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ABSTRACT
Establishing that safety-critical systems are actually safe
requires a large effort and involves a range of tasks, from
conducting preliminary hazard analyses to creating detailed
assurance cases. This paper introduces the Architecture-
Supported Audit Processor, or ASAP, which generates a num-
ber of safety-specific system views that deeply integrate a
system’s architecture and arguments about its safety. These
views are generated interactively and automatically using
safety-specific extensions to the Architecture Analysis and
Design Language (AADL). Though use of the tooling and
views do not require the use of any particular process, they
align well with a system-theoretic approach. This paper dis-
cusses the background and use of ASAP on a demonstrative
example.
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1 INTRODUCTION
Safety-critical systems, i.e., those systemswhose failurewould
result in death, injury, or unacceptable financial losses, are
becoming increasingly sophisticated and software reliant
[10]. Developing confidence in the safe and reliable behavior
of these systems requires efforts to assure them. The cost and
time required for these assurance efforts is significant, and
it has been argued that they are a bottleneck that prevents
the rapid deployment of new and improved versions [5]. Ad-
ditionally, many assurance practices were not designed for
modern systems and do not consider the impact of software
on safety [10], nor do they take advantage of model-based
engineering techniques for the traceability of safety artifacts
to system elements.

In this paper, we report on a tool-supported approach that
addresses these shortcomings. We propose contextualizing
assurance evidence in an environment that supports mod-
ern system development practices, and that explicitly links
assurance evidence to safety argumentation. We present

the Architecture-Supported Audit Processor (ASAP), an inter-
active tool which follows this strategy and supports com-
mon assurance activities in an architecture-centric, model-
based system development environment. The tool provides
an assurance-specific view of a system that builds on pre-
vious work on merging modern safety analysis and system
architecture [15].
(1) Research Context We identify three research ideas

from the safety and argumentation communities and
discuss how they illuminate a path forward for next-
generation hazard anlaysis.

(2) SAFE Improvements We propose an approach for
performing safety analysis that builds on the System-
atic Analysis of Faults and Errors (SAFE) hazard analy-
sis technique, which supports model-based, composi-
tional safety argumentation.

(3) ToolWe describe the inputs, use cases, and outputs of
the ASAP tool.

In order to better explain the use of ASAP, we also orient
its inputs and outputs in the process of a popular hazard
analysis technique:
(4) Mapping to STPAWe establish an example mapping

to STPA [13], a popular system-theoretic hazard analy-
sis. Our mapping leverages system development tasks
that are already performed in a typical development
and presents safety information in an interactive, nav-
igable format that can be queried.

The remainder of the paper is organized as follows: Section
2 surveys three research topics which informed the design
of ASAP. Section 3 describes background concepts, includ-
ing languages, tooling, and theory this work directly builds
on. Section 4 describes ASAP and its application to a small
system. Section 5 presents related work. We discuss future
work in Section 6 and conclude in Section 7.

2 SURVEY: THREE CHALLENGES TO
ASSURANCE

In addition to the technical background, covered in the next
section, this work has been informed by three challenges to
system assurance, which we describe here.
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2.1 Assurance evidence should be
contextualized with explicit safety
arguments

One of the challenges that makes assurance difficult is that
the evidence produced by some assurance strategies may
not be what is most relevant for actually determining the
safety of a system. Take for example hazard analysis – a
common way of assessing the safety of a system [4]. Many
hazard analyses consist of a series of steps to be performed
at one or more stages in the system development lifecycle
(e.g., preliminary design, detailed design, system test, etc.).
The outcome of the analysis’s steps is evidence that the
system is either free from the types of safety issues that the
technique is designed to detect or those issues have been
mitigated to a point where residual risk is acceptable in
light of the system’s benefits. Some safety standards rely on
this evidence for certification of a system’s worthiness for a
particular mission.
Rushby, however, has argued that the claims and argu-

ments which rely on that evidence—and upon which those
standards are built—are sometimes based on reasoning that
is left implicit [18]. He continues by noting that while ap-
proaches based on standards aswell as structured-argumentation
like safety cases (also referred to more generally as assurance
cases) both have their strengths and weaknesses, standards-
based approaches are “slow-moving and conservative.” This
aligns, to some extent, with arguments made by Leveson,
who writes that many hazard analyses and system safety
standards are fundamentally outdated in their approach [12].
In Leveson’s view, a common error is to evaluate a system’s
reliability and use that as a stand-in for the system’s safety.
This approach, she continues, was more valid when safety-
critical systems were largely hardware based: individual com-
ponent failures were much more likely to be the ultimate
cause of a system failure before the addition of software sig-
nificantly increased the variety of component configurations
[10]. As a consequence, we undertake the following:

Our Goal: Assurance evidence should be contextualized,
and that context should be explicit safety argumentation.

2.2 Assurance argumentation should be
hierarchical

A second challenge to system assurance efforts stems from
the competing goals of assurance documentation: it should
be both easily understood yet completely accurate. System
descriptions which are brief and abstract may be easily under-
stood, but lack the technical precision and depth necessary
to convey a complete understanding of a system. Complete
and precise system descriptions, on the other hand, can take
a significant amount of time to understand. This problem can
be addressed, to an extent, through standardization: when

assurance documentation is packaged in an expected for-
mat, familiarity with the standard can aide in understanding.
But this leads to institutional inertia; i.e., Rushby’s criticism
of standards-based approaches as slow-moving [18] or Es-
pinoza et al.’s more pointed criticism that standards can be a
barrier to innovation [5].
We note that there is an interesting parallel here to an-

other field where arguments are designed to convince human
experts of their correctness: that of mathematical proof. In
that domain, Lamport has argued for the utility of hierar-
chically structured, hypertext-enabled proofs [9]. An initial,
high-level argument can be presented at an abstract level, but
the reader can expand portions that are unclear as necessary;
in this way technology and argument structure can be used
to address the competing goals simultaneously. Therefore,
we also undertake the following:

Our Goal: Assurance evidence should be initially pre-
sented at a high level, but a viewer should be able to expand
argumentation as desired.

2.3 Assurance evidence should be modular
and composable

A third challenge stems from the discrepancy between the
way systems are built (compositionally, as aggregates of com-
ponents) and how safety argumentation is structured (mono-
lithically). That is, because critical systems are designed for
operation in particular environment, safety argumentation
rarely composes as easily as software or hardware elements.
This mismatch can lead to inconsistency in guidance for as-
suring seemingly related systems [7] or system updates that
are either postponed or avoided altogether to avoid the costs
of (re)certification [5]. However, fully compositional safety
is an enduring challenge because it requires successfully
pursuing one of two very challenging strategies:

(1) Anticipating the environment and role of a component:
This was the approach taken by ISO 26262’s concept
of a “Safety Element out of Context” [8], ISO 14971’s
concept of “Intended Use” [1]), and SAFE’s concept of
a component’s role [15].

(2) Completely describing all aspects of the component: This
description would have to analyze all possible uses in
all possible contexts.

Recognizing that this goal may not be achievable, we
nonetheless advocate its pursuit because progress towards it
will still reduce the burden of creating assurance argumen-
tation and speed the development of critical systems. Thus,
our final objective is:

Our Goal: Assurance argumentation should be composi-
tional.
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3 TECHNICAL BACKGROUND
This section introduces the background of the modeling tech-
nologies, example, and safety methodologies used in the
paper.

3.1 AADL and OSATE
The Architecture Analysis and Design Language (AADL)

is an internationally standardized architecture description
language [19]. AADL, which has both a textual and graph-
ical syntax, is supported by the Open Source Architecture
Tool Environment1 (OSATE), which is a development envi-
ronment based on the Eclipse IDE. System designers can
use OSATE and AADL to model their system’s software
elements (e.g., thread, process, subprogram), hardware el-
ements (e.g., processor, memory, bus), and the connections
and bindings between them [6]. Annexes extend the core
language to address different, non-architectural aspects of
system design, such as behavior or data modeling.
One such extension that this work relies heavily upon is

the error modeling annex [20], which includes mechanisms
for specifying error types, which are errors that can be in-
stantiated and propagated as tokens between components
(similar to Wallace’s Fault Propagation and Transformation
Calculus [26]). For example, a sensor that produces a reading
that may be higher than the actual value would be modeled
as being a source propagation for tokens of the Value
High error type. Error propagations represent the broadcast
or reception of error tokens from/into components, typically
via ports. This is used to represent a component producing
erroneous output or receiving erroneous input, and can be
used to trace the path that errors take through a system, e.g.,
a flawed sensor value is transformed by a software controller
into an inappropriate command, which is transformed into a
potentially unsafe actuation by a servo. The error modeling
annex comes with a user-extensible library of error types,
which is organized hierarchically into broad categories of er-
ror [16]. The type system is quite flexible, and can be used by
a modeler to represent arbitrary error conditions, potentially
including, e.g., the state of the system’s environment.

3.2 An Example System: PulseOx
Forwarding

To illustrate the features of ASAP, we use an illustrative,
open-source2 example from the medical domain. In addition
to a control loop with multiple inputs and outputs, it has a
single safety concern, which is the failure to issue a necessary
alert. It consists of the following elements:

• Hardware Devices – Represented as AADL devices

1https://osate.org/
2https://github.com/osate/osate2-asap/tree/main/org.osate.asap.examples

1package PulseOx_Forwarding_Logic
2public
3 -- Import statements elided for space
4

5 process PulseOx_Logic_Process
6 features
7 LogicSpO2 : in data port

PulseOx_Forwarding_Types::SpO2;↩→
8 LogicDerivedAlarm : out event port
9 {MAP_Properties::Output_Rate => 200 ms .. 400

ms;};↩→
10 properties
11 MAP_Properties::Process_Type => logic;
12 MAP_Properties::Component_Type => controller;
13 annex EMV2 {**
14 use types PulseOx_Forwarding_Errors;
15 error propagations
16 LogicSpO2: in propagation {SpO2ValueHigh,

SpO2ValueLow, EarlySpO2, LateSpO2,
NoSpO2, ErraticSpO2};

↩→
↩→

17 LogicDerivedAlarm: out propagation

{MissedAlarm, BogusAlarm};↩→
18 end propagations;
19 **};
20 end PulseOx_Logic_Process;
21 process implementation PulseOx_Logic_Process.imp
22 subcomponents
23 CheckSpO2Thread : thread CheckSpO2Thread.imp;
24 SpO2Val : data PulseOx_Forwarding_Types::SpO2
25 {MAP_Error_Properties::Process_Variable => true;};
26 connections
27 outgoing_alarm : port CheckSpO2Thread.Alarm ->

LogicDerivedAlarm;↩→
28 end PulseOx_Logic_Process.imp;
29

30 thread CheckSpO2Thread
31 features
32 Alarm : out event port;
33 properties
34 Thread_Properties::Dispatch_Protocol => Periodic;
35 end CheckSpO2Thread;
36 thread implementation CheckSpO2Thread.imp
37 end CheckSpO2Thread.imp;
38

39end PulseOx_Forwarding_Logic;

Listing 1: An example of AADL’s textual syntax, show-
ing the specification of a software controller.

– pulseOx: A pulse oximeter device, which measures
the blood oxygen saturation (SpO2) of a patient via
a non-invasive fingerclip.

https://github.com/osate/osate2-asap/tree/main/org.osate.asap.examples
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Figure 1: The PulseOx Forwarding System, in AADL’s graphical syntax

– electronicHealthRecord3:An adapter for the electronic
health record, which records the patient’s SpO2.

• Software Processes –Represented as AADL processes
– appLogic: Simple application logic that triggers an
alert if the patient’s SpO2 is too low.

– appDisplay: Simple logic to display both the alert (if
present) and the patient’s SpO2.

• Humans – Represented as AADL abstracts
– clinician: A clinician who monitors the display and
treats the patient.

– doctor: A doctor who advises the clinician but does
not directly treat the patient.

– patient: The patient who provides SpO2 readings (via
the PulseOx) and receives treatment.

Figure 1 shows the overall system in AADL’s graphical
syntax. This system is not complex, but has two aspects
which make it ideal for demonstrating ASAP’s features: it
shows multiple control loops, i.e., circular paths through the
system which involve both sensing and actuating; and some
components (i.e., the processes) decompose cleanly into
subcomponents (in this case a collection of communicating
threads). Some of these components would be already be
modeled as part of a normal system engineering process,
while others (i.e., the humans) would typically need abstrac-
tions created specifically for safety analysis, e.g., to represent
particular execution or interaction scenarios. Exactly which
ones would need to be created for ASAP is impossible to
specify without knowing what other analyses are being run
on the system: modelers are typically encouraged to add
only as much detail as required by the analyses they want
to perform.

3We recognize that this is not how electronic health records are typically
used, here we use the term for a more generic data store.

3.3 STPA and SAFE
The System Theoretic Process Analysis (STPA) is a hazard anal-
ysis that is designed to address many of the criticisms found
with more reliability-oriented, hardware-focused analysis
techniques [11, 13]. It has been adapted to work with AADL
models without significant modification to the process [17].

The Systematic Analysis of Faults and Errors (SAFE) is a haz-
ard analysis technique that is heavily derivative of STPA, but
contains a number of modifications, including a formal defi-
nition of hazard [15]. This, along with additional specificity
available with low-level architectural specifications such as
AADL models, enables the new automation discussed in be-
low. We discuss it, STPA, and SAFE in more depth as we
explore ASAP in Section 4.

4 THE ARCHITECTURE-SUPPORTED
AUDIT PROCESSOR

The Architecture-Supported Audit Processor (ASAP) is a
plugin to OSATE that enables three “viewpoints” of a sys-
tem. These viewpoints are diagrams and tables which are
dynamically generated (i.e., in response to user input) and
designed to support activities performed by system safety
auditors. ASAP’s viewpoints are generated from the system
architecture as modeled in OSATE and supplementary safety
information, entered by the system designer or analyst.
The first viewpoint is somewhat abstract and presents

high-level fundamental aspects of the system (or compo-
nent’s) safety. The second presents elements in their imme-
diate context, and the third focuses narrowly on the causes
(and potential compensations) of errors within a component.
This progression from abstract to specific is typical of both
model-based system design in AADL and hazard analysis
techniques such as SAFE and STPA. This progression means
that more shallow analyses can be performed using less time:
a simpler model and less ASAP-specific annotations will
produce less rich diagrams and information. Alternatively,
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different portions of the system can be modeled to different
depths: a subcomponent whose behavior should be more
deeply analyzed can be richly annotated while others are left
essentially unspecified as “black boxes.” This lets designers
focus on the portions of the system that are relevant to partic-
ular stakeholders without getting bogged down in creating
sophisticated models solely for the purpose of enabling tool
functionality.

4.1 Viewpoint 1: Fundamentals
In order to orient the analysis towards particular safety is-
sues, STPA and derivative analyses such as SAFE make ex-
plicit the links between low-level faults and errors and high-
level safety concerns such as death or injury to a human.
This is done by creating a fundamentals hierarchy, a structure
that relates safety problems, and their solutions, to specific
and general notions of accidents / losses. At the top of the
hierarchy are accident levels, which are broad categories of
harm that can be prioritized. A typical system might have
death or injury to a human as the highest-ranked accident
level, followed by damage to or destruction of mission equip-
ment. Accidents are losses that can be caused by the system;
any number of accidents can be linked to a single accident
level. That is, there might be multiple specific accidents that
would each result in harm to a human. A diagrammatic view
of a fundamentals hierarchy is shown in Figure 2(a).

Linking concrete losses resulting from system failure (ac-
cidents) to the specific ways they occur (hazards) is a signifi-
cant open challenge in designing architecturally-integrated
safety analysis techniques. The difficulty comes in concisely
specifying which system elements could be involved in caus-
ing a particular accident, and how the failure of those ele-
ments would cause the loss. Specifying the links between
accidents and the system elements involved in their causa-
tion is necessary as these links form the context required to
both understand the impact of system design choices and to
construct coherent argumentation.

Hazards have a two-part definition in SAFE (which formal-
izes STPA’s definition4) as a combination of one system and
one environment state that will cause an accident; note that
multiple hazards can lead to a single accident. Intuitively,
this two-part definition results from the notion that certain
system behaviors are rarely always unsafe, but rather only
unsafe given a particular state of the environment. Leveson
uses the example of a train: it is only unsafe for train’s doors
to be open while the train is moving [11]. In ASAP, hazards
are modeled using the condition that causes them5; i.e., as
4STPA’s full definition is “A system state or set of conditions that, together
with a particular set of worst-case environmental conditions, will lead to
an accident (loss).” [11, pg. 184]
5Note that in STPA, hazards can be either states or conditions (Leveson has
discussed their equivalence [11]) but in ASAP they must be conditions.

the arrival of an error type at a component via its interface
(e.g., a port), see Figure 2(b).

Figure 3 shows the fundamentals viewpoint in ASAPwhich
supports STPA’s first step. As shown by the lower portion,
hazards contain a number of references to model elements
including: a) Accident: The accident the hazard’s occurrence
would cause, b) Environment Element: The component whose
state is the environmental “half” of the hazard, c) System
Element: The component whose state is the system half of
the hazard, d) Error Type: The AADL error type representing
the system element’s deviation from intended or acceptable
behavior, and e) Hazardous Factor A human-readable name
of what is being transmitted from the system element to the
environment element6. Note that five of the nine elements
linked to from the hazard (i.e., all those with icons other than
) are semantic objects in either the AADL or ASAP model,

as opposed to plain text. By semantic objects, we mean that
these refer to actual elements in the model, represented in
OSATE as rich data structures with links to other elements.
This helps keep the documentation synchronized with the
model, and enables the query-driven behavior of the other
viewpoints.

4.2 Viewpoint 2: Connected Neighbors
In hierarchically-organized system models of any useful size,
it can be difficult to understand how a particular component
fits into the larger system. Even the relatively simple PulseOx
Forwarding system can be difficult to quickly understand:
there aremultiple cyclic control flow paths as well asmultiple
levels of abstraction; we use model slicing to reduce the
complexity [24]. AADL is purpose-built for hierarchically
specifying system details.

STPA uses scoped control flow diagrams to present compo-
nents in context in its second step, however, so we developed
the Connected Neighbors viewpoint to show a given compo-
nent, its immediate neighbors (i.e., those components that
either produce input for the component or use its output),
their neighbors, and any connections between the displayed
components. AADL models contain all of this information al-
ready, the ASAP tooling extracts it automatically rather than
requiring the diagrams to be constructed manually. Figure 4
shows an example of this viewpoint centering on the app-
Logic component of the PulseOx Forwarding system. Note
that some elements, such as the electronicHealthRecord
or doctor, are too distant7 from the focused element, and
thus are not displayed.

6see, e.g., Ericson’s text for the role of hazardous factors in accidents [4].
7Distance here is the number of “hops” from a given component, i.e., those
which intransitively interfere according to van der Meyden’s definition [25].
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Accident Level 1

Accident 1-1 Accident 1-2 Accident 1-l…

Hazard 1-1-1 Hazard 1-1-2 … Hazard 1-1-m

Constraint 1-1-1-1 Constraint 1-1-1-2 … Constraint 1-1-1-n

Connection

Hazard = System State + Environment State
(Error Type + Port) + (Component)

Application

(a) (b)

Sensor Environment
Constraint

(Error Type + Port)

Figure 2: Part (a): A diagrammatic view of the fundamentals hierarchy. Part (b): How hazards and constraints are
modeled in AADL.

Figure 3: A fundamentals hierarchy (i.e., an instantia-
tion of Figure 2a) in the ASAP tool.

Figure 4: The Connected Neighbors view of the app-
Logic component in the ASAP tool. The primary ele-
ment is shown in grey, immediate neighbors are blue,
and the immediate neighbors of the neighbors are red.
Connections represent the flow of data or commands.
Note that this is a subgraph of Figure 1

Our goal with this view is not to replace system-level views
like what AADL presents, but rather to support analyst intu-
ition and rapid understanding of a particular component’s

“point of view” of a system. For example, any input from the
doctor that affects the application logic would first have to
be understood by the clinician, which would affect the treat-
ment administered to a patient, which would be detected by
the PulseOx, at which point it would be received by the app-
Logic. Put another way, the doctor’s impact on the appLogic
is mediated by three different system elements and thus may
not be immediately relevant for gaining quick understanding,
so the doctor does not appear as a neighbor of the appLogic
in Figure 4.

4.3 Viewpoint 3: Unsafe Control Actions
ASAP’s third viewpoint displays information on how sys-
tem hazards might come to occur, and how they could be
prevented.

4.3.1 Preliminaries: Causes, Compensations, and Guidewords.
In any non-trivial system, there are a large number of ways
that things can go wrong; in a safety-critical system these
are documented as violations of the system’s safety con-
straints. We refer to these violations as causes, i.e., ways that
hazards (and associated losses) are caused. When thinking
about a cause, the solution may or may not be apparent. If
it is, a safety analyst should document it, we refer to these
solutions (which may be partial, or conditioned on some
other system behavior) as compensations. There is again a
challenge in organizing and presenting a large amount of
highly contextual information: a simple listing of causes and
compensations is much harder to use than one organized, for
example, around the system architecture or a taxonomy of
system error types. These error types are equivalent to guide-
words in hazard analysis techniques, which can be thought
of as generic causes that are designed to prompt (i.e., guide)
the thinking of analysts to consider various ways in which
system elements might fail.

In addition to the manually-specified causes and compen-
sations, however, a second form of loss scenario specification
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emerges naturally from a fully specified EMV2 model of a
system. Given a specification of how an error can come about
(i.e., an error source), be transformed by various compo-
nents (error transformations), and its final result (error
sink), analysts can gain a fairly clear description of how a
failure might occur. Because this form of scenario specifica-
tion is machine-readable, tooling can also interpret these loss
scenarios for various purposes such as building fault trees or
calculating failure rates. This view is not present in ASAP,
but it is available from other safety analyses in OSATE [2].

4.3.2 A Hierarchical Table. STPA’s third step involves iden-
tifying control actions that could be unsafe. Typically, this
identification is performed as analysts fill in a table where
each row is a control action and there are four columns, one
for each way STPA suggests a control action could be unsafe
[13].

ASAP’s version of this table is shown in Figure 5, note that
there is an X for a connection (row) in the ItemTimingError
(column). This denotes that documentation exists regarding
the cause of a safety constraint violation involving the speci-
fied connection and the timing of messages being sent across
it. A second table, from the same viewpoint can be gener-
ated that displays the same set of communication channels
(i.e., rows) but the columns changed to show only the timing
family of errors in the given component: here the full cause
description (as well as optional compensation description) is
shown. Identifying these scenarios where accidents / losses
can occur is the fourth and final step of STPA.

The information required for these tables is pulled directly
from both the system model (i.e., its error propagations), and
the ASAP-specific fundamentals model, completing the deep
integration of system model and hazard-analysis data. That
is, there are two sources that are queried for each cell in the
table: the “Fundamentals,” which were created for ASAP’s
first viewpoint as well as the error propagations specified
in the AADL model itself. If analyst-provided cause and / or
compensation information is available, it is displayed; if only
an error propagation indicates the presence of a problem, the
text “Undocumented error propagation” is displayed instead.
Note that while the rows in the second, refined Unsafe

Control Action table are the same as in the overview table,
the columns can be errors from any error family, i.e., any
of the abstract guidewords used in the model. While these
column headings could be the guidewords from STPA, they
could also be from AADL’s Error Library (as in Figure 5)
or any other set of guidewords / error collection. That is,
while ASAP’s Unsafe Control Actions viewpoint (i.e., the top-
level table shown in Figure 5 and the refined version of the
table) are usable for STPA’s third and fourth steps, it has two
enhancements.

First, the rows are not restricted to just control actions,
but instead include all connections in the selected system /
component. This change was made because some problems
can be associated with non-control actions (sensor readings
can be incorrect, electrical or hydraulic power can be over-
or under-supplied, etc.) Recognizing and documenting these
potential problems directly—instead of only when they man-
ifest as unsafe control actions—is more concise. Additionally,
distinguishing between a control action and sensor feedback
is difficult to do consistently: it depends on the analyst’s
judgment and the component’s role within the system.
Second, as ASAP is not directly tied to any particular

hazard analysis process, the columns are generic: they are
derived from the top-level error types used in the AADL
model, rather than being unchangeable. An analyst could
certainly choose to use STPA’s set of guidewords, or they
could use error types from the AADL Error Library, a custom
set, or one derived from / aligned with a particular safety
standard required by their company or the domain they are
working in. Several such sets of system errors exist; Proc-
ter and Feiler have described AADL’s Error Library and its
relationship to guidewords used in hazard analyses [16].

4.3.3 A Hierarchical Taxonomy. Building a taxonomy of
guidewords is rarely the primary goal of a research effort,
however; typically guidewords are created as part of develop-
ing a new hazard analysis method. It is a challenge, though,
to balance the goals of being both sufficiently expressive (so
analysts do not miss potential causes) while also not being
overly prescriptive (which can make the analysis unwieldy
and verbose). In ASAP, we addressed this problem by defin-
ing two levels of tables which can be generated for every
component, but this relies on a hierarchical organization of
guidewords / error types.
The two-level approach taken by ASAP relies on a hier-

archical specification of system error, i.e., a generic error
type must be refinable into a set of more specific error types.
AADL’s EMV2 supports just such an approach [20]; using it,
system modelers or safety analysts can define custom error
types, and then refine those into more specific types. Alter-
natively, the EMV2 standard comes with a predefined Error
Library, which contains a straightforward decomposition of
standard system errors [16]. Typically, users combine the
two approaches: they begin with the Error Library’s set of
error types and refine those to align with their domain or sys-
tem. These custom error types are supported by the Unsafe
Control Actions tables, so domain-specific extensions to the
model will be fully incorporated. See Figure 6, which shows
a graphical view of the EMV2 library’s hierarchy of timing-
related errors, extended with custom error types specific to
the PulseOx Forwarding application described in Section 3.2.
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Figure 5: Unsafe Control Actions table generated on the PulseOx Forwarding System.

Item Timing
Error

Early
Delivery

High 
Rate

Late 
SpO2

Babbling
PulseOx

Late
Delivery

Service Timing
Error

Sequence Timing
Error

Timing Related
Error

Early
Service

Delayed
Service

Low
Rate

Rate
Jitter

Figure 6: Hierarchy of timing errors, adapted from [16].

4.4 Tying it together: Focus
A common feature in diagrams used for safety analysis is
a way to highlight a particular component or fundamental
as well as those related to it, i.e., some way to call attention
to system elements related to a specific hazard, accident,
component, error etc. For fundamentals, this task is straight-
forward: we simply highlight the higher-level fundamentals
which contain the focus target (i.e., move up the tree from
Figure 2(a)) as well as all the lower-level fundamentals it con-
tains (i.e., the subtree rooted at the focus target). Handling
a focused Hazard or Constraint requires additional effort,
though: recall that those fundamentals contain references
to the system model, i.e., to error propagations occurring at
specific component ports. Thus we include predecessors and
successors, which are the components that might cause or
be affected by the associated error propagation.
Thus, focusing on an error propagation or system com-

ponent is significantly more complex than focusing on an
Accident or Accident Level. We note that there is a related
challenge in static analysis of software: it is often necessary

to determine which program statements could have affected,
or have been affected by, the program’s state at a specific
point in the source code. This issue is typically addressed
through the use of program slicing, which Silva describes as
“a technique for decomposing programs by analyzing their
data and control flow” [23]. There are a number of program
slicers available, we use one that has been built to run on
AADL models [24].

A backward slice finds system elements (or error propa-
gations) which could potentially affect the focused system
element (or cause the focused error propagation). Corre-
spondingly, a forward slice finds system elements (or error
propagations) which could potentially be affected by the fo-
cused system element (or have been caused by the focused
error propagation).

4.5 Discussion
A safety analyst who wishes to use ASAP today, i.e., given
existing regulatory regimes, will find it most useful to use
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Figure 7: TheConnectedNeighbors view of the Patient, which has been selected as the current focus. Red elements
are reachable from the focused element only via a backwards traversal. Blue elements are reachable only via a
forwards traversal. Purple elements are reachable via both.

the tool while developing the argument for certification au-
thorities. They might begin by specifying metadata about
her system using Viewpoint 1, check the inputs and out-
puts of a high-criticality component using Viewpoint 2, and
then explore undocumented causes and compensations us-
ing AADL’s EMV2 and Viewpoint 3’s tables. In the longer
term, we envision safety processes that support the interac-
tive, query- / view-driven approach explored in this work
directly.

5 RELATEDWORK
There is a large body of work that considers how the creation
of systems and safety documentation should be automated.
We differentiate the approaches into two groups, thosewhose
automation is independent of a system’s hierarchical decom-
position and those who integrate with it more deeply. We
discuss these groups with representative technologies.

5.1 Automated Assurance Cases
AdvoCATE [3] is software developed by NASA that brings
considerable automation to the creation of assurance cases,
i.e., structured arguments that follow a defined, logical for-
mat. They incorporate both arguments and evidence, but are
typically not as deeply integrated into a system’s architec-
ture as the arguments in ASAP. The methods of argument
traversal are, however, similar to ASAP in that AdvoCATE
supports, e.g., hierarchical abstraction and queries / views.
However, these are queries and views of the argument itself
rather than the system under analysis as was our goal.

5.2 Hierarchical Safety Analysis
Hierarchically Performed Hazard Origin and Propagation
Studies (HiP-HOPS) [22] takes into account system hierar-
chy and supports compositionality. Compared to ASAP, it
uses a more traditional (i.e., not system-theoretic) model of
safety and accident causality, and it operates on systems in
MATLAB rather than AADL / OSATE. HiP-HOPS’ primary
goal is the generation of hazard analysis reports, rather than

deeply integrating safety information and argumentation
into a system’s architecture.

6 FUTUREWORK
6.1 Autogenerating Causes and Impacts
As discussed in Section 4.3 a fully-specified EMV2 descrip-
tion of a system encodes a machine-readable error path /
event chain. In addition to the analyst-supplied narrative
now visible in the unsafe control actions table, we are in-
terested in transforming these event chains into something
human readable. These causal event chains can be calculated
using AWAS’s backward slicing functionality [24] (starting
from either a constraint violation or an arbitrary error oc-
currence), though how these chains are best displayed to the
user remains an open question.
AWAS’s forward slice calculates the errors and failures

resulting from an error’s occurrence. These impacts could
also be useful, though work would need to be done to align
them with existing safety notions from, e.g., academic lit-
erature and / or safety standards. Once aligned, the best
format for their presentation to the user would also need to
be determined.

6.2 Alignment with Requirement
Specifications

The goals and activities involved in safety engineering over-
lap to some extent with those involved in specifying a sys-
tem’s requirements. We expect requirement specification
may evolve, somewhat, with the use of ASAP and are in-
terested in exploring ways of supporting and automating
more rigorous requirement specifications. However, we rec-
ognize that specifying functional and safety requirements
simultaneously is not a straightforward task. There is re-
search in this area from both system theoretic safety [21]
and architecture-centric perspectives [14]; we are interested
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in seeing the extent to which ASAP’s viewpoints can be ex-
tended or supplemented with additional requirement detail
or traceability information.

7 CONCLUSION
In this paper we presented the Architecture-Supported Audit
Processor, or ASAP, tool as well as its motivation and under-
lying theory. We applied it to a small example, demonstrated
how it aligns with and improves upon a popular system-
theoretic hazard analysis, and discussed possible avenues for
future improvements.
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