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Abstract— Assuring a safety-critical system requires gathering evidence on a range of 
concerns (e.g., safety, security, timeliness). Evidence supporting each concern relies on 
assumptions made about the system and provides guarantees that certain properties are upheld. 
Contract theory provides a general framework for reasoning using these assumptions and 
guarantees in a compositional way. We advocate for a broader application of the notion of 
contracts to support the development of software-intensive systems. In this article, we discuss 
how system development can benefit from a contract-driven approach and discuss examples of 
this approach that utilize the Architecture Analysis and Design Language (AADL). Starting from 
model-based systems engineering foundations, we define classes of contracts that can be 
defined and verified on both models and software artifacts as a foundation for system assurance.  

 

¢ MODERN CRITICAL SYSTEMS are not so much 
individual systems as they are coordinated—and often 
distributed—collections of individual components that 
may have been created at different times, by different 
manufacturers, for different purposes. These systems, 
whose failure would cost an unacceptable amount of 
money, or injure / kill a human, are now being built in 
increasingly compositional ways: a prime contractor 
may delegate entire subsystems to subcontractors, who 
may themselves be composed of many small teams. 
Thus, managing the systems engineering process 
becomes an exercise in careful delegation, and eventual 
integration, of requirements, components, and analysis 
or test results. This is made more challenging by the 
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range of concerns critical systems must address: not 
only must they be functional, but also safe, secure, and 
timely.  
The increased complexity and sophistication of modern 
systems is one of the primary motivating forces behind 
the component basis used in modern systems 
development. This complexity is typically managed 
through decomposition of not only the system itself, but 
also the systems engineering process. Once the system 
creation process has been allocated to teams, those 
teams can develop and refine specialized engineering 
artifacts. Delegation relies on a notional contract: a 
team must deliver an item. If one assumes that the input 
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requirements, interfaces, or specifications are correct, 
then there is a guarantee that the team will deliver the 
correct parts of the system.  
Over the past decade, Model-Based Engineering 
(MBE) has evolved to support system decomposition 
across multiple concerns: structural, behavioral, 
timing, etc. It has been complemented with analysis 
capabilities to support validation and verification. MBE 
methodologies and processes rely on the precise 
specification of assumptions and guarantees made 
between different components, teams, levels of the 
system hierarchy, and other elements of the systems 
engineering process, in other words, Contracts. Yet, 
this concept remains mostly implicit. We claim 
contracts should be a visible and explicit concept in 
order to adequately reason about and compose these 
various artifacts. 
 In the following, we first review contracts as they 
appeared in Software Engineering. Then, we expand 
the notion of contracts to Systems Engineering and 
Model-Based Systems Engineering (MBSE). Then, we 
propose a taxonomy of contracts supported by 
toolchains and validated by industrial case studies. 
 
CONTRACTS IN SOFTWARE ENGINEERING 
The notion of contracts in software engineering 
emerged as a metaphor to highlight the guarantees 
software must deliver provided the assumptions it 
makes on its input parameters are met. It received 
traction first in the Eiffel language by B. Meyer [1] and 
has now been incorporated into other programming 
languages such as C with ACSL, or Ada with 
SPARK2014. A contract can also be associated with a 
verification procedure to ensure that a contract actually 
holds.  
For instance, Beugnard et al. [2] have shown how to 
define contracts and verification procedures for 
component-based software-engineering. They define 
multiple categories of contracts: basic and behavioral 
contracts extend the basic notion to include the 
observed behavior of components at their interfaces. 
Synchronization and quality-of-service contracts 
define system level properties that must be met, e.g., 
order of operations or timing specifications. There are 
a range of techniques for validating these contracts, 
which are used depends on the type of contract and can 
range from static techniques such as theorem proving 
to dynamic techniques like runtime verification.  

An important lesson from contracts in software 
engineering is that a contract is made of three parts: a 
pair of elements, the expression of a property between 
these two elements, and a verification method that 
evaluates the contract. 
This general idea can be extended to system design: 
contracts refer to statements of expectations that are 
written in a language most appropriate to facilitate 
communication between the involved parties, in 
addition to verification activities. Formal or semi-
formal languages should be preferred to enable and 
benefit from some level of automation. 
 
SYSTEMS ENGINEERING: ARTIFACTS 
Before we discuss contracts in a Systems Engineering 
setting, let us first introduce a notional systems 
engineering process; see Figure 1. This process is 
inspired by the ISO15288 standard [4]. 

 
Figure 1 assumes that there are some System 
Requirements, which are used to generate a Logical 
Architecture that defines the abstract functions 
supported by the system, their interfaces, and 
interconnections. This architecture is then refined into 
a Physical Architecture that provides a concrete design 
solution in terms of hardware and software platforms 
and components. Elements in this architecture are then 
Implemented: created, integrated, verified, and 

  

Figure 1: Notional System Development Process. Boxes 
represent activities; solid, blue arrows the typical 
progression of the process; and numbered, dashed lines 
contracts between activities (See section “Six Types of 
Contracts”) 
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validated against the requirements. Each artifact of the 
process is checked for internal consistency and 
conformance with the previous stage. 
In a model-based approach, architectures would be 
captured as models, e.g., SysML, UML, or the 
Architecture Analysis and Design Language (AADL). 
In the following, we assume AADL is used. AADL is 
an SAE standard for expressing the architecture of 
software-intensive safety-critical systems. It has been 
designed as a solution to the ever-increasing design 
complexity of DoD systems [5]. 
Architectural Models are amenable to automated 
examination by various Analysis Tools, which take the 
model as input and then produce output describing the 
modeled system, i.e., various functional (e.g., 
correctness, timeliness) or non-functional (e.g., safety, 
security) properties we can reasonably expect the 
constructed system to possess.  
Architectural models consist of subcomponents, their 
hierarchical decompositions, interconnections between 
them, and descriptions of their behavior (both in 
nominal conditions and in the presence of errors). A 
special class of analyses, Conformance Checks, verify 
conformance to standards or practices relevant to the 
domain (e.g., airworthiness for an avionics system). 
Individual subcomponents can then be further refined, 
potentially down to the implementation level, whereas 
other analyses may be performed to assess other 
properties. Finally, as architectural models essentially 
specify a component’s interface, low-level 
implementations can be checked against this interface 
to ensure conformance.  
Hence, multiple verification activities can occur at 
different stages of a system development process. In the 
following section, we show how they collectively 
support system assurance and can be expressed as 
contracts. 
 
SIX TYPES OF CONTRACTS 
At the SEI, our team has been leading the development 
of the AADL standard since its inception. We maintain 
its reference implementation, the Open Source 
Architecture Tool Environment (OSATE). AADL and 
OSATE aimed to address large-scale system 
integration issues that arise when building software-
intensive systems, e.g. for the space or avionics 
domain. We have shown that these issues can be solved 
by properly defining and verifying the properties that 
exist across and within hierarchical “layers” of 
modeling [6], in other words: contracts between logical 

architectures, physical architectures, and their 
implementation. 
In Figure 1, we propose six classes of contracts that 
support activities in system design. In the following, 
paragraph numbers refer to these labels. We classify 
contracts by the system development artifacts they pair, 
i.e., informal requirements, models, analysis tools, and 
code. A contract may also pair an artifact with itself. 
The classification follows our experience using AADL 
and developing OSATE: in addition to defining 
contracts, we discuss associated verification methods 
and tool support. 
(1) Requirement allocation and verification 
Requirements are developed and allocated to elements 
in the system. Designers can define requirements and 
allocate them to AADL model elements using the 
Architecture-Led Incremental System Assurance 
(ALISA) toolkit [7]. In ALISA, each requirement is 
associated with a set of components that it satisfies and 
a verification method that defines how it is satisfied 
(e.g., by review, executing a tool). So, this type of 
contract is a connection from an informal requirement 
to a set of elements that satisfies the requirement. This 
connection can be an association to some components, 
or the evaluation of some other contracts.  
Requirements and architectures can both be organized 
as a hierarchy. An ALISA verification plan orchestrates 
the verification of requirements at any level in these 
hierarchies: requirements on the system as a whole, 
those associated with physical or logical architectures, 
or a component of those architectures.  
(2) Analysis An AADL model can be analyzed for 
specific properties, e.g., performance, latency, etc. 
Generally speaking, there exists an implicit contract 
between an analysis and a system model: for an 
analysis’s output to be valid, the model must meet 
certain assumptions; if those assumptions aren’t met, at 
best the analysis won’t run or at worst its output could 
be invalid. These contracts are defined on model 
entities at a given level of abstraction, e.g., the physical 
architecture.  
In [8], we have shown how to make these analysis 
contracts explicit for AADL and other notations. Note 
that these contracts are subtly different from the others 
discussed here in that they evaluate whether an analysis 
can run and produce meaningful, correct output. Thus, 
rather than involving two artifacts of the system 
development process, these contracts are between the 
tooling used for system development and one process 
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artifact. Such contracts provide the assurance that the 
analysis results can be trusted. 
(3) “Vertical” Integration This type of contract 
enables reasoning about if two models which describe 
the same system element at different levels of 
abstraction and using the same notation are compatible. 
These two models could be part of the system’s 
decomposition, e.g., between a logical and physical 
architecture, or within a hierarchy of components in 
one of these architectures. Such contracts are often part 
of the modeling notation itself, e.g., AADL defines 
legality and consistency rules on what a valid model 
refinement is. They may also rely on interface contracts 
that specify the observable behavior of a set of 
components that must be implemented. In this case, 
model checking or runtime verification can used as 
verification techniques [9].  
(4) “Horizontal” Integration This type of contract 
enables reasoning about if two components, at the same 
level of abstraction, can interoperate. Assuming a 
component receives valid inputs, one can guarantee it 
produces valid outputs. In [10], Liu et al. apply and 
verify assume/guarantee contracts on AADL models 
through Resolute (static contracts) and AGREE 
(behavioral contracts).  
We note that (3) and (4) are similar to the contracts 
defined by Beugnard et al. in [2].  
(5) Conformance Some special types of contracts rely 
on or verify that a given (sub)system conforms to an 
external standard or documented best practice 
prescribed by the requirements, e.g. style guidelines or 
other forms of architectural guidance inherited from 
domains of knowledge like safety or cyber-security. 
These contracts assure a model conforms to specific 
patterns and operates on a model itself, similar to 
analysis contracts. In [11], we have used Resolute to 
show conformance of an AADL model to ARINC653, 
other experiments were conducted to other standards 
for security or real-time performance.  
(6) Interface / Implementation Of particular interest 
are vertical integration contracts involving a model and 
its software implementation, or more generally two 
models expressed using different notations. They are 
more complex than contracts defined in (3) as there is 
a complexity gap between a model and its realization 
that may hinder verification efforts. Demonstrating that 
an implementation preserves properties established on 
models requires care, consider the substantial effort 
involved in creating certified code generators like 

QGen [12]. In [13], we demonstrate how to generate 
code from an AADL architectural model to 
Ada/SPARK2014 for general distributed real-time 
systems. Conformance to both architectural guidelines 
and behavioral contracts are first assessed in AADL 
using Resolute contracts, then expressed again using 
SPARK2014 contracts. The static verification of both 
model-level and code-level contracts ensures the 
implementation conforms to its model. The usage of 
different notations requires subsequent activities that 
ensure the same properties are verified at both levels.   
 
CONTRACTS IN SYSTEM ASSURANCE 
Contracts thus support the system development 
process’s progression from abstract to more detailed 
specifications and implementations. Importantly, they 
also align with the reverse: the consolidation of system 
development artifacts as the system moves up the “right 
side” of the V-Styled system development lifecycle 
(see elements on the right half of Figure 1). Horizontal 
(4) and Conformance (5) contracts help expedite unit 
testing, i.e., testing a particular component for its 
internal behavior against its interface. Then, Horizontal 
(4) and Vertical (3 and 6) contracts support the 
integration testing across the various subsystems’ 
layers. Finally, requirement verification (1) supports 
validation testing and contributes to system assurance. 
Analysis contracts (2) are used across all engineering 
steps to ensure the models are correctly analyzed.  
At the SEI, we have applied these classes of contracts 
using AADL and the OSATE toolset for a variety of 
systems, addressing safety, security, and performance 
concerns along with an evaluation of the impact on 
project execution [6]. Hence, contracts serve as a 
common framework to express assumptions and 
guarantees of system development elements. This lets 
them form the foundations of arguments for many 
system properties.  
 
CONCLUSION 
The idea of contracts permeates modern systems 
development. This article took as its goal both to 
illustrate the diversity of concerns in system assurance 
and how contracts can provide a common approach to 
structure verification and validation activities.  
Indeed, simultaneously considering the multiple 
concerns that critical systems are expected to address is 
prohibitively difficult for systems of any useful scale, 
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so rigorous statements of assumptions and guarantees 
are necessary. We have proposed a mapping of system 
development activities to contracts and illustrated this 
mapping through multiple examples conducted at the 
SEI. 
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