
IT Professional Published by the IEEE Computer Society XXXX-XXXX© 2019 IEEE

Contracts in System Development:
From Multi-Concern Analysis to
Assurance with AADL
Jérôme Hugues and Sam Procter
{jjhugues, sprocter}@sei.cmu.edu

Software Engineering Institute, Carnegie Mellon University

Abstract— Assuring a safety-critical system requires gathering evidence on a range of
concerns (e.g., safety, security, timeliness). Evidence supporting each concern relies on
assumptions made about the system and provides guarantees that certain properties are upheld.
Contract theory provides a general framework for reasoning using these assumptions and
guarantees in a compositional way. We advocate for a broader application of the notion of
contracts to support the development of software-intensive systems. In this article, we discuss
how system development can benefit from a contract-driven approach and discuss examples of
this approach that utilize the Architecture Analysis and Design Language (AADL). Starting from
model-based systems engineering foundations, we define classes of contracts that can be
defined and verified on both models and software artifacts as a foundation for system assurance.

¢ MODERN CRITICAL SYSTEMS are not so much
individual systems as they are coordinated—and often
distributed—collections of individual components that
may have been created at different times, by different
manufacturers, for different purposes. These systems,
whose failure would cost an unacceptable amount of
money, or injure / kill a human, are now being built in
increasingly compositional ways: a prime contractor
may delegate entire subsystems to subcontractors, who
may themselves be composed of many small teams.
Thus, managing the systems engineering process
becomes an exercise in careful delegation, and eventual
integration, of requirements, components, and analysis
or test results. This is made more challenging by the

 Digital Object Identifier XXXXXXXX

range of concerns critical systems must address: not
only must they be functional, but also safe, secure, and
timely.
The increased complexity and sophistication of modern
systems is one of the primary motivating forces behind
the component basis used in modern systems
development. This complexity is typically managed
through decomposition of not only the system itself, but
also the systems engineering process. Once the system
creation process has been allocated to teams, those
teams can develop and refine specialized engineering
artifacts. Delegation relies on a notional contract: a
team must deliver an item. If one assumes that the input

Department: Head
Editor: Name, xxxx@email

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167533

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Department Head

2 IT professional

requirements, interfaces, or specifications are correct,
then there is a guarantee that the team will deliver the
correct parts of the system.
Over the past decade, Model-Based Engineering
(MBE) has evolved to support system decomposition
across multiple concerns: structural, behavioral,
timing, etc. It has been complemented with analysis
capabilities to support validation and verification. MBE
methodologies and processes rely on the precise
specification of assumptions and guarantees made
between different components, teams, levels of the
system hierarchy, and other elements of the systems
engineering process, in other words, Contracts. Yet,
this concept remains mostly implicit. We claim
contracts should be a visible and explicit concept in
order to adequately reason about and compose these
various artifacts.
 In the following, we first review contracts as they
appeared in Software Engineering. Then, we expand
the notion of contracts to Systems Engineering and
Model-Based Systems Engineering (MBSE). Then, we
propose a taxonomy of contracts supported by
toolchains and validated by industrial case studies.

CONTRACTS IN SOFTWARE ENGINEERING
The notion of contracts in software engineering
emerged as a metaphor to highlight the guarantees
software must deliver provided the assumptions it
makes on its input parameters are met. It received
traction first in the Eiffel language by B. Meyer [1] and
has now been incorporated into other programming
languages such as C with ACSL, or Ada with
SPARK2014. A contract can also be associated with a
verification procedure to ensure that a contract actually
holds.
For instance, Beugnard et al. [2] have shown how to
define contracts and verification procedures for
component-based software-engineering. They define
multiple categories of contracts: basic and behavioral
contracts extend the basic notion to include the
observed behavior of components at their interfaces.
Synchronization and quality-of-service contracts
define system level properties that must be met, e.g.,
order of operations or timing specifications. There are
a range of techniques for validating these contracts,
which are used depends on the type of contract and can
range from static techniques such as theorem proving
to dynamic techniques like runtime verification.

An important lesson from contracts in software
engineering is that a contract is made of three parts: a
pair of elements, the expression of a property between
these two elements, and a verification method that
evaluates the contract.
This general idea can be extended to system design:
contracts refer to statements of expectations that are
written in a language most appropriate to facilitate
communication between the involved parties, in
addition to verification activities. Formal or semi-
formal languages should be preferred to enable and
benefit from some level of automation.

SYSTEMS ENGINEERING: ARTIFACTS
Before we discuss contracts in a Systems Engineering
setting, let us first introduce a notional systems
engineering process; see Figure 1. This process is
inspired by the ISO15288 standard [4].

Figure 1 assumes that there are some System
Requirements, which are used to generate a Logical
Architecture that defines the abstract functions
supported by the system, their interfaces, and
interconnections. This architecture is then refined into
a Physical Architecture that provides a concrete design
solution in terms of hardware and software platforms
and components. Elements in this architecture are then
Implemented: created, integrated, verified, and

Figure 1: Notional System Development Process. Boxes
represent activities; solid, blue arrows the typical
progression of the process; and numbered, dashed lines
contracts between activities (See section “Six Types of
Contracts”)

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167533

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

July/August 2019 3

validated against the requirements. Each artifact of the
process is checked for internal consistency and
conformance with the previous stage.
In a model-based approach, architectures would be
captured as models, e.g., SysML, UML, or the
Architecture Analysis and Design Language (AADL).
In the following, we assume AADL is used. AADL is
an SAE standard for expressing the architecture of
software-intensive safety-critical systems. It has been
designed as a solution to the ever-increasing design
complexity of DoD systems [5].
Architectural Models are amenable to automated
examination by various Analysis Tools, which take the
model as input and then produce output describing the
modeled system, i.e., various functional (e.g.,
correctness, timeliness) or non-functional (e.g., safety,
security) properties we can reasonably expect the
constructed system to possess.
Architectural models consist of subcomponents, their
hierarchical decompositions, interconnections between
them, and descriptions of their behavior (both in
nominal conditions and in the presence of errors). A
special class of analyses, Conformance Checks, verify
conformance to standards or practices relevant to the
domain (e.g., airworthiness for an avionics system).
Individual subcomponents can then be further refined,
potentially down to the implementation level, whereas
other analyses may be performed to assess other
properties. Finally, as architectural models essentially
specify a component’s interface, low-level
implementations can be checked against this interface
to ensure conformance.
Hence, multiple verification activities can occur at
different stages of a system development process. In the
following section, we show how they collectively
support system assurance and can be expressed as
contracts.

SIX TYPES OF CONTRACTS
At the SEI, our team has been leading the development
of the AADL standard since its inception. We maintain
its reference implementation, the Open Source
Architecture Tool Environment (OSATE). AADL and
OSATE aimed to address large-scale system
integration issues that arise when building software-
intensive systems, e.g. for the space or avionics
domain. We have shown that these issues can be solved
by properly defining and verifying the properties that
exist across and within hierarchical “layers” of
modeling [6], in other words: contracts between logical

architectures, physical architectures, and their
implementation.
In Figure 1, we propose six classes of contracts that
support activities in system design. In the following,
paragraph numbers refer to these labels. We classify
contracts by the system development artifacts they pair,
i.e., informal requirements, models, analysis tools, and
code. A contract may also pair an artifact with itself.
The classification follows our experience using AADL
and developing OSATE: in addition to defining
contracts, we discuss associated verification methods
and tool support.
(1) Requirement allocation and verification
Requirements are developed and allocated to elements
in the system. Designers can define requirements and
allocate them to AADL model elements using the
Architecture-Led Incremental System Assurance
(ALISA) toolkit [7]. In ALISA, each requirement is
associated with a set of components that it satisfies and
a verification method that defines how it is satisfied
(e.g., by review, executing a tool). So, this type of
contract is a connection from an informal requirement
to a set of elements that satisfies the requirement. This
connection can be an association to some components,
or the evaluation of some other contracts.
Requirements and architectures can both be organized
as a hierarchy. An ALISA verification plan orchestrates
the verification of requirements at any level in these
hierarchies: requirements on the system as a whole,
those associated with physical or logical architectures,
or a component of those architectures.
(2) Analysis An AADL model can be analyzed for
specific properties, e.g., performance, latency, etc.
Generally speaking, there exists an implicit contract
between an analysis and a system model: for an
analysis’s output to be valid, the model must meet
certain assumptions; if those assumptions aren’t met, at
best the analysis won’t run or at worst its output could
be invalid. These contracts are defined on model
entities at a given level of abstraction, e.g., the physical
architecture.
In [8], we have shown how to make these analysis
contracts explicit for AADL and other notations. Note
that these contracts are subtly different from the others
discussed here in that they evaluate whether an analysis
can run and produce meaningful, correct output. Thus,
rather than involving two artifacts of the system
development process, these contracts are between the
tooling used for system development and one process

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167533

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Department Head

4 IT professional

artifact. Such contracts provide the assurance that the
analysis results can be trusted.
(3) “Vertical” Integration This type of contract
enables reasoning about if two models which describe
the same system element at different levels of
abstraction and using the same notation are compatible.
These two models could be part of the system’s
decomposition, e.g., between a logical and physical
architecture, or within a hierarchy of components in
one of these architectures. Such contracts are often part
of the modeling notation itself, e.g., AADL defines
legality and consistency rules on what a valid model
refinement is. They may also rely on interface contracts
that specify the observable behavior of a set of
components that must be implemented. In this case,
model checking or runtime verification can used as
verification techniques [9].
(4) “Horizontal” Integration This type of contract
enables reasoning about if two components, at the same
level of abstraction, can interoperate. Assuming a
component receives valid inputs, one can guarantee it
produces valid outputs. In [10], Liu et al. apply and
verify assume/guarantee contracts on AADL models
through Resolute (static contracts) and AGREE
(behavioral contracts).
We note that (3) and (4) are similar to the contracts
defined by Beugnard et al. in [2].
(5) Conformance Some special types of contracts rely
on or verify that a given (sub)system conforms to an
external standard or documented best practice
prescribed by the requirements, e.g. style guidelines or
other forms of architectural guidance inherited from
domains of knowledge like safety or cyber-security.
These contracts assure a model conforms to specific
patterns and operates on a model itself, similar to
analysis contracts. In [11], we have used Resolute to
show conformance of an AADL model to ARINC653,
other experiments were conducted to other standards
for security or real-time performance.
(6) Interface / Implementation Of particular interest
are vertical integration contracts involving a model and
its software implementation, or more generally two
models expressed using different notations. They are
more complex than contracts defined in (3) as there is
a complexity gap between a model and its realization
that may hinder verification efforts. Demonstrating that
an implementation preserves properties established on
models requires care, consider the substantial effort
involved in creating certified code generators like

QGen [12]. In [13], we demonstrate how to generate
code from an AADL architectural model to
Ada/SPARK2014 for general distributed real-time
systems. Conformance to both architectural guidelines
and behavioral contracts are first assessed in AADL
using Resolute contracts, then expressed again using
SPARK2014 contracts. The static verification of both
model-level and code-level contracts ensures the
implementation conforms to its model. The usage of
different notations requires subsequent activities that
ensure the same properties are verified at both levels.

CONTRACTS IN SYSTEM ASSURANCE
Contracts thus support the system development
process’s progression from abstract to more detailed
specifications and implementations. Importantly, they
also align with the reverse: the consolidation of system
development artifacts as the system moves up the “right
side” of the V-Styled system development lifecycle
(see elements on the right half of Figure 1). Horizontal
(4) and Conformance (5) contracts help expedite unit
testing, i.e., testing a particular component for its
internal behavior against its interface. Then, Horizontal
(4) and Vertical (3 and 6) contracts support the
integration testing across the various subsystems’
layers. Finally, requirement verification (1) supports
validation testing and contributes to system assurance.
Analysis contracts (2) are used across all engineering
steps to ensure the models are correctly analyzed.
At the SEI, we have applied these classes of contracts
using AADL and the OSATE toolset for a variety of
systems, addressing safety, security, and performance
concerns along with an evaluation of the impact on
project execution [6]. Hence, contracts serve as a
common framework to express assumptions and
guarantees of system development elements. This lets
them form the foundations of arguments for many
system properties.

CONCLUSION
The idea of contracts permeates modern systems
development. This article took as its goal both to
illustrate the diversity of concerns in system assurance
and how contracts can provide a common approach to
structure verification and validation activities.
Indeed, simultaneously considering the multiple
concerns that critical systems are expected to address is
prohibitively difficult for systems of any useful scale,

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167533

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

July/August 2019 5

so rigorous statements of assumptions and guarantees
are necessary. We have proposed a mapping of system
development activities to contracts and illustrated this
mapping through multiple examples conducted at the
SEI.

ACKNOWLEDGMENT
Copyright 2022 IEEE.

This material is based upon work funded and
supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software
Engineering Institute, a federally funded research
and development center. DM22-0164

¢ REFERENCES
1. Meyer, Bertrand: Design by Contract, Technical

Report TR-EI-12/CO, Interactive Software
Engineering Inc., 1986

2. Beugnard, Antoine, Jean-Marc Jézéquel, and Noël
Plouzeau. “Contract Aware Components, 10 Years
After.” Electronic Proceedings in Theoretical
Computer Science 37 (October 12, 2010): 1–11.

3. A. Beneveniste, B. Caillaud, D. Nickovic, R.
Passerone, J.-B. Raclet, P. Reinkemeier, A.
Sangiovanni-Vincentelli, W. Damm, T. Henzinger, K.
G. Larsen, “Contracts for Systems Design: Theory,”
Inria Renne Bretagne Atlantique, RR-8759, pp. 1-86,
2015

4. ISO/IEC/IEEE ISO15288 Systems and
Software Engineering — System Life Cycle
Processes. 2008.

5. Boydston, Alex, Peter Feiler, Steve Vestal, and Bruce
Lewis. “Architecture Centric Virtual Integration
Process (ACVIP): A Key Component of the DoD
Digital Engineering Strategy.” In 22nd Annual
Systems and Mission Engineering Conference, 2019.

6. Hansson. Jörgen, Helton. Steve, and Feiler. Peter,
"ROI Analysis of the System Architecture Virtual
Integration Initiative," Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
Pennsylvania, Technical Report CMU/SEI-2018-TR-
002, 2018

7. John D. McGregor, David P. Gluch, and Peter H.
Feiler. 2017. Analysis and Design of Safety-critical,
Cyber-Physical Systems. Ada Lett. 36, 2 (December
2016), 31–38.

8. Brau, Guillaume, Jérôme Hugues, and Nicolas Navet.
“Towards the Systematic Analysis of Non-Functional
Properties in Model-Based Engineering for Real-Time
Embedded Systems.” Science of Computer
Programming 156 (May 2018): 1–20.

9. Benveniste, Albert, Benoit Caillaud, Dejan Nickovic,
Roberto Passerone, Jean-Baptiste Raclet, Philipp

Reinkemeier, Alberto Sangiovanni-Vincentelli,
Werner Damm, Thomas Henzinger, and Kim
Guldstrand Larsen. “Contracts for System Design,”
n.d., 68.

10. Liu J., Backes J.D., Cofer D., Gacek A. (2016) From
Design Contracts to Component Requirements
Verification. In: Rayadurgam S., Tkachuk O. (eds)
NASA Formal Methods. NFM 2016. Lecture Notes in
Computer Science, vol 9690. Springer, Cham.

11. J. Hugues and J. Delange, “Model-Based Design And
Automated Validation Of ARINC653 Architectures
using the AADL,” in Cyber-Physical System Design
from an Architecture Analysis Viewpoint :
Communications of NII Shonan Meetings, S.
Nakajima, J.-P. Talpin, M. Toyoshima, and H. Yu,
Eds. Springer, 2017, pp. pp. 33–52.

12. T. Taft and M. Bordin, "Towards a lean tool
qualification process: Digital avionics systems
conference," 2014 IEEE/AIAA 33rd Digital Avionics
Systems Conference (DASC), 2014, pp. 1-40, doi:
10.1109/DASC.2014.6979679.

13. J. Hugues, “A correct-by-construction AADL runtime
for the Ravenscar profile using SPARK2014,” Journal
of Systems Architecture, (123), 2022,

Jérôme Hugues is Senior Researcher at the Carnegie
Mellon University/Software Engineering Institute in
the Assuring Cyber-Physical Systems team. His
research interests focus on the model-based design of
software-based real-time and embedded systems, their
semantics and their implementation. He is a member
of the SAE AS-2C committee working on the AADL
and a member of IEEE and the IEEE Computer
Society.

Sam Procter is a Senior Researcher at the Carnegie
Mellon University/Software Engineering Institute and
leader of the Model Based Engineering Initiative. His
research interests focus on tool support for system
safety, particularly those with an architecture-centric
approach. He is a member of IEEE and the IEEE
Computer Society’s Technical Council on Software
Engineering.

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167533

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

