component or a
connection between two components.

7. When component A is a ​predecessor​ of component B, A provides input to B.
When component A is a ​successor​ of component B, A gets its input from B.

8. A ​link​ is the pathway between a component and a connection (or a connection
and a component). It is infallible: any failures are considered to be part of either
the source or destination element.

Activity 0: Fundamentals

Overview:​ In this step the analyst fills in basic information about the system, like its
name, component pieces, and the problems that need to be avoided. This
corresponds to the "Fundamentals" Chapter of Leveson's ​Engineering a Safer World​.

0.1: System Fundamentals

Overview:​ Here, the analyst considers basic information about the system as a
whole. In the second substep (described below) she will be directed to consider the
individual elements of the system.

1. Identify the System
1. Guide:

• This is the name of the system you're considering.
• Enter the name of the system:

1. Row: System: (1)

https://docs.google.com/spreadsheets/d/1HeTiiKrjan_27iw_orjCFcHboz0cFocWvYKVUEC8lSY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1HeTiiKrjan_27iw_orjCFcHboz0cFocWvYKVUEC8lSY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Dz4PPdtzGeYec7zSNZpL4v0eFAS2mv-JSH9YwPSJxuc/edit?usp=sharing

2. Column: (B)
2. Example:

• PCA Interlock
2. Identify Accident Levels

1. Guide:
• These are the levels of accidents we'll want to avoid.
• Enter the name of the accident levels:

1. Row: Accident levels (5)
2. Column: Name (B).

• The reference column will not be used.
• Names are typically prefixed with "AL."
• The term "Accident Levels" comes from Leveson (see, e.g., Section

7.1 of ​Engineering a Safer World​), but corresponds well to similar
notions of loss categorization from other domains:

– Medical: Qualitative Severity Levels (ISO 14971, Section
D.3.4.2)

– Avionics: Consequences of Failure Conditions (FAA AC
25.1309-1A, Figure 1)

2. Examples:
1. AL.Death
2. AL.Discomfort

3. Identify the System and Environment Elements
– Research questions:

• How reasonable is it to identify components without
relationships at this point in the process?

1. Guide
• This is just a listing of the elements that are under the system

designer's control and in the environment
• Enter the names of the components, one per cell

1. Column: System (J), starting on row 3
2. Column: Environment (K), starting on row 3

• Add more components in more rows as necessary
• Though this step seems simple, there are actually two tasks being

performed, both of which should be carefully considered:
1. Determining the system boundary: Which components are

going to be directly controlled by the system developer
and which are not

2. Determining the level of abstraction: What defines a
"component" -- each component could (in all likelihood)

https://mitpress.mit.edu/books/engineering-safer-world

itself be considered a system, with its own
(sub)components and environment.

• There is no right answer, just be able to justify the
choices that get made.

• Avoid the temptation to allocate the components to a control
structure -- these lists will get modified in subsequent steps, and
it will be easier to simply add / remove components without
changing the architecture.

2. Examples
1. System Components

– PCA Pump
– App Logic
– App Display
– Patient Sensors

2. Environment Components
– Patient

4. Identify Accidents
1. Guide

• These are the bad things that may happen. They should be
traceable to the accident levels from 2.

• Enter the name and associated accident level:
1. Row: Accidents (7)
2. Column: Name (B), Reference (C)

• Names are typically prefaced with "ACC."
• We use Leveson's terminology here as in step 2. Engineering a

Safer World defines an Accident in section 7.1 as "An undesired
or unplanned event that results in a loss, including loss of human
life or human injury, property damage, environmental pollution,
mission loss, etc."

• Accidents are typically a pairing of an environmental component
with an accident level. They should not speak to ​how​ the harm
occurs (which is instead covered by a hazard).

– We use the term in such a way that it is interchangeable
with the term Mishap as defined in MIL-STD-882C and D.

2. Examples
1. ACC.Patient Dies (AL.Death)
2. ACC.Patient is in Pain (AL.Discomfort)

5. Identify the System Hazards
– Research questions

• Is it possible to consistently identify hazardous component and
environmental states at this point in the process?

1. Guide
• These are ways that the accidents could happen. They should be

traceable to accidents from step 3.
• In addition to the standard name and reference, hazards also

involve identifying:
– A hazardous factor, which will be released in
– A system state that, by a
– System Component, that when combined with
– The worst case state of an
– Environmental component
 ... that will lead to the referenced accident.

• There are equivalencies for some of these terms with, eg,
Ericson's terminology (See pg 17 of ​Hazard Analysis Techniques
for System Safety​):

 Our term Ericson's Term
 Hazardous Factor Hazardous Element
 System State Initiating Mechanism
 Environmental Component Target / Threat

• Enter the hazard and its information:
1. Row: Hazards (9)
2. Column: Name (B), Reference (C), Hazardous Factor (D),

System Element (E), System Element State (F),
Environment Element (G), Environment Element State
(H), Manifestation (I)

• Names are typically prefaced with "H."
2. Examples

1. H.Patient Overdose (ACC.Patient Dies, Analgesic, PCA Pump,
Pumping, Patient, Patient Cannot Tolerate More Analgesic,
Improper Transmission)

2. H.Patient Underdose (ACC.Patient is in Pain, Analgesic, PCA
Pump, Not Pumping, Patient, Patient is in pain and can tolerate
more analgesic, Delay / Drop)

6. Identify the System Safety Constraints
1. Guide

• These are constraints that, if they hold, guarantee the avoidance
of the Hazards.

• They are stated in nearly the same terms as the hazard, but with
a minimal change that avoids the hazard (typically a different
state of the element on the system boundary)

• Enter the associated Safety Constraints
1. Row: Safety Constraints (11)

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471720194.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471720194.html

2. Column: Name (B), Reference (C)
• Names are typically prefaced with "SC."
• Often there is a one-to-one correspondence of hazards to safety

constraints (e.g., the safety-constraint is simply a negation of the
hazard), but sometimes a number of constraints collectively or
individually prevent a single hazard.

• Note that safety constraints are not simply safety requirements
for the system, but rather high-level safety goals that will get
discharged to the various components of the system as safety
requirements on those components.

– This generic nature makes it easier to catch
less-traditional hazards, ie those resulting from things
like: component interactions, degradation of the
component over time, or the component's use by other
actors as part of a larger process.

2. Examples
1. SC.Dont Over Administer Analgesic (H.Patient Overdose,

Analgesic, PCA Pump, Not Pumping, Patient, Near Harm)
2. SC.Dont Under Administer Analgesic (H.Patient Underdose,

Analgesic, PCA Pump, Pumping, Patient, Healthy but in pain)
7. (Optional) Determine the graphical candidate control structure

1. Guide
• This involves the allocation of system components to a structure

which will allow each component to get the information it needs
about the state of the controlled process to make safe decisions

• This cannot be done in a spreadsheet format, though Google
Spreadsheets allows insertion of diagrammatic drawings into
sheets.

• The control structure can be diagrammed as:
– Components are drawn as boxes
– Connections are directional connectors between

components
– System components and connections are drawn with solid

lines
– Environmental components and connections are drawn

with dashed lines
• Note that, in step 1.1.2, the components in this structure will be

extended with process models (which cannot be determined at
this point in the process)

– Process models are drawn as solid boxes within
components

– Process variables are collections of process values, which
are drawn text within a process model

2. Examples
• See the “Control Structure” sheet of the ​examples​.

0.2: Component Fundamentals

Overview:​ For each element in the system, the analyst now creates a copy of the
Element spreadsheet (which won't get filled out completely as part of this step) and
fills in basic information. This is effectively the creation of a textual version of the
system’s control structure.

1. Identify the element
1. Guide

• This is a name for the element under analysis
– The first element examined should be the element closest

to the system boundary (but still inside the system) as
identified in Steps 4 and 7 of part 1.

– Following the first element, the analyst should work
backwards up the control structure (so, after examining
an element, consider its immediate predecessor)

• The name for should correspond to either:
– One of the components inside the system boundary, or
– A name for a connection between two components, one or

both of which must be inside the system boundary
• Enter a reference to the element:

1. Row: Element (4+)
2. Column: (A-B)

• Note that we deterministically derive the element under analysis
-- and examine all components in the control structure -- rather
than manually choosing a control action, as in Leveson's
Engineering a Safer World​.

– Other researchers, like Zahid H. Qureshi, have interpreted
Leveson's methodology to involve three elements of the
control structure (1. Controller errors, 2. Failure by the
actuator to execute a control action, and 3. Bad feedback).
In a similar spirit, we interpret Leveson's work as well.

2. Examples
• Component: PCA Pump
• Connection: IVLine, PCA Pump --> Patient

2. Identify the successor link name
1. Guide

https://docs.google.com/spreadsheets/d/1Dz4PPdtzGeYec7zSNZpL4v0eFAS2mv-JSH9YwPSJxuc/edit?usp=sharing

• This is the link between this element and (one of) its
successor(s).

• If the element has more than one successor link and plays a
different role for those two links, ​fill out a copy of the worksheet
for each role/link pairing

– This step is necessary because a component playing
multiple roles is essentially multiple components
combined into one “box.” The individual components
should be considered individually.

• This is essentially the generic form of what Leveson refers to as
"control actions" -- it's generic in that we do not restrict
ourselves to links that carry control / command messages -- that
are ​leaving​ the component.

• Enter the link name:
1. Row: Successor Link Name: (4+)
2. Column: (C-D)

2. Examples
• Component: PCA Pump -> IV Line
• Connection: IV Line -> Patient

3. Identify the predecessor link name(s)
a. Guide

• This is the set of links between this element and its predecessor
(or, if there are multiple predecessor components, all of them).
That is, these are the links over which the component's input
arrives.

• This is essentially the generic form of what Leveson refers to as
"control actions" that are ​entering​ the component.

• Enter the link name:
1. Row: Predecessor Link Name: (4+)
2. Column: (E-F)

b. Examples
• Component: AppLogicCommands -> PCA Pump
• Connection: App Logic -> AppLogicCommands

4. Identify the element's classification(s)
– Research questions:

• What's a good set of component classifications?
• What's a good set of connection classifications?

1. Guide
• This is the classification of the element according to the plays in

the system.
• Enter the classification

1. Row: Architectural (4),
2. Column: (H-I)

• Architectural classifications should be one of:
– Sensor
– Actuator
– Controller
– Controlled Process

• Connection architectural classification should be the
classification of the source component and the destination
component (eg, Sensor --> Controller)

2. Examples
• Component: Actuator
• Connection: Actuator --> Controlled Process

5. Repeat for the source of all predecessor links
– By repeatedly applying Step 0.2 to all predecessor links, the analyst will

work backwards through the control structure of the application.

Activity 1: Externally Caused Unsafe Interactions

1.1: Deriving the Successor Dangers

Overview:​ These are the things that can go wrong with the current element's
immediate successor (ie, the component that is the destination of the Successor Link
identified in 0.2-2). Our whole analysis of a given component will be to avoid these
problems.

1. Pull in the Successor dangers
1. Guide

• These can typically be imported from the previous worksheet.
– If this is the first element considered after the full system,

then the successor dangers are simply violations of the
system’s safety constraints (Column B, Row ~11).

– If this is the second or later element, the successor
dangers are the manifestations of the successor
component (Columns D-I, Row ~9)

• Enter references to the dangers:
1. Row: (13+)
2. Column: Successor Dangers (A-B)

2. Examples
• Component: IVLine.Overinfusion

– This would be a successor danger for the PCA Pump --- the
pump's goal is to avoid the IV line's "overinfusion" danger,
by not being in it's ​pumping​ state when the patient is in
the ​near harm​ state.

• Connection: H.PatientOverdose
– This would be a successor danger for the IV Line. Since the

line exists at the system boundary, its successor dangers
are the system-level hazards.

2. (If Component) Document the Process Model
1. Guide

• A process model is a collection of process variables which are
essentially collections of abstract states (termed process values)
of the component relative to the notion(s) of danger identified in
the previous step.

• The control structure, created in step 0.1.7, should be updated to
contain these process variables and their values.

• Enter references to the dangers:
1. Row: (17+)
2. Column: Process Variable (A), Process Value (B-I)

• Process models are required for controller components, but can
be documented for sensors and actuators as well. This stems
from the realization that most components are, at a lower level of
abstraction, entire systems consisting of internal sensors,
controllers, and actuators.

2. Examples
• Component: PCA Pump

– Process Variable: Ticket Duration
– Process Value: 1, …, 600

• Connection: N/A

1.2: Deriving the Element's Dangers

Overview:​ Here the analyst considers if problems with the input to this component
would cause problems with its output. This step is similar to, but much deeper than,
STPA’s Step 1.

Note also that, from this point on, the analysis of one element does not depend on
the analysis of its predecessors -- ie, the analysis is compositional from here on out.

1. Select a Predecessor Link
1. Guide

• These are the links identified in 0.2-3 (Column E-F, Row 3+)
• Create a reference to the selected link:

1. Row: (13+)
2. Column: Pred. Link (C)

2. Example
• Component: AppLogicCommands -> PCA Pump
• Connection: App Logic -> AppLogicCommands

2. Consider the four manifestations
1. Guide

• Here, the analyst should consider if it would be hazardous if the
predecessor link exhibited any of the four manifestations

– Note that we do not consider here if it's possible for the
link to exhibit the given manifestations, only if their being
exhibited would be hazardous

– These manifestations are from Avizienis et-al's ​Basic
Concepts and Taxonomy of Dependable and Secure
Computing​, where they are called Failure Domain's (see
Fig. 8, pg 9)

• The manifestations are:
– Content -- ie, the value of messages on the link are

incorrect, optionally divided further into:
• High
• Low

– Halted -- ie, messages on the link stop arriving
– Erratic -- ie, messages on the link appear out of the blue
– Timing -- ie, messages on the link appear at the wrong

time, typically divided further into
• Early
• Late

• Record...
– The result of the manifestation occurring --ie, a new

danger-- (typically formatted as
ComponentName.NameOfOccurrence)

– Not Hazardous if messages on the link could not cause this
hazard, or

– Not Applicable if messages on the link could not exhibit
this manifestation

1. Row: (13+)
2. Column: (D-I, as labelled)

3. Return to step 1.2-1 and repeat for all predecessor links identified in step 0.2-3

http://www.nasa.gov/pdf/636745main_day_3-algirdas_avizienis.pdf
http://www.nasa.gov/pdf/636745main_day_3-algirdas_avizienis.pdf
http://www.nasa.gov/pdf/636745main_day_3-algirdas_avizienis.pdf

1.3 Examining the Externally Caused Dangers

Overview:​ Here the analyst explains how the successor dangers (identified in step
1.1) could be caused by bad input to the element (ie, the manifestations identified in
step 1.2)

1. Select a Successor Danger
1. Guide

• The first thing an analyst needs to do is to select one of the
successor dangers (identified in step 1.1, stored in column A-B,
row ~9+)

• Enter a reference to the danger:
1. Row: (23+)
2. Column: Successor Dangers (A)

• Each successor danger may have more than one row -- this
signifies that multiple errors in the current element will cause the
same danger in the successor component

• In some cases, more than one successor danger will occur
simultaneously -- in this case, list all the successor dangers in the
table cell.

2. Examples
• Component: IVLine.Overinfusion
• Connection: H.PatientOverdose

2. Record the name of the danger
1. Guide

• Each previously-identified danger (from step 1.2-2) should show
up at least once in this column

– In general, though, there is a many-to-many mapping from
successor dangers to externally caused dangers

• Enter the name of the danger
1. Row: (23+)
2. Column: Name (B)

2. Example
• Component: PCA Pump.Spontaneously Give Drug
• Connection: IV Line.Overadminister Drug

3. Identify the relevant process variable name and incorrect value
1. Guide

• Each component can be thought of as having a model of the
controlled process

– Sensors read the state of the controlled process directly

– Controllers have a model of the controlled process
provided by the sensors

– Actuators get commands from controllers, which provides
a (greatly reduced) view of the state of the controlled
process

• A mismatch between the controlled process state (identified in
the previous step) and the component's process model lies at the
root of every externally caused danger. This and the previous
step combine to make that mismatch explicit.

• Leveson's ​Engineering a Safer World​ gives an good primer on
process models in Section 4.3 (pages 87-89)

• Enter the process variable name and value
1. Row: (23+)
2. Column: Process Var. Name (C) and Value (D)

2. Example
• Component: PatientHealth, Ok

4. Interpret the danger
1. Guide

• Since one guideword or manifestation can be interpreted in
different ways, the analyst should now provide a concrete
interpretation that explains how the danger name in column B
causes the successor danger in column A

• Enter the interpretation of the danger
1. Row: (23+)
2. Column: (E-F)

2. Example
• Component: The PCA pump receives a command to run even

though it is unsafe to do so
• Connection: There is more analgesic put into the IVLine than the

patient can safely tolerate
5. Identify any Co-occurring Dangers

1. Guide
• Sometimes dangers will only manifest in the presence of other

dangers -- this may be reflected in the natural language of the
environmental state and / or interpretation, but should be made
explicit here by referring to the other dangers (separated by
commas) here.

– Note that elements with only one predecessor link will not
typically have co-occurring dangers

• Each cause of the danger will need its own entry. So, if two
components (A and B) have to fail simultaneously for the danger
to occur, four rows will need to be created:

– Two which cause the successor danger:
• A's failure will have one row in the table (with B's

failure as a co-occurring danger)
• B's failure will have its own subsequent row (with

A's failure as a co-occurring danger)
– Two which are not hazardous:

• A's failure without a simultaneous failure of B
• B's failure without a simultaneous failure of A

• Enter the name of co-occurring dangers, or "None" if not required
1. Row: (23+)
2. Column: Co-occurring Dangers, (G)

• Dangers are assumed to be combined via AND joins --- more
complex relationships (OR, M-of-N, etc.) can be explained in the
interpretation / global env. state columns.

2. Example
• Component: N/A
• Connection: N/A

6. Run-time Detection
1. Guide

• This allows an analyst to specify a mechanism to detect the
occurrence of a danger at runtime

• Avizienis et-al. state that there are two ways errors can be
detected at runtime (see Fig. 16, page 16), either

– Concurrently (as the element is performing its job), or
– Preemptively (while the element is suspended for testing)

• Record the mechanism (typically prefaced with either
"Concurrent" or "Preemptive"), or "None" if run-time detection is
impossible

1. Row (23+)
2. Column Run-time Detection (H)

2. Example:
• Component: None
• Connection: Concurrent: Flow metering

7. Run-time Handling
1. Guide

• This allows an analyst to specify a mechanism to correct the
occurrence of a danger at runtime

• Avizienis et-al. state that there are three ways errors can be
handled at runtime (see Fig. 16, page 16),

– Rollback (restoring the system to a saved state),
– Rollforward (moving to a state without errors, ie a

known-safe state), or
– Compensation (use redundancy to mask the error)

• Record the mechanism of correction (typically prefaced with
"Rollback", "Rollforward", or "Compensation"), or "None" if
run-time compensation is impossible

1. Row (23+)
2. Column Run-time Handling (I)

2. Example:
• Component: None
• Connection: Rollforward: Stop Analgesic Flow

Step 2: Working with Internal Faults

Overview:​ These are the things that can go wrong with the element itself. There are
18 classes of faults, 15 of which come from Avizienis's work (they're a condensed
form of the 31 fault classes from Fig. 5, page 6) and 3 come in response to problems
with compositional verification.

Num. Guideword
Possible
Compensation Description

1 Software Bug Static
Verification

Mistakes made in software creation

2 Bad Software
Design

 Poor choices made in software
creation

3 Compromised
Software

TPM-like +
Chain-of-trust

Adversary tampers with software in
development

4 Compromised
Hardware

“Exotic” only Adversary tampers with hardware
in development

5 Hardware Bug Mistakes made in hardware
development

6 Bad Hardware
Design

 Poor choices made in hardware
development

7 Production Defect Hardware production defects (due
to natural phenomena)

8 Deterioration Periodic
inspection

Internal hardware fault at runtime
due to natural phenomena

9 Environment
damages
hardware

Shielding, ECC Externally caused hardware fault at
runtime due to natural phenomena

10 Operator HW
Mistake

Thoughtful UI,
Authorization,
Access Control

Operator makes a mistake while
interacting with hardware

11 Operator HW
Wrong Choice

Thoughtful UI,
Re-training,
Authorization,
Access Control

Operator makes a poor choice while
interacting with hardware

12 Adversary
Accesses
Hardware

Physical
Security,
“Exotic”

Adversary tampers with hardware
at runtime

13 Adversary
Accesses Software

Access Control
(Network and
Local), Physical
Security,
TPM-like +
Chain-of-Trust

Adversary tampers with software at
runtime

14 Operator SW
Mistake

Thoughtful UI,
Authorization,A
ccess Control

Operator makes a mistake while
interacting with software

15 Operator SW
Wrong Choice

Thoughtful UI,
Re-training,
Authorization,
Access Control

Operator makes a poor choice while
interacting with software

16 Syntax Mismatch The current element uses a different
syntax than its predecessor

17 Rate Mismatch QoS
Specification +
Enforcement

The current element expects input at
a different rate than its predecessor
outputs

18 Semantic
Mismatch

 The current element and its
predecessor do not interpret a given
value in the same way

2.1: Eliminating Classes of Internal Faults

Overview:​ While an analyst can consider each guideword individually, we also
provide the following questions which can be used to eliminate entire classes of
faults. Note that the default choice is italicized, and non-default answers should be
justified in the "Faults Not Considered" cells, Row 32+, Columns A-B (Guideword),
C-I (Justification)

1. Phase of Creation or Occurrence -- "Should faults from the element's
development be considered?"

– Yes​ -- Development and operational faults
– No -- Operational faults only (Remove 1-7)

2. Dimension -- "Does the element involve hardware, software, or both?"
– Hardware -- Hardware only (Remove 1-3,13-15)
– Software -- Software only (Remove 4-12)
– Both​ -- Both hardware and software

3. Phenomenological cause, pt 1 (unless Software dimension only) -- "Will the
hardware elements be protected from natural phenomena?"

– Yes -- No Natural faults (Remove 7-9)
– No​ -- Natural faults included

4. Phenomenological cause, pt 2 -- "Does the element receive input from directly
from a human operator?"

– Yes​ -- Human-made operational faults included
– No -- Human-made operational faults excluded (Remove 10-11,14-15)

5. Objective -- "Is it possible that an adversary could gain access to the element?"
– Yes​ -- Malicious and Non-Malicious faults
– No -- Non-Malicious faults only (Remove 3-4,12-13)

6. Interaction -- "Have the two components joined by this connection either
worked together before or been developed together?"

– Yes -- No interaction faults (Remove 15-18)
– No​ -- Interaction faults

2.2 Examining the Internally Caused Dangers

Overview:​ Here the analyst explains how the successor dangers (identified in step
1.1) could be caused by faults internal to the element using the guideword table
from above.

1. Select a guideword
1. Guide

• The first thing an analyst needs to do is to select one of the
non-eliminated guidewords

• Enter a reference to the guideword:
1. Row: (38+)
2. Column: Guideword (B)

• Each guideword may have more than one row -- this signifies that
the same guideword may cause multiple dangers in the successor
component

2. Examples

• Component: Operator SW Mistake
• Connection: Compromised Software

2. Select a Successor Danger that this guideword could cause
1. Guide

• Next, the analyst should pick one of the successor dangers the
guideword from 2.2-1 could cause

• Enter a reference to the danger:
1. Row: (38+)
2. Column: Successor Danger (A)

• Each successor danger may have more than one row -- this
signifies that different faults in the current element will cause the
same danger in the successor component

2. Examples
• Component: IVLine.Overinfusion
• Connection: H.PatientOverdose

3. Interpret the danger
1. Guide

• Since one guideword can be interpreted in different ways, the
analyst should now provide a concrete interpretation that
explains how the guideword in column B causes the successor
danger in column A

• Enter the interpretation of the danger
1. Row: (38+)
2. Column: (D-E)

2. Example
• Component: The PCA pump runs even though it's not

commanded to
• Connection: The connection drops the message

4. Identify any Co-occurring Dangers
1. Guide

• Sometimes dangers will only manifest in the presence of other
dangers -- this may be reflected in the natural language of the
interpretation, but should be made explicit here by referring to
the other dangers (separated by commas) here.

– Note that these can be other internal faults, or external
dangers from Step 1

• Each cause of the danger will need its own entry. So, if two faults
(A and B) have to occur simultaneously for the danger to occur,
four rows will need to be created:

– Two which cause the successor danger:

• Fault A will have one row in the table (with fault B
as a co-occurring danger)

• Fault B will have its own subsequent row (with
fault A as a co-occurring danger)

– Two which are not hazardous:
• Fault A without a simultaneous fault B
• Fault B without a simultaneous fault A

• Enter the name of co-occurring dangers, or "None" if not required
1. Row: (38+)
2. Column: Co-occurring Dangers, (E)

• Dangers are assumed to be combined via AND joins --- more
complex relationships (OR, M-of-N, etc.) can be explained in the
interpretation / global env. state columns.

2. Example
• Component: N/A
• Connection: N/A

5. Design-time Detection
1. Guide

• This allows an analyst to specify a mechanism to detect the
presence of a fault at the design-time of a system

• Avizienis et-al. state that there are five verification approaches
(see Fig. 19, page 18),

– Static Analysis,
– Theorem Proving,
– Model Checking,
– Symbolic Execution, or
– Testing

• Record the mechanism of detection (which may be one or more
of the five verification methods or a domain-specific approach),
or "None" if design-time compensation is impossible

1. Row (38+)
2. Column Run-time Handling (F)

2. Example:
• Component: Model Checking
• Connection: Testing

6. Run-time Detection
1. Guide

• This allows an analyst to specify a mechanism to detect the
occurrence of a danger at runtime

• Avizienis et-al. state that there are two ways errors can be
detected at runtime (see Fig. 16, page 16), either

– Concurrently (as the element is performing its job), or
– Preemptively (while the element is suspended for testing)

• Record the mechanism (typically prefaced with either
"Concurrent" or "Preemptive"), or "None" if run-time detection is
impossible

1. Row (38+)
2. Column Run-time Detection (G)

2. Example:
• Component: None
• Connection: Concurrent: Flow metering

7. Run-time Error Handling
1. Guide

• This allows an analyst to specify a mechanism to correct the
occurrence of a danger at runtime

• Avizienis et-al. state that there are three ways errors can be
handled at runtime (see Fig. 16, page 16),

– Rollback (restoring the system to a saved state),
– Rollforward (moving to a state without errors, ie a

known-safe state), or
– Compensation (use redundancy to mask the error)

• Record the mechanism of correction (typically prefaced with
"Rollback", "Rollforward", or "Compensation"), or "None" if
run-time compensation is impossible

1. Row (38+)
2. Column Run-time Handling (H)

2. Example:
• Component: None
• Connection: Rollforward: Stop Analgesic Flow

8. Run-time Fault Handling
1. Guide

• This allows an analyst to specify a mechanism to correct the
cause of a fault at runtime

• Avizienis et-al. state that there are four ways faults can be
handled at runtime (see Fig. 16, page 16),

– Diagnosis (identifying and recording the causes of the
issue),

– Isolation (physically or logically excluding the faulty
components from further participation in the system),

– Reconfiguration (switching in spare components or
reassigning tasks among non-failed components), or

– Reinitialization (“rebooting” the system)
• Record the mechanism of correction (typically prefaced with

"Diagnosis", “Isolation”, “Reconfiguration”, “Reinitialization”), or
"None" if run-time handling is impossible

3. Row (38+)
4. Column Run-time Handling (I)

2. Example:
• Component: Reinitialization: Reboot the pump
• Connection: None

