
Noname manuscript No.
(will be inserted by the editor)

Guided Architecture Trade Space Exploration
Fusing Model Based Engineering & Design by Shopping

Sam Procter · Lutz Wrage

the date of receipt and acceptance should be inserted later

Abstract Advances in model-based system engineer-
ing have greatly increased the predictive power of mod-
els and the analyses that can be run on them. At the
same time, designs have become more modular and
component-based. It can be difficult to manually ex-
plore all possible system designs due to the sheer num-
ber of possible architectures and configurations; trade
space exploration has arisen as a solution to this chal-
lenge.

In this work, we present a new software tool: the
Guided Architecture Trade Space Explorer (GATSE),
which connects an existing model-based engineering lan-
guage (AADL) and modeling environment (OSATE)
to an existing trade space exploration tool (ATSV).
GATSE, AADL, and OSATE are all designed to be eas-
ily extended by users, which enables relatively straight-
forward domain-customizations. ATSV, combined with
these customizations, lets system designers “shop” for
candidate architectures and interactively explore the
architectural trade space according to any quantifiable
quality attribute or system characteristic. We evaluate
GATSE according to an established framework for vari-
able system architectures, and demonstrate its use on
an avionics subsystem.

Keywords Design Space Exploration · Search-Based
System Engineering · Model-Based Engineering ·
Guided Optimization · Architecture Analysis and

This version of the article has been accepted for publication, after
peer review (when applicable) and is subject to Springer Nature’s
AM terms of use, but is not the Version of Record and does
not reflect post-acceptance improvements, or any corrections. The
Version of Record is available online at: http://dx.doi.org/10.
1007/s10270-021-00889-8

Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania, United States E-mail: sproc-
ter@sei.cmu.edu, lwrage@sei.cmu.edu

Design Language (AADL) · Open Source AADL Tool
Environment (OSATE) · ARL Trade Space Visualizer
(ATSV)

1 Introduction

Construction of large-scale software-based systems is a
challenging task, and one that is increasingly expen-
sive. Many modern critical systems, such as aircraft,
are compositions of smaller components that are them-
selves composed of both hardware and software sub-
components. Acceptable behavior of these systems of-
ten means meeting strict correctness and timing re-
quirements, which makes them particularly challenging—
and thus costly—to build [12]. Additionally, while hard-
ware costs once dominated the development of critical
systems, software costs are rising rapidly and are be-
coming the dominant cost driver [11].

The need to control system development costs has
motivated a number of advancements in related fields.
These advancements increase the productivity of de-
signers by, among other things: letting them work at a
higher level of abstraction with, e.g., Model-Based En-
gineering [21]; and finding feasible design candidates
and improvements semi-automatically, with, e.g., De-
sign Space Exploration (also known as Trade Space
Exploration) [17]. These techniques are perhaps most
powerful when combined, because they have comple-
mentary strengths and offsetting weaknesses.

Model-Based System EngineeringModel-based
development methods, in which engineers create a model
of a system or component and then analyze the model
for desired quality attributes, are popular in a range of
engineering disciplines. Model-Based System Engineer-
ing (MBSE) tools, such as the Systems Modeling Lan-

1

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
http://dx.doi.org/10.1007/s10270-021-00889-8
http://dx.doi.org/10.1007/s10270-021-00889-8

guage (SysML, a derivative of UML) [24] and the Ar-
chitecture Analysis and Design Language (AADL) [21],
bring the technique to systems engineering. MBSE has
found success by enabling engineers to (a) analyze mod-
els for performance in a variety of quality attributes
more quickly and cheaply than creating and analyz-
ing full systems, (b) work using graphical tooling that
can clearly show various relationships between system
components, and (c) test quality attribute performance
under potential modifications to rapidly perform “what
if?”-style analysis. Though MBSE is useful and has be-
come integral to the development of modern critical
systems [21], experience has shown that large models—
much like large codebases in programming languages—
can become too large for individual developers to easily
understand and manipulate. Current tooling offers little
help for dealing with the large numbers of component
choices, parameter settings, and other design / config-
uration options present in modern critical systems.

When engineers using MBSE approaches speak of
evaluating design alternatives, they are typically refer-
ring to a manual process that involves creating a model,
analyzing various characteristics about it, and trying to
learn the costs and benefits of the tradeoffs that can
be made. This process does not scale as the number
of component and configuration options increases since
the number of combinations rises too rapidly to be an-
alyzed manually. A key insight motivating this and re-
lated work is that that manual process mimics auto-
mated techniques known as design space exploration.

Design Space ExplorationAny time a large num-
ber of options are available to potentially address some
need, search-based techniques are a natural choice. Search-
based optimization techniques, Harman et al. note, are
not the same as those used to search text; rather they
consider problems “in which optimal or near-optimal
solutions are sought in a search space of candidate so-
lutions, guided by a fitness function that distinguishes
between better and worse solutions” [25]. When applied
to design problems, this technique has been termed De-
sign Space Exploration (DSE), and it presents a natural
complement to MBSE: not only does the involved fit-
ness function rely on a system model, but the technique
can:

– easily cope with very large numbers of options,
– be used at all stages of the system development life-

cycle [25],
– be tuned to sample broadly from the global search

space or narrow portions using increasingly sophis-
ticated sampling algorithms, and

– be further improved by user-interaction (as opposed
to completely automatic optimization). [5]

Without user interaction, search becomes the well-
studied problem of optimization; the “best” system, ac-
cording to a fitness function, can often be determined
with relatively little engineering effort. But knowing,
a priori, the correct relative weights for various qual-
ity attributes is prohibitively difficult [5]. Additionally,
many DSE tools—even those that are designed specif-
ically for system architecture evaluation—use purpose-
built, purely mathematical fitness functions (e.g., [43])
that are not automatically derivable from system mod-
els. These tools are very specialized, which may impact
adoption: what would be more usable would be a DSE
tool that can leverage modeling languages, tooling, and
automated system analyses that are already in wide-
scale, industrial use.

In light of the challenges faced by systems engineers
and the solutions enabled by these two techniques, we
created and evaluated the Guided Architecture Trade
Space Explorer (GATSE). GATSE connects a DSE tool,
Penn State’sARL Trade Space Space Visualizer (ATSV),
and a MBSE tool, the Software Engineering Institute’s
Open Source Architecture Tool Environment (OSATE).
Specifically, this paper describes the following contribu-
tions:

1. The GATSE Software: GATSE enables design
space exploration and is embedded in a well-established,
industrially used MBSE toolkit. It consists of a con-
figuration language and an extensible plugin to OS-
ATE that enables automated execution and analysis
given input from ATSV. Features include:
(a) The ability to develop and integrate user-defined

fitness functions (using Java) into OSATE’s “Sin-
gle Source of Truth” concept of MBSE [22],

(b) Interactive, n-dimensional visualization and guided
searching using ATSV [48], and

(c) User-specified constraints on certain system as-
pects that are automatically checked for satisfi-
ability.

2. The Configuration Language: A language for
describing system and software choicepoints and con-
straints mapped to an existing DSE-capability frame-
work [31].

3. Example:An example demonstrating the use of the
tool on a standardized [45,46] avionics system. The
example is supported by two new system analyses
that illustrate the phases of design space exploration
in GATSE.

This paper is an extended version of a conference
publication that was presented at MODELS 2019 [36].
It differs from the conference paper by including:

– A description of how GATSE can be used for multi-
phase design space exploration including a concrete

2

example of, and conceptual elaboration on, quanti-
fying system safety / security via customized anal-
yses;

– Significantly more detailed process description, use
case, and evaluation sections;

– A clarified motivation, which is derived from an
expanded and more detailed related work section,
against which the evaluation is now performed; and

– A significant number of new figures and clarifica-
tions throughout.

The remainder of this work is organized as follows.
We review related work in Section 3, and use that to
inform the motivation for this work in Section 2. We
discuss relevant background material in Section 4, the
GATSE tooling itself in Section 5, and the configura-
tion language in Section 6. We provide a use case and
discussion in Section 7, and evaluate our work in Sec-
tion 8. We then provide a roadmap for future work in
Section 9 and conclude in Section 10.

2 Motivation

We were motivated to see how state-of-the-art work in
DSE could be exploited within the critical system space.
Recognizing that we could not develop a tool that would
be equally suitable in the broad range of critical system
development efforts, we chose to place a high priority on
customizability. In particular, we recognized the value
of prior works that had: (a) an (ideally standardized /
widely used) MBSE language that can be easily cus-
tomized, (b) MBSE tooling that can be extended to
support those customizations in its analyses of system
models, and (c) DSE tooling that can explore the trade
space of (i.e., graphically display, filter, and adaptively
tailor) models built in the language from (a) using the
analyses from (b).

2.1 Six Objectives

In order to support the decisions that system architects
must make—which grow both in number and complex-
ity as the number of system subcomponents and con-
straints increases—our overall aim was to produce a
tool-supported, model-based DSE process which achieved
six high-level objectives. These objectives were identi-
fied from a review of relevant literature; various pre-
vious approaches in this domain showed the value of
these criteria.

1. Expressive Configuration Language: The lan-
guage used to specify system design choices should
be powerful enough to describe the wide variety of

feasible system changes, instead of being restricted
to, e.g., deployment strategies or performance opti-
mizations. Koziolek’s work [31] identifies what should
be expressible, and how it should be expressed. We
aim to support as many of the parameters neces-
sary to describe what she terms a system’s Degrees
of Freedom as possible.

2. Easily-Used Configuration Language: The con-
figuration language must also be relatively easy to
use by system designers.

3. Tool Support for Modeling: Any process we pro-
pose should have tool support for developing the
system models that will be analyzed.

4. Re-usable Modeling Language: Ideally, models
built for design-space exploration could be re-used
in other MBSE efforts, rather than being created for
the DSE effort and then discarded.

5. Support for Extensible Analyses: Due to the
variety of domain-specific requirements, new types
of analyses should be easy to develop by system
modelers. Unfortunately, these analysesmust be quan-
titative, as there is no way to automatically compare
arbitrary qualitative data.

6. Support for Design-by-Shopping: At a mini-
mum, our approach should be interactive and it-
erative, and ideally support a graphical, design-by-
shopping paradigm of system design. This objective
requires a high level of performance, since long de-
lays will decrease the level of interactivity.

2.2 Two Challenges

In addition to the six criteria mentioned above, there
are two challenges that all approaches in this domain
must reckon with. These are not solvable problems, but
rather impediments that any automated tradespace ex-
ploration tool / process must address. We aimed to use
GATSE to explore approaches to meeting these chal-
lenges, but as they are higher-level, evaluation against
them is necessarily more subjective. While these chal-
lenges impact our criteria, particularly criteria 5 and 6,
addressing the challenges is necessary but not entirely
sufficient for meeting the specified criteria.

Quantification A potential weakness of most DSE
techniques is that they can only examine tradeoffs be-
tween system characteristics that can be quantified.
Quantifying traditionally qualitative, yet extremely im-
portant, characteristics such as a system’s safety or se-
curity thus gains increased importance. The wisdom of
pursuing quantitative approaches has been criticized,
see, e.g., Owens and Leveson on Safety [34] or Verendel
on Security [52]. We do not aim to defend or advo-
cate particular approaches in this work; we merely note

3

the necessity of using quantitative data in DSE more
broadly and our approach specifically.

Performance Clarifying and organizing system design
tradeoffs is challenging because it requires satisfying
two goals: the number of options presented to the an-
alyst should be large, and the information about those
options should be rich. Unless time or computational re-
sources are effectively unlimited, however, these goals
conflict: decreasing the time spent analyzing each sys-
tem design candidate increases the number of options
presented but decreases the depth of information avail-
able to the analyst. Similarly, running more analyses (or
slower, more sophisticated analyses) on system models
will reduce the number of options presented to system
architects.

3 Related Work

The idea of using search tools to explore the design
space of system architectures has been considered be-
fore, and previous work in this area has made a num-
ber of important contributions. We survey some of the
most relevant work in this section, but note that the
works cited in this section, in particular Ross et al.’s
[38], contain useful lists of related work. An overview
of the feature sets of the related work in this section is
given in Table 1. The programs varied considerably in
both goals and implementation strategies, though, so
the values in Table 1 are necessarily somewhat subjec-
tive.

3.1 Tools using Standardized Modeling Notations

Many approaches relied on standardized modeling no-
tations as a basis for the system models. While this
imposes additional constraints compared to a more ab-
stract approach, it firmly grounds the techniques in the
domain targeted by the modeling language and enables
easier model re-use.

3.1.1 AADL – Aleti et al.: ArcheOpterix

The most immediately relevant prior work is ArcheOpterix,
a tool described by Aleti et al.[3]. It is an OSATE plu-
gin that used an evolutionary algorithm to guide sys-
tem architects with deployment decisions, i.e., which
task should be allocated to which processor. The tool-
ing and modeling language used give it a broad applica-
bility to a range of systems, and—by reusing a common
model-based engineering language—did not require the

creation of custom models. While its specification for-
mat is powerful, it focuses primarily on the allocation
of software elements to hardware resources rather than
the more broad set of possible system design choices.

3.1.2 AADL – Adventium Labs: AFFMAD

Adventium Labs has developed the Architecture Frame-
work for Fault Management Assessment and Design
(AFFMAD), a Design Space Explorer that also uses
AADL, OSATE, and ATSV [2]. It takes as input a
spreadsheet listing component options and property val-
ues, which correspond to component specifications in an
AADL file. Component implementations are selected
manually (properties can be randomly selected from
within specified ranges) and once all component types
have an implementation selected, the system can be
instantiated. Alternatively, instances can be automati-
cally enumerated based on component options, though
the authors note that this can be very expensive for
examples that are not small. Analyses are then run
manually (individually or in batches) on the generated
instance, after which results get collected into a file.
Note that since these analyses are OSATE plugins, they
are user-extensible, which makes the tool usable for a
range of settings, including those with domain-specific
requirements. After executing the tool, the process can
then be repeated to collect more results, after which the
results file can be loaded into ATSV and explored visu-
ally. The resulting process is very manual: i.e., it lacks
any feedback from ATSV, which is used exclusively for
visualization; its evolutionary algorithms are not used
to guide the exploration of the design space.

3.1.3 SysML – Kerzhner’s Architecture Exploration
Language

Kerzhner developed a language for representing “Archi-
tecture Exploration Problems” that is based on SysML
[29]. Particularly valuable is the discussion of the search
process; it identifies many of the core tradeoffs of the do-
main. These include the need for visualization and the
tradeoff between performance, analysis accuracy, and
trade space size. This work uses a collection of mathe-
matical statements to describe system performance (in-
stead of, e.g., a more general analysis framework), re-
lies on custom extensions to SysML that do not de-
scribe software or controllers, and is not fully interac-
tive. Kerzhner discusses the need for flexibility in the
formulation of system specifications (see Section 1.4.4
of [29]), and while his custom language is expressive, it
does not map cleanly to a system’s architecture.

4

A
rc
he
O
pt
er
ix

[3
]

A
F
F
M
A
D

[2
]

K
er
zh
ne
r
[2
9]

A
ut
oF

O
C
U
S3

[1
7]

R
A
A
M

[2
8]

R
os
s
et

al
.[3

8]

SQ
uA

T
-V

is
[2
3]

G
ui
de
A
rc
h
[1
9]

H
eg
ed
üs

et
al
.[2

6]

A
bd

ee
n
et

al
.[1

]

1. Configuration Language Expressiveness G# G# # G#
2. Ease of Specifying Configuration # G# # G# # G# G#
3. Tool Support for Modeling G# G# G# G# G#
4. Standard Modeling Language G# G# # # #
5. Extensible Analyses G# # # # G# G# G# G#
6. Interaction / Support for Design-by-Shopping # G# G# G# # # #

Table 1 Overview of related work. signifies full, G# partial, and # poor or no support for a given feature.

3.1.4 SysML – Eder and Voss: AutoFOCUS3

Eder and Voss developed AutoFOCUS3 and use it for
exploring a system’s architectural design space [17]. This
work assumes an analyzable model (e.g., SysML [24])
and then requires the user to specify constraints and ob-
jectives using their tool’s straightforward graphical in-
terface rather than a custom language. Because of the
higher level of abstraction, the range of possible con-
straints and objectives is quite broad. The constraints
are then discharged to a SMT solver (the authors use
Microsoft’s Z3 [33]), and if satisfiable, the various ar-
chitectures can be compared graphically. The visual na-
ture of the comparison makes the tool easier to use than
those that are strictly text-based, however it is targeted
at relatively small numbers of candidate architectures
and may be harder to use with larger trade spaces.

3.1.5 DoDAF – Iacobucci: RAAM

Iacobucci developed the “Rapid Architecture Alterna-
tive Modeling” (RAAM) methodology for exploring a
system’s trade space during early concept design [28].
Iacobucci explains the need for, and places a large em-
phasis on, performance and scalability by, e.g., imple-
menting parallelization and reducing model complexity.
Architectures are described using the US Department
of Defense’s Architecture Framework (DoDAF) [16], a
choice that (compared to the use of a custom architec-
ture description language) made his methodology appli-
cable to a wider range of systems. A custom language
was used to describe system capabilities, however, then
during a generation step the RAAM tooling enumerates
possible system architectures.

3.1.6 Clafer – Ross et al.

Ross et al. present a language and tooling for explor-
ing automotive architectures hierarchically and from

a number of perspectives [38]. By using the modeling
language Clafer [4], they avoid the pitfall of requiring
creation of custom system models. Additionally, their
tool contains many of the same analyses that are used
in OSATE and this work. Their work does include a
comparison to OSATE, which correctly notes the lack
of architecture variability and support for optimization
/ constraints (both of which have been added by this
work). It is unclear how easy it would be for a domain
specialist to add new analyses, or extend existing ones.

3.1.7 PCM – Frank and van Hoorn: SQuAT-Vis

Frank and van Hoorn describe SQuAT-Vis [23], a vi-
sualizer primarily designed for SQuAT [37], which is a
software architecture optimizer primarily designed to
work with architectures described using the Palladio
Component Model (PCM) [6]. The choice to build on
existing work for optimization (which builds on an ex-
tant modeling language) serves the effort well: as there
is already high-quality tool support and analyses for
PCM, the authors were able to spend their effort fo-
cusing on the user experience. They note that existing
approaches to architecture optimization provide limited
visualizations, and comment specifically that ATSV re-
quires “a basic understanding of visualization. . . and [is]
unable to visualize software architectures”—we seek to
address the latter limitation, to some extent, in this
work. Their tool’s capabilities include the selection of
candidate architectures, stopping criteria, and imple-
mentations, as well as a strong focus on visualizations.
SQuAT relies on software agents (known as dBots) that
aim to optimize specific utility functions, which leads
to a negotiation-based approach to optimizing system
designs. PCM is primarily targeted at performance as-
sessment, though examples of tactics seeking to improve
modifiability are also discussed [37].

5

3.2 Tools without Standardized Modeling Notations

These tools do not use a standardized modeling nota-
tion, and as a result have more abstract, and potentially
widely-applicable, approaches.

3.2.1 Esfahani et al.: GuideArch

Esfahani et al. present GuideArch [19], which uses fuzzy
math [55] to enable a representation of the ambigu-
ity endemic to early system designs. They present a
formalization that enables the comparison of architec-
tures with ambiguous values (e.g., the authors mention
that a particular feature is expected to use 10µJ of bat-
tery, but may use as little as 8µJ or as much as 14µJ)
under various weightings and constraints. They imple-
mented their formalization in a web-based tool, and dis-
cussed positive and negative aspects discovered during
an evaluation. Designers need to know the relative im-
portance of system features a priori, however, which
may be challenging. Additionally, the interaction be-
tween constraints and fuzzy numbers may over-restrict
system designs: a constraint is considered violated if it
is possible its value exceeds the constraint’s limits.

3.2.2 Hegedüs et al.

Hegedüs et al. describe a very flexible approach to de-
sign space exploration that treats the problem as a one
akin to exploring a graph of model transformations,
where an initial candidate repeatedly has small mod-
ifications applied to it [26]. Their work describes the
problem space in somewhat similar terms to ours: both
grapple with exploration of design spaces that are too
large to explore completely. Their technique involves
applying classic model-checking-style optimization ap-
proaches including pruning of unpromising branches,
vectors containing steps needed to transform the ini-
tial candidate into the final one, and the encoding of
hints to guide exploration. The configuration can be
somewhat complex, though the authors describe a soft-
ware tool they have created to aid system designers in
specifying their inputs using a flexible query-evaluation
framework.

3.2.3 Abdeen et al.

Abdeen et al. describe a system that is in many ways
similar to that of Hegedüs et al., with the exception that
exploration is guided by the NSGA-II evolutionary al-
gorithm [13]. Like Hegedüs et al., their implementation
uses a generic modeling framework for system models
and a generic query framework for evaluating the fitness

of those models. This approach is quite flexible mak-
ing it more broadly applicable but potentially adding
a learning curve to use by non-experts. Interestingly,
their problem statement differs from most in that they
explicitly state that they do not view DSE as a static
problem, and thus designed their approach to be able
to start from a specific existing configuration, enabling
dynamic reconfiguration.

3.3 Summary

Surveying the state-of-the-art, we realized that there
are two interrelated problems. First, there is a language
design challenge in that it is difficult to describe what
is modifiable about a system design in a way that is
both complete and straightforward. Some of the most
powerful languages for describing system design options
(e.g., Kerzhner [29] or GuideArch [19]) were also the
least abstract and potentially the most challenging to
use by a standard system designer. Those that were
easier to use were typically more focused on a single or
small subset of all possible system changes. The notion
of completeness is captured by the first row of Table 1
and the ease of use in the second row.

The second problem is the engineering challenge of
creating an easy-to-use language and tool that mini-
mizes additional effort necessary to incorporate it into a
system design process. The creation of a custom model
which is to be used exclusively for DSE and then dis-
carded has a higher burden for incorporation into a sys-
tem design process than one which re-uses existing sys-
tem design artifacts. The best solutions we found were
those that had tool support for modeling (see the third
row of Table 1), often by re-using existing modeling lan-
guages (row four). Two existing approaches had strong
support for domain-specific customization via extensi-
ble analyses (see row five) and three had the interactiv-
ity necessary to support design-by-shopping (row six).

4 Background

As discussed (see previous section), there are a number
of tools that support design space exploration for sys-
tem engineering. A significant opportunity for model
and analysis reuse is missed, however, if they require
the creation of (a) bespoke system models in custom
formats, (b) similarly custom-made fitness functions, or
(c) worse still, do not support user-specified analyses at
all. We decided to extend a well-established MBSE lan-
guage (AADL, Section 4.1) and tool (OSATE, Section
4.2) with a configuration language that could support
as many Degrees of Freedom as possible (see Section

6

1system implementation Complete.PBA_spd_ctrl
2 subcomponents
3 spd_snsr: device snsr.spd;
4 throttle: device actuator.spd;
5 spd_ctrl: process ctrl.spd;
6 RT_1GHz: processor Real_Time.one_GHz;
7 std_marine_bus: bus Marine.std;
8 std_mem: memory RAM.std;
9 connections

10 DC1: port spd_snsr.snsr_dat -> spd_ctrl.snsr_dat;
11 DC2: port spd_ctrl.cmd -> throttle.cmd;
12 BAC1: bus access std_marine_bus <-> spd_snsr.BA1;
13 BAC2: bus access std_marine_bus <-> RT_1GHz.BA1;
14 properties
15 Allowed_Processor_Binding => (reference(RT_1GHz)) applies to

spd_ctrl;↪→
16 Allowed_Memory_Binding => (reference(std_mem)) applies to

spd_ctrl;↪→
17 Data_Rate => 5 KBytesps applies to DC1;
18end Complete.PBA_spd_ctrl;

Listing 1: A simple system in AADL, adapted from [21]

4.3). That configuration language and tooling is then
used to let designers “shop” for architectures (Section
4.4) using a well-established DSE tool (ATSV, Section
4.5). For the second phase of system exploration, we
present a computationally expensive novel quantifica-
tion strategy for system safety (Section 4.6).

4.1 Modeling Language: AADL

TheArchitecture Analysis and Design Language (AADL)
is an internationally standardized architecture descrip-
tion language that was originally released in 2004 [21].
As a language targeted at modeling and analysis of
critical systems, its primary constructs are functional
and runtime system elements, their interconnections,
and properties that attach to those elements and con-
nections. Elements and connections include both hard-
ware and software, e.g., processors, processes, buses,
memory, threads, subprograms, etc. [21] AADL spec-
ifies a number of standardized property sets, and sys-
tem designers can also create custom properties from
pre-existing or custom property types.

A simple AADL system is shown in Listing 1. It
gives a taste for the AADL language (in its textual syn-
tax), and shows some of the key language elements. The
first section, lines 3-8, lists subcomponents of the sys-
tem, both functional (e.g., process) and runtime (e.g.,
device) elements made up of hardware (e.g., bus, and
memory) and software (e.g., subprogram, not shown in Listing
1). Lines 10-13 show two types of connections: port con-
nections, which are “pathways for. . . directional trans-
fers of [data and events] between components”, and bus
access connections, which are the physical connections
between components [21]. The final section, lines 15-17,
shows sample properties. AADL properties are typically

used to guide system-level analyses that calculate, e.g.,
latencies, power consumption, weight totals, etc.

AADL is a declarative language, though most sys-
tem analyses operate on what is known as the instance
model. A declarative AADL model consists of compo-
nent type declarations that define the interface of a
component (i.e., its ports and other externally visible
features) and component implementation declarations
that define the internal structure of a component, namely
its subcomponents and their interconnections. Compo-
nent types and implementations are collectively referred
to as classifiers. AADL supports extension of classifiers
to add elements and refine the definitions of elements
inherited from an extended classifier. The process of
instantiation converts a declarative AADL model into
its instance representation. Instantiating a system will,
among other tasks, allocate the system’s software ele-
ments to the hardware elements they will run on (e.g.,
models of processes will be paired with the specific mod-
els of processors they will run on in the final system) as
well as fully resolve all property specifications.

The core language, which describes only the archi-
tecture of a system, has been extended by a number
of language annexes, including those that enable the
modeling of behavioral aspects [40], error propagations
and transformations [42], and code generation targeting
critical architectures [41].

4.2 Modeling Toolset: OSATE

There are a number of toolsets, both academic and com-
mercial, that are designed to work with AADL (e.g.,
AADL Inspector1, CAMET2). The Software Engineer-
ing Institute maintains the Open Source Architecture
Tool Environment3 (OSATE) which is a customized
distribution of the Eclipse IDE. It provides editing sup-
port and a range of built-in analyses which rely on the
standardized AADL properties. The tool environment
is open source and new analyses have been developed
by both the OSATE developers and external research
groups.

4.3 Degrees of Freedom in Software Architecture

When creating a design space exploration tool, it can
be difficult to determine what should be changeable
within a system. While some sources of variability—
component choices, variable configuration settings—are

1 http://www.ellidiss.fr/public/wiki/inspector
2 https://www.adventiumlabs.com/our-work/products-

services/model-based-engineering-mbe-tools
3 https://osate.org

7

obviously necessary, it is not immediately clear what
should be changeable and what should be fixed when
exploring a system’s design space. Koziolek’s work [31]
contains two useful concepts for evaluating the expres-
siveness of a configuration language: an enumeration of
several Degrees of Freedom (DoF, i.e., valid atomic sys-
tem changes) and the six parameters required to com-
pletely describe those changes. Those parameters are:

1. Changeable Elements: Defined in part4 as “The
set of changeable metamodel elements” [31], these
are the components, connections, etc. that can be
modified.

2. Primary Changeable Element: Defined in part
as “The primary changeable metamodel element”
[31], this is the representative element of a set of
model changes.

3. Selection Rules: Defined in part as “Rules to se-
lect the model elements to change” [31], these rules
dictate what elements change along with a given
primary changeable element.

4. Value Rules: Defined as “Rules to define the values
that the selected model elements can take” [31], this
can be thought of as type definitions for changeable
elements.

5. Interaction Constraints: Defined in part as “A
set of. . . constraints that may be violated by the se-
lection and value rules because of interactions with
other changes” [31], these constraints dictate require-
ments one changeable element places on the values
of other changeable elements.

6. Added Elements:Defined in part as “A list of. . . elements
this change type may add instances of” [31], these el-
ements can be added (or, in reverse, removed) from
a model rather than just being modifications of ex-
isting elements.

Collectively, these six pieces of information describe
the Degrees of Freedom, which represent possible changes
in a system architecture model, e.g., component se-
lection, configuration parameter setting, allocation of
software to hardware, etc. Koziolek focused on changes
that affect performance, cost, and reliability, but notes
that other quality attributes—such as security—could
require other degrees of freedom.

4 Though we attempt to adhere to the intuitive meaning be-
hind Koziolek’s definitions, we do not reproduce them in their
entirety as they rely heavily on her specific approach and formal-
ization. We elide things like variable or function names; refer to
Table 6.3 of her dissertation for the full definitions [31].

4.4 Design By Shopping

Balling argues [5] that optimization techniques which
require users to know and be able to quantify all of
their preferences before seeing any candidate options
(what Hwang and Masud term “a priori articulation of
preference” [27]) are prohibitively difficult to use. The
solution he suggests, which he terms Design by Shop-
ping, is to present a number of (ideally pareto-optimal)
candidates to users, who can then evaluate the options
and explore the tradeoffs between them using their ex-
isting engineering expertise. Balling also suggests the
need for “interactive shopping tools” that are tailored
to particular domains [5].

4.5 Design Space Exploration: ATSV

Penn State developed the ARL Trade Space Visual-
izer (ATSV) as an “engineering decision making tool”
to support Design by Shopping [50,49]. It is a graphi-
cal tool, designed to be used by system engineers, that
helps users visualize the trade space of their systems.
It does this by displaying quantifiable system charac-
teristics in various graphical formats: glyph plots, his-
tograms, parallel coordinates, scatter matrices, etc. [49]
As systems can have an arbitrary number of dimen-
sions, only a subset will be viewable in a particular
representation: the tool lets the user select which sys-
tem aspects (i.e., which inputs and measured values)
are displayed.

ATSV can read static data from various file types
(e.g., tab or comma-delimited formats) or connect to
external models of a system for guided analysis. These
models can be in any format or tool environment, as
long as the model can be built and analyzed headlessly.
Exploration can be guided or focused on arbitrary re-
gions of the design space by specifying preference func-
tions, or “attractor” points, within the design space [48].
Then, as ATSV repeatedly queries the system model,
it discerns which inputs affect which outputs using evo-
lutionary algorithms. Other expected functionality is
present as well, such as determining pareto optimality
(i.e., designs where no preferred variable can be im-
proved without worsening another preferred variable)
[49] and hiding candidates that are infeasible according
to user-specified constraints [44].

4.6 Subjective Assessment of Component Perfection

As mentioned previously (Section 2.2), one challenge
with Design Space Exploration is the need to use exclu-
sively quantitative analyses of a system. One possible

8

.00001

.0001

.001

.01

.1

 1 10 100 1000

P
ro

ba
bi

lit
y

of
 F

ai
lu

re
 o

n
D

em
an

d

Number of Successful Tests

x=.05, α=.1
x=.05, α=.5
x=.05, α=.9

Fig. 1 Given a component with an estimated probability of fail-
ure on demand (pfd) of .0005, the effects of various estimates
that the system is “perfect” (α) as the number of successful tests
increase.

quantification strategy for reliability, which is closely
related to safety, comes from the work of Bishop et al.
It assumes the existence of a subjective assessor who is
willing to provide an estimate of the likelihood that a
component is “perfect,” i.e., it will execute correctly for
every possible demand5 made of it [9]. This willingness
to admit the possibility of component perfection has
a significant, beneficial impact on a component’s prob-
ability of failure on demand (pfd), i.e., the likelihood
that a component will fail to produce a valid output
when given a valid input. A component’s estimated pfd
can be refined further through testing; depending on
the costs associated with those tests, an estimate that
a component is perfect may be the difference between
a feasible and infeasible testing burden.

Consider a hypothetical component with an esti-
mated pfd of .0005. A similarly hypothetical assessor
might estimate that the component is 50% likely to be
perfect (α = .5), and be only 90% certain that the
estimated pfd is correct (i.e., have 10% doubt in the
estimate; x = .1). Using Bishop et al.’s formula 12 [9],
a conservative estimate of the component’s pfd would
be .1 before any tests have been performed; this is un-
acceptably high for many applications. The pfd drops
rapidly, though, and after 137 successful tests, the con-
servative pfd is lower than the original estimate. More
testing can be performed to continue to refine the es-
timate; Figures 1 and 2 show worst-case pfds of the
component under different αs and xs.

5 Notably, the definition of “demand” is somewhat flexible:
Bertolino and Strigini define it as a sequence of inputs and sug-
gest in the avionics domain an entire mission could be considered
one demand [8].

.00001

.0001

.001

.01

.1

 1 10 100 1000

P
ro

ba
bi

lit
y

of
 F

ai
lu

re
 o

n
D

em
an

d

Number of Successful Tests

x=.1, α=.5
x=.05, α=.5
x=.01, α=.5

Fig. 2 Given a component with an estimated probability of fail-
ure on demand (pfd) of .0005, the effects of various levels of doubt
(x) about the claimed pfd as the number of successful tests in-
crease.

Calculating these conservative pfds requires func-
tion optimization which may be too computationally
expensive to perform on large numbers of system com-
ponents. However, once the initial search space has been
narrowed, an expensive analysis based on Bishop et
al.’s work may prove quite valuable in differentiating
between otherwise similar components. Our goal in us-
ing these methods is not to defend their validity for a
specific domain or component, but rather to show how
expensive calculations can be used as part of a multi-
phased exploration of a system’s design space.

5 The GATSE Process

GATSE’s tooling consists of a collection of modifica-
tions to OSATE that support our configuration lan-
guage, enable headless system instantiation and analy-
sis, and install a small adapter that facilitates commu-
nication between OSATE and ATSV. It is used, along
with OSATE and ATSV, to interactively explore the de-
sign space of a system. We provide an overview of how
the tooling is used in the subsection below. We then de-
scribe how GATSE is used in two activities: trade space
specification (Section 5.2) and trade space exploration
(Section 5.3). We then discuss potential next steps in
the system design process in Section 5.4.

5.1 Usage

The GATSE tooling is used through the OSATE and
ATSV interfaces; there is no standalone GATSE exe-

9

[Batch size
not yet

Reached]

[Satisfactory architecture candidate identified]

[Batch size reached]

Narrow & Deepen:
[Restrict design

space and
/ or add new

analyses]

1. User Specifies...

1.(c) Configuration
constraints

1.(d) Output
constraints

1.(e) Analyses to
run

1.(a) What elements
are changeable

1.(b) Possible values for
changeable elements

1.(a) What elements
are changeable

1.(b) Possible values for
changeable elements

1.(c) Configuration
constraints

1.(d) Output
constraints

1.(e) Analyses to
run

1.(a) What elements
are changeable

1.(b) Possible values for
changeable elements

1. User Specifies...

1.(c) Configuration
constraints

1.(d) Output
constraints

1.(e) Analyses to
run

1.(a) What elements
are changeable

1.(b) Possible values for
changeable elements

0. User Begins

0.(a) Create or load
system "Skeleton"

0.(b) Create or identify
model analyses

0.(c) Install OSATE,
ATSV, and GATSE

0.(a) Create or load
system "Skeleton"

0.(b) Create or identify
model analyses

0.(c) Install OSATE,
ATSV, and GATSE

0. User Begins

0.(a) Create or load
system "Skeleton"

0.(b) Create or identify
model analyses

0.(c) Install OSATE,
ATSV, and GATSE

Trade Space Specification

Trade Space
Exploration

2. User triggers GATSE
initialization

3.(a) OSATE verifies
constraints

3.(b) OSATE Creates
OSATE-ATSV connector

2. User triggers GATSE
initialization

3.(a) OSATE verifies
constraints

3.(b) OSATE Creates
OSATE-ATSV connector

5.(d) ATSV Updates

5.(d).i Adds new
values to graph

5.(d).ii Selects
new input values

5.(d).i Adds new
values to graph

5.(d).ii Selects
new input values

5.(d) ATSV Updates

5.(d).i Adds new
values to graph

5.(d).ii Selects
new input values

4. User Triggers
Exploration

5.(a) ATSV Selects
initial inputs

5.(b) OSATE
Instantiates model

5.(c) OSATE Runs
analyses

User Selects Candidate
Architecture

Fig. 3 An activity diagram showing the steps of using GATSE

cutable. Rather, an open-source6 plugin is installed into
OSATE which contains the necessary modifications as
well as an installer for the connector and parser for
ATSV. Use of the tool can be divided into two phases,
Trade Space Specification (Steps 0-3) and Trade Space
Exploration (Steps 4-5), with the user deciding to pos-
sibly repeat the process in Step 6. A typical use-case,
as shown in Figure 3, is:

6 https://github.com/osate/osate2-gtse

0. User Begins with:
(a) System model “skeleton” with changeable ele-

ments,
(b) One or more (potentially custom) model analy-

ses,
(c) OSATE, ATSV, and the GATSE plugin installed.

1. User Specifies (using the configuration language):
(a) What elements are changeable,
(b) The values the changed elements can take,
(c) Configuration constraints (on element selection),
(d) Output constraints (on model validity), and
(e) Which analyses to run.

2. User Triggers GATSE initialization.
3. OSATE Initializes GATSE tooling:

(a) Verifies element constraints are satisfiable, and
(b) Creates OSATE-ATSV connection artifacts.

4. User Initializes ATSV:
(a) Configures search parameters
(b) Triggers design-space exploration

5. GATSE Explores the system’s design space:
(a) ATSV Selects initial inputs from constrained

input space.
(b) OSATE Instantiates model described by skele-

ton + input values selected by ATSV,
(c) OSATE Runs specified analyses.
(d) ATSV Updates:

i. Adds new values to graphical display, and
ii. Selects new input values.

(e) ATSV Repeats (returns to 5b) until batch size
is reached.

6. User Repeats (restricts design space and adds new
analyses, i.e., returns to 1) until a satisfactory ar-
chitecture is identified.

5.2 Trade Space Specification

The use of the GATSE tooling to specify a system’s
trade space mostly revolves around writing the sys-
tem model’s configuration: the file that indicates which
model elements are changeable, what their possible val-
ues are, the analyses to run, which output variables to
measure, and constraints on those outputs. The lan-
guage that this file is written in is the topic of Section
6, here we discuss its use by the tooling.

5.2.1 Writing the Configuration

One of the features of the GATSE plugin to OSATE
is a configuration editor that supports the language de-
scribed in Section 6. In addition to the standard development-
environment functionality, e.g., syntax highlighting, au-
tocompletion, etc., we also have implemented static val-
idation for the language; a screenshot of the validator is

10

Fig. 4 The configuration language validator displaying an error
in the file

shown in Figure 4. This validation checks for common
issues like attempting to bind a property that does not
apply to a given component type, duplicate configura-
tion rules, cycles in the specification or potential clas-
sifier hierarchy, etc.

5.2.2 Processing the Configuration

Once the prerequisites (i.e., the three parts of Step 0
in Section 5.1) have been met and the configuration file
written (Step 1) the user can trigger the GATSE initial-
ization (Step 2). Then, the GATSE plugin for OSATE
performs the substeps of Step 3.

GATSE first verifies that the configuration is not
over-constrained, i.e., the user’s configuration constraints
do not eliminate all possible system designs. Consider,
for example, a system where both the processor and
memory place requirements on the system’s mother-
board: these requirements may conflict and no satisfac-
tory boards are available. Other over-constraining spec-
ifications may be far more complex. The verification
is done by first translating the constraints into equal-
ity logic, and deriving additional constraints from those
variables with finite types (i.e., all variables’ types are
“baked in” as additional constraints). We note that our
inability to check the satisfiability of the portions of a
configuration which uses variables with infinite types
means that we lose soundness. However, the impact
of this loss is not large, only that it may be possi-
ble to overconstrain a system (i.e., create a specifica-
tion which does not allow any system candidates) when
using unbounded integer- or real-typed properties and
constraints.

We then remove constants from the equality logic
using Kroening and Strichman’s algorithm [32] and trans-
form the equality logic to propositional logic using Zan-
tema and Groote’s equality substitution algorithm7 [54].
The propositional logic is then transformed into con-

7 To our knowledge, ours is the first open-source implementa-
tion of their algorithm.

junctive normal form using Tseitin’s transformation [51]
and satisfiability is checked using Sat4J [7].

If the configuration is satisfiable, i.e., one or more
system architectures can be generated that meet all of
the constraints, GATSE writes the necessary configu-
ration and auxiliary files to support ATSV-OSATE in-
tegration. If the configuration is over-constrained, the
GATSE initialization process is halted and the user
is informed that they must remove one or more con-
straints.

5.2.3 Integrating new Analyses

In addition to building the system model, designers may
want to develop custom, domain-specific analyses. Do-
ing so is straightforward: the GATSE plugin defines an
extension point that lets users add new analyses using
the standard Eclipse plugin infrastructure. The inter-
face specifies a single required method, which takes as
input an instance model of the system and returns as
output a key-value store that contains the results of
analyzing the model. These plugins need not be sophis-
ticated and may only need a few lines of Java code.
However, since analyses have full access to the system
model, sophisticated analyses can be implemented as
well.

5.3 Trade Space Exploration

Once the model has been built and the configuration
specification has been processed, the actual design space
exploration can begin, and it is here that all elements
of GATSE work together. ATSV and OSATE will work
together to rapidly (i.e., in less than a second) specify
a concrete system candidate, instantiate it, run the se-
lected battery of system analyses, and plot the results
of those analyses in ATSV’s graphical interface.

The user first optionally configures ATSV’s search
strategy, e.g., random search, maximizing / minimizing
certain system attributes or analysis results, etc. Con-
flicts between desired attributes, such as high perfor-
mance with low cost, will potentially result in multiple
pareto-optimal candidates that will need to be explored
further. Once satisfied with the search parameters, the
user is ready to trigger the search (Step 4).

Next, it is time to begin instantiating system can-
didates. Recall from Section 4.1 that one purpose of
instantiating AADL is determine which software ele-
ments (e.g., processes, port connections) will be allo-
cated to which hardware elements (respectively: pro-
cessors, buses) in the final system. In addition to the
configuration-processing functionality described in Sec-
tion 5.2.2, the GATSE plugin for OSATE also modifies

11

OSATE’s instantiation logic. The modified version of
the instantiator replaces the model’s original elements
as they are encountered with the versions selected by
ATSV, fixing any connections that relied on the original
elements. Once the model has been built, when prop-
erty values would normally be determined by a second
phase of instantiation, any properties customized by the
configuration use their ATSV-specified value instead of
the values specified in the skeleton model.

Once the model is fully instantiated, the user-specified
analyses are executed. The results are returned to ATSV,
which updates both the graphical display and its inter-
nal, evolutionary model with the new values. Unless this
run was the end of a batch (the size of which is specified
by the user), ATSV selects new values and continues
execution, i.e., the process returns to Step 5.(b).

5.4 Next Steps

Once the design space has been explored, the user can
either refine their search or select a candidate architec-
ture.

5.4.1 Narrowing and Deepening the Search

If one of the resulting candidate architectures is satis-
factory, the use of GATSE is complete. If multiple fea-
sible candidate architectures remain, however, the con-
figuration can be modified to continue the search, i.e.,
the process returns to step 1. The search space can be
narrowed, by eliminating infeasible elements or element
values, and / or deepened, by adding additional—likely
more computationally expensive—analyses. These steps
are taken by the system designer in response to the
tool’s outputs; it is not an automated step. Rather, this
is equivalent to a shopper evaluating a number of candi-
date items and then refining their search to learn more
information about a subset of the candidates. While the
particular steps taken by the designer will typically be
specific to the system itself, they will almost certainly
involve reducing the search space (by specifying fewer
options in Step 1(a)-1(b)), applying additional output
constraints (Step 1(d)), and selecting additional analy-
ses to run (Step 1(e)).

Note that this step alleviates, to some extent, the
second challenge discussed in Section 2.2: the need for
rapid performance. Recall that there is, in general, a
tradeoff between the depth of analyses performed and
the number of candidates that can be analyzed. Rather
than focus on the performance of our particular tool
implementation, GATSE enables a more general ap-
proach: an iterative, multi-phase process of tradespace
exploration. Initial exploration can be conducted using

a minimal set of system analyses that can be executed
relatively quickly. Then, based on the results of this ini-
tial exploration, the tradespace can be winnowed down.
The resulting subset can be explored using more (and
more computationally expensive) analyses that provide
richer information on individual system models.

5.4.2 Selecting a Candidate Architecture

Once the number of candidate architectures has been
reduced to a manageable number, traditional MBSE
processes (e.g., model review by a human system ar-
chitect, negotiation with stakeholders, etc.) will likely
be necessary for selecting a final design. These pro-
cesses may involve metrics for which no automated or
quantitative analysis exists, e.g., subjective measures
of safety, security, feasibility of construction, familiar-
ity with certain components or their manufacturers,
etc. If all relevant system metrics can be quantified,
though, then determining the final system configura-
tion should be a straightforward choice between any
of the pareto-optimal candidate architectures identified
by ATSV. This choice can be made by any appropriate
criterion. With the system components and their config-
urations completely specified by GATSE, construction
of the system should be straightforward.

6 The Choicepoint Language

In this section we describe the configuration language
used in step one of the process defined in Section 5.1
and Figure 3. The language, is implemented8 in XText9,
but we provide a grammar in EBNF in Listing 2.

6.1 Walkthrough

An example configuration file, corresponding to the
system from Listing 1 and containing only one con-
figuration specification, is shown in Listing 3. Lines
3 and 4 are the specification’s parameters (see Sec-
tion 6.1.1), lines 5-7 are the extends clause (see Sec-
tion 6.1.2), and lines 8-10 are constraints (see Section
6.1.3). Note that a full configuration file would likely
contain many individual specifications (i.e., groups of
parameter, extends, and constraints sections) as well
as multiple analyses and more outputs.

8 See the org.osate.gtse.config.* packages in
https://github.com/osate/osate2-gtse

9 https://www.eclipse.org/Xtext/

12

1Configuration=Root,Configurations,Analyses,Outputs;
2Root='root',ID;
3Configurations=Config,{Config};
4Config='configuration',ID,[Params],

['extends',ID,[With]],[Assignments],[Constraints];↪→

5With='with',Combination,{'&',Combination};
6Combination=ID,[Args];
7Params='(',[ConfParam,{',',ConfParam}],')';
8ConfParam=ID,':',(FClassifierType|FPropertyType),

[Candidates];↪→

9FClassifierType=?ComponentCategory?,CNAME;
10FPropertyType=PNAME;
11Candidates='from','(',[Candidate,{',',Candidate}],')';
12Candidate=CNAME|?PropertyExpr?;
13Assignments='{',[Assig,{',',Assig]},'}';
14Assig=LVal,'=>',ConfVal;
15LVal=(('*',|,ElemRef),['#',PNAME])|'#',PNAME;
16ConfVal=CNAME,[Args],[With],[Assigs]|?PropertyExpr?|

Assigs;↪→

17Args='(',[Arg,{',',Arg}],')';
18Arg=ID,'=>',ConfVal;
19ElemRef=ID,{'.',ID};
20Constraints='constraints','{',[Constr,{',',Constr]},'}';
21Constr=Cond,[Relation,Cond];
22Cond=CondExpr,Relation,CondExpr;
23CondExpr=ConfElem|CondVal|SetVal;
24SetVal='{',CondVal,{',',CondVal},'}';
25CondVal='!',CNAME|?PropertyExpr?;
26ConfElem=(ElemRef,['#',PNAME])|'#',PNAME;
27Analyses='analyses','{',String,{String},'}';
28Outputs='outputs','{',Variable,{',',Variable},'}';
29Variable=ID,':',[Type],[Limit];
30Type='int'|'float'|'string';
31Limit=Relation,?IntegerTerm?|?RealTerm?|?StringTerm?;
32Relation='>'|'>='|'=='|'!='|'<'|'<='|'forbids'

|'requires'|'in';↪→

33(* AADL classifier or configuration name *)
34CNAME=ID {'::' ID} ['.' ID];
35(* AADL property name *)
36PNAME=ID ['::' ID]

Listing 2: The configuration language grammar in
EBNF. AADL constructs are denoted with ?s.

6.1.1 Parameters

A configuration’s parameter specification lists both what
is changeable in an element and what the options for
those changes are. It consists of a name for the set of
changes, the type of the changes (an AADL classifier or
property), and then the set of allowed values. For ex-
ample, line 3 of Listing 3 specifies that there are three
options for the speed sensor in the hypothetical system
from Listing 1.

Line 4 shows the second parameter for the configu-
ration, in this case the data rate that the sensor can be
configured to transmit at. Note that while we explicitly
enumerate the options in this example, if the range of
allowable data rates was contiguous, we could have sim-

1root Complete
2configuration Complete (
3 spd_snsr_opts: device Sample::snsr from

(Sample::snsr.spd_cheap, Sample::snsr.spd_mid,
Sample::snsr.spd_quality),

↪→
↪→

4 data_rate_opts: Communication_Properties::Data_Rate from (1,
2, 4, 8, 16, 32, 64, 128, 256, 512, 1024)↪→

5) extends Sample::Complete.PBA_spd_ctrl {
6 spd_snsr => spd_snsr_opts,
7 DC1#Communication_Properties::Data_Rate => data_rate_opts
8} constraints {
9 spd_snsr == !Sample::snsr.spd_cheap requires

DC1#Communication_Properties::Data_Rate in {1, 2, 4, 8},↪→
10 spd_snsr == !Sample::snsr.spd_mid forbids

DC1#Communication_Properties::Data_Rate in {256, 512,
1024}

↪→
↪→

11}
12analyses {
13 'org.osate.atsv.integration.property-totals'
14}
15outputs {
16 ValidModel : float,
17 InvalidReason : string,
18 Price : float < 500.0,
19 Weight : float < 3000.0
20}

Listing 3: A configuration for the system from Figure 1

ply specified the maximum and minimum values (i.e.,
(1 .. 1024)) to allow selection of any in-range number.

6.1.2 Extends

A configuration’s extends clause specifies which ele-
ments of the skeleton model the configuration applies
to (line 5 in Listing 3) and then maps the parameters
specified previously to the subcomponents and proper-
ties in the element itself (lines 6-7). Elements are refer-
enced using their qualified10 path through the instance
model, and properties are referenced using the # charac-
ter. In some cases, it may be necessary to vary both the
type and implementation of a component, this can be
done using a with statement (not shown in Listing 3).
with statements are a more general purpose construct,
though, that lets designers combine multiple configura-
tion specifications for the same element.

6.1.3 Constraints

The third section of a configuration specification spec-
ifies any constraints on the selection of values. These
may be necessary if certain components cannot func-
tion together (due to, e.g., software incompatibilities,
physical requirements, etc.) or because some options
cannot support a subset of configuration values. This
is the case in Listing 3: the lower quality and less ex-
pensive sensors cannot support higher data rates (lines
9-10). Six types of constraints are supported; Table 2
gives their syntax and informal semantics.
10 Qualified relative to the extended element, see line 5 of List-
ing 3

13

Syntax Semantics

A==B Elements A and B must be
the same

A!=B Elements A and B must not
be the same

A==X requires B == Y If element A is X, B must be
Y

A==X forbids B == Y If element A is X, B must not
be Y

A==X requires B in {Y, Z} If element A is X, B must be
Y or Z

A==X forbids B in {Y, Z} If element A is X, B must not
be Y or Z

Table 2 Constraint syntax and semantics.

7 Use Case: A Wheel Brake System

We used a model of a fictional aircraft wheel brake sys-
tem (WBS) as a case study. Our objectives are twofold.
First, we use the case study to illustrate the GATSE
tool and process. Second, the study allows us to eval-
uate the expressiveness and ease of use of our configu-
ration language, the difficulty of adding custom analy-
ses, and evaluate the tool’s performance. This system
is fairly well-studied in the critical-system and model-
based engineering literature: it was originally created as
part of the ARP4754 [45] and ARP4761 [46] standards,
and has been described and (re)modeled as part of a
number of efforts since then [10,47].

TheWBS is relatively straightforward but still demon-
strates many of the complexities in modern system de-
sign. A number of these complexities are particularly
relevant for our work on this effort, including: (a) multi-
ple candidate architectures, (b) redundant components,
and (c) shared interconnections relied on by heteroge-
neous components. We also selected the WBS because
of a more general trend in avionics systems towards
modularity and a component basis. The introduction
of component-based architectures into aircraft has led
to important benefits, and has expanded into software
development with technologies like the Integrated Mod-
ular Avionics architecture [53]. As more hardware com-
ponents and software modules become available, it be-
comes increasingly challenging to understand which com-
bination of them is best, as there are a large set of
desired—and to some extent competing—quality at-
tributes such as cost, power consumption, latency /
performance, weight, and efficacy.

The system model, GATSE configuration files, gen-
erated results, and both custom analyses described in
this section are open-source and publicly available11.

11 https://github.com/osate/osate2-gtse/

7.1 System Description

A simplified view of the WBS architecture is shown us-
ing AADL’s graphical notation in Figure 5; note that
some of the hardware elements relied upon by the sys-
tem are not shown in this view. The elements that make
up this portion of the architecture, reading roughly left-
to-right, are [39,47]:

1. Pedals: The pilot’s brake pedals, which indicate the
desired amount of braking power.

2. Power: A power supply with redundant connec-
tions to the BSCU.

3. Brake System Control Unit (BSCU): A col-
lection of software that controls the braking of the
aircraft. It is responsible for controlling the anti-
skid, selector, and shutoff valves. An expanded view,
showing the platform, subsystem, and selector sub-
components, is shown in Figure 7.

4. Pumps: Hydraulic pumps which provide the pres-
sure necessary for braking. In normal operation, the
green pump is used; the blue pump is an alternate.

5. Accumulator: An emergency source of hydraulic
pressure. Used when both the green and blue pumps
have failed.

6. Shutoff Valve: A valve to disable the green pump if
the BSCU determines the system should stop using
it (due to, e.g., insufficient pressure).

7. Selector Valve: A valve that selects a source of
pressure (based on input from the BSCU) and ap-
plies it to the skid valves.

8. Anti-Skid Valves: Valves that control hydraulic
pressure to the brakes, and limit it so the wheels do
not lock.

9. Wheel: A wheel and brake assembly.

The full model includes a number of simplified sub-
systems (hydraulic, status, alert, electrical, and steer-
ing) which we do not elaborate, but include as “black
box” components without implementations, see Figure
6. While these could be refined later if necessary, by
annotating them with expected failure rates and error
propagations, we can reason about how different com-
ponent options impact the system’s overall safety. That
is, if we have, e.g., three different steering subassem-
blies, we can include them in our tradespace exploration—
even without knowing their implementations—by hav-
ing three different black-box components with different
safety characteristics specified.

7.2 Trade Space Specification

For the purposes of testing, we created two or three
options for several WBS classifiers (e.g., component types,

14

Fig. 5 An implementation view of the wheel braking system’s (WBS) architecture. Adapted from Delange et al.[14]

Fig. 6 A functional view of several WBS subsystems. These are
treated as “black boxes,” without implementation details, but fail-
ure rates and error propagation information are specified.

Name Options Red? Const? Type?

Subcomponent Choices
Monitor software 2 Y Y N
CPU Architecture 3 Y N Y
CPU Power Supply 2 Y N Y
Hydraulic Pump 2 Y N N
Steering assembly 3 N N N

Component Interconnections
Power bus 6 Y N Y

Property Specifications
CPU Power ∞ Y N N

Table 3 Selected choicepoints in the WBS. Red: is the element is
part of a redundant assembly? Const: is the choice constrained?
Type: are both the type and implementation variable?

implementations, hardware interconnects), and affixed
new properties. Examples of these are given in Table
3, and a small section of the full configuration file is
shown in Listing 4. The number of possible configura-
tions grows rapidly: even setting aside the CPU Power
property, there are 2 × 3 × 2 × 2 × 3 × 6 = 432 possi-
ble configurations using only the choices from Table 3.
Even in our relatively small example system, a brute

1configuration platform_federated_conf (
2 power_budget : SEI::PowerBudget from (0.1W .. 300W),
3 cpu_arch : processor impl::platform::cpu from

(impl::platform::cpu.x86, impl::platform::cpu.x64,
impl::platform::cpu.arm)

↪→
↪→

4) extends impl::platform::platform.federated {
5 cpu1 => cpu_arch with cpu_base_conf {
6 power#SEI::PowerBudget => power_budget
7 },
8 cpu2 => cpu_arch with cpu_base_conf {
9 power#SEI::PowerBudget => power_budget

10 }
11} constraints {
12 cpu1 == cpu2
13}

Listing 4: A snippet of the full WBS configuration, spec-
ifying choices and constraints for the CPUs used in the
federated architecture.

force enumeration of the possible candidate architec-
tures quickly became infeasible: the trade space of the
WBS system includes hundreds of millions of different
configurations.

The number of feasible choices, while still quite large,
was restricted significantly by constraints we created.
We attempted to create a number of interesting and
realistic constraints, including:

1. Hardware Restrictions on Software:We require
that certain deceleration hardware assemblies re-
quire the use of certain BSCU command software.

2. Power Sources Restricting Wire Gauge: Some
power sources were modeled to be more powerful
than others; we disallowed connections to those larger
sources using thinner wiring.

3. Identical CPU Architectures within Assem-
blies: In a federated architecture, we required that
the CPUs used the same architecture.

We enabled a relatively small number of system
analyses for our initial searches. Our expectation is that
the number and analytical power of selected analyses
will increase as a system’s design trade space shrinks:
early on, it is more important to be able to rapidly
enumerate multiple candidate architectures and eval-
uate them relatively quickly. That is, the fitness func-

15

Fig. 7 The implementation of the WBS’s Brake System Control Unit (BSCU)

tion used should initially be relatively inexpensive; later
on more expensive calculations can be used for finer
grained analyses. Specifically, we checked each candi-
date architecture’s: (a) weight, (b) price, (c) power con-
sumption, (d) port consistency (to verify that candi-
date architectures did not have mismatched connection
types), and (e) “braking power.” This final analysis type
is not a true analysis, but rather was created to demon-
strate the ease with which domain-specific analyses can
be created and used with GATSE. In our case, it was
a simple summation of property values that had been
added to components, but as analyses are implemented
using Java, there is considerable flexibility for more so-
phisticated techniques. The top-right portion of Fig-
ure 8 is the complete source code of the braking power
analysis. It relies on property annotations like those in
the top-left portion, including built-in properties from
standard Software Engineering Institute (SEI) provided
property sets, as well as a custom property set for this
use case / demonstration.

7.3 Trade Space Exploration

The goal of tooling used in Design by Shopping is to
make clear to the system architect the correlations and
tradeoffs between a system’s various quality attributes.
In order to achieve this, system information should be
presented in an intuitive, graphical tool and used to re-
fine a system’s design parameters and ultimately select
a candidate system architecture [5].

The three boxes in the lower half of Figure 8 are
screenshots of ATSV after having explored the WBS
trade space in various ways. Of particular interest are
the following activities:

1. Viewing: ATSV and GATSE let designers view the
system design trade space in a number of formats,
e.g., the scatter plot in the lower left of Figure 8
as well as parallel coordinate and histogram plots
(these are not particularly helpful in the WBS use
case, and are not shown). These views are highly
customizable; any input or output value can be used
for the plots’ axes (e.g., for the scatter plot: X, Y,
point color, and point size). Note that output val-

16

Used By

Viewing Filtering Tailoring

Custom Properties Custom Analyses

Enables

Fig. 8 The motivating vision behind the GATSE project. The top left shows model properties, which are used by the analysis in the
top right. The bottom row shows different views of the WBS system’s trade space in ATSV [50].

Fig. 9 Candidate WBS architectures viewed in ATSV [49]. The
color of each point represents the system’s braking power, our
stand-in for a domain specific analysis. The points marked with
a + are pareto optimal.

ues can be both quantitative measures (e.g., various
quality attributes), as well as measures of validity
(e.g., feasibility of construction).

2. Filtering: While GATSE supports flagging gener-
ated architectures as invalid if measured outputs fail
to meet some standard (e.g., if the price or weight
exceed given thresholds, see lines 18-19 of Listing

3), it is also possible to filter the views directly in
ATSV, as in the lower middle portion of Figure 8.

3. Tailoring: Though ATSV offers a number of mech-
anisms for specifying preferences, we found the most
success using the Multi-Objective Evolutionary Al-
gorithm (MOEA) Pareto Sampler as it lets us max-
imize or minimize any number of system variables
or analysis results (e.g., both a specific component’s
individual property setting and / or an overall mea-
sured system value can be optimized). It can be con-
figured using the interface shown in the lower right
of Figure 8. Pareto optimal designs can also be high-
lighted, these are identified automatically by ATSV
when using a Pareto Sampler. Figure 9 shows the
WBS trade space with pareto-optimal architectures
marked.

7.4 Next Steps

Now that the WBS’s trade space has been defined,
we can refine the search space and eventually compare
pareto-optimal system architectures.

7.4.1 Narrowing and Deepening

After surveying the initial trade space, a designer may
want to focus their search on fewer candidate architec-

17

tures, but examine them deeply with more computa-
tionally expensive analyses. After exploring the trade
space, it is straightforward to identify options that are
rarely or never chosen in candidates that performed
well for important characteristics. Recall that some of
the characteristics we initially focused on in the WBS
were price, weight, and our stand-in for a domain spe-
cific analysis, “braking power.” We discovered that in-
expensive, lightweight, and powerful braking systems
typically used system power (rather than standalone
backups), higher-quality tires, and relatively powerful
hydraulic pumps. With this narrower search space, a
user can afford to allocate more time to analyzing each
candidate architecture; this is done by enabling addi-
tional analyses in the configuration file.

We created a second custom analysis that incorpo-
rates the probability of failure on demand (pfd) calcula-
tions from Section 4.6. We modified an existing OSATE
plugin that generates fault trees (a standard way of as-
sessing a system’s safety [18]) from annotated AADL
models [20] to use new properties which describe the
subjective assessor’s beliefs about a component and the
number of demands it has successfully passed. We then
extended the WBS model with example values (i.e., as-
sessments of a component’s estimated pfd, likelihood of
perfection, and doubt about the claimed pfd) and used
them to calculate the overall failure rate of the WBS.
That overall value was then exposed to ATSV, and thus
can be used for viewing, filtering, and tailoring as de-
scribed in Section 7.3. These modifications were fairly
straightforward to implement, and extending GATSE
to include our calculations was far simpler than cor-
rectly implementing the pfd calculation itself.

7.4.2 Selecting a Candidate Architecture

If the number of candidate architectures generated is
now small enough that some merit close inspection,
ATSV supports a fourth activity:

4. Investigating Specific Candidates:When selected,
the points in the scatter plot (and lines in the paral-
lel coordinate plot) display the complete set of the
input and output values for their associated candi-
date architecture. This lets designers see the exact
configuration of a candidate architecture, as well as
exact values of the results of the system analyses
and other outputs. Figure 10 shows an example of
one candidate architecture for the WBS.

At this point in our use case, system designers would
likely need to look beyond the quantitative analyses
available in GATSE to compare the pareto optimal can-
didate architectures. This process is out of scope for

Fig. 10 Detailed system information generated / calculated by
GATSE for a WBS candidate architecture. This will be displayed
when a point in a plot in ATSV is selected [49]

this publication, but would proceed according to the
requirements of the organization contracted to produce
the WBS.

8 Evaluation

Recall from Section 2 that we had six high-level ob-
jectives derived from our review of the state-of-the-art.
By using OSATE and AADL, we met objectives 3 and
4 (tool support for modeling and a re-usable modeling
language). By using ATSV, we met objective 6 (support
for Design-by-Shopping). We now discuss the degree to
which the other objectives were met, and also comment
on the performance of our approach.

8.1 Expressive Configuration Language

We took as our goal to support as much of Koziolek’s
Degrees of Freedom [31] as possible. In that work, sys-
tem changes are specified using six parameters; GATSE
supports (at least partially) the first five:

1. Changeable Elements: Full support. We support
changesets of size one directly, and larger sizes through
constraints. That is, instead of changing elements
A, B, and C simultaneously, a GATSE user must
change A and then use a constraint to require par-
ticular values of B and C given the particular value
of A.

2. Primary Changeable Element: Full support. This
is trivially supported by our implementation as our
changesets can only have a size of one.

3. Selection Rules: Partial support. We claim only
partial support since some aspects of an AADLmodel

18

are not addressable with our current implementa-
tion. As component types, implementations, and prop-
erties make up the bulk of AADL specifications,
GATSE does not allow changing any annexes, flows,
and some other elements directly. In practice, how-
ever, doing so was not necessary and we did not
find this to be a significant limitation since com-
ponents and properties containing those annexes,
flows, etc. are addressable and can be directly changed.
If it were to be necessary, we are confident the lan-
guage could be extended to address these additional
elements.

4. Value Rules: Full support. These are encoded in
the from clause of the parameter of a choicepoint
specification.

5. Interaction Constraints: Partial support. We claim
only partial support because some interactions (e.g.,
those involving relations other than equality, inequal-
ity, and tests of set membership) cannot be specified
in the current implementation. We note that this is
a restriction of both ATSV and the way satisfiabil-
ity is checked in GATSE. We further note that these
constraints are only necessary in dynamic DSE tool-
ing, i.e., tools where the search can be guided using
a fitness function. Static tools (such as AFFMAD
[2]) must first be extended to support dynamic ex-
ploration before support for constraints would be
usable.

6. Added Elements: No support. We cannot claim
any support since it is impossible to add (or remove)
elements from an architecture using our current im-
plementation.

We are satisfied with the capabilities of our language
(and associated tooling) insofar as it enables the spec-
ification and dynamic exploration of a system’s design
space, supports easily extensible analyses, and supports
most of the information required by Koziolek’s Degrees
of Freedom. It compares favorably with existing work,
most of which is more narrowly focused than our ap-
proach.

8.2 Easily-Used Configuration Language

The configuration language we created for this work is
powerful, but can be challenging to use. That is, the
time and / or training necessary to become proficient
is likely to be non-trivial. Much of this difficulty stems
from the complexity of the problem it addresses, which
is to succinctly describe a potentially broad set of modi-
fications to a system, which may rely on or impact other
modifications, which may themselves rely on or impact
yet other modifications, etc. Note that this challenge is

closely related to the previous objective: as a configu-
ration language is extended to support more types of
changes, its complexity will necessarily increase. That
is, while clever language design and tooling extensions
can provide a great deal of aid to system designers,
to some extent these objectives are in competition and
improving at one will degrade the other.

Compared to the approaches discussed in Section
3, our language is roughly as powerful as the state-of-
the-art, and, by aligning with a standardized modeling
language, should be usable by system designers who
are generally familiar with MBSE. Specific syntactical
issues can still be challenging to fix, though the val-
idator we have built for the language is helpful here.
Ultimately, we cannot call ourselves entirely successful
in this objective; more work will be needed to ensure
system configurations are relatively straightforward to
write.

8.3 Support for Extensible Analyses

We found the process of extending GATSE with a cus-
tom, domain specific analysis to be fairly straightfor-
ward. GATSE’s extensible, plugin-based architecture
enables analysis developers to easily traverse an instan-
tiated system model to, e.g., read in relevant property
values. These values can then be used in any quantita-
tive analysis of the system.

While the initial version of this work [36] had only
the fairly simple Braking Power analysis, in this paper
we have described the more heavyweight failure prob-
ability analysis (see Section 4.6). This analysis calcu-
lates a system’s probability of failure on demand by
repeatedly optimizing a nonlinear function, which re-
quires fairly sophisticated statistical software that is
easily available via the Apache Common’s Math3 li-
brary12. Adding this analysis to GATSE was simple:
we added custom properties to our model, extended a
single interface so we could read in those properties,
and then passed their values to a class that implements
the pfd calculations. The results of those calculations
were put into the key-value store that OSATE returns
to ATSV, and from there were both plotted visually
and used to guide the search for new candidate archi-
tectures.

8.4 Performance

Though performance was not considered a high priority
in the development of GATSE’s initial prototypes, we

12 https://commons.apache.org/proper/commons-math/

19

Step 5.(d) Step 5.(b) Step 5.(c)

Time (seconds) ATSV Unmarshalling Instantiation Analysis Marshalling Total

Initial Search .1159 .1213 .1750 .1683 .0002 .5807
Deeper Search .1173 .1210 .1794 .2121 .0002 .6301

Table 4 Average duration, over 1,000 executions, of various steps performed by ATSV and OSATE. Other OSATE initialization tasks,
loading analysis plugins, and transmitting the response over the loopback interface typically took less than a thousandth of a second.
Data from the first execution was removed from the analysis in order to obtain GATSE’s steady-state performance. Steps refer to the
process from Section 5.1 / Figure 3.

noted previously (see Section 2.2) that the tool’s usabil-
ity would be improved by decreasing the time it takes
to identify and analyze a given number of candidate
architectures. Table 4 shows detailed performance data
obtained from the WBS use case. Identifying, instanti-
ating, and analyzing a single system architecture takes
roughly .58 seconds (or .63 seconds with the slower
safety analysis); generating the initial thousand archi-
tectures used for Figure 8 took roughly 9 minutes and
59 seconds13 (generating 300 architectures with the safety
analysis took roughly 3 minutes and 13 seconds). In-
terestingly, even with the more heavyweight analysis
overall execution time is not dominated by any par-
ticular factor: analysis and model instantiation make
up the bulk of the execution time. We had expected
a larger portion of the overall execution time to come
from model analysis, we are encouraged that perfor-
mance was relatively good. That said, overall optimiza-
tions to OSATE, in particular its instantiation logic
(which takes roughly .18s, see Table 4), are more impor-
tant than we had realized. We explored the tradespace
of the WBS on a machine with an Intel i9 CPU run-
ning at 2.4GHz and 32 gigabytes of memory. We used
OSATE 2.9.1, GATSE 1.0.0.202012042351, and ATSV
10.0.8.32bit.

8.5 Limitations of GATSE

In summary, we were successful in marrying a standard-
ized MBSE language, existing MBSE tool, and stan-
dalone DSE software. This is significant in that it sup-
ports a MBSE and DSE process that is broadly usable
in the critical system space. However, while we have met
a number of our objectives, we need more data on some
and others will require continued work. Specifically, the
limitations we see of the approach are:

1. Missing support for adding/removing com-
ponents: Our configuration language and tooling

13 We note that this is roughly five times faster than the initial
reported speed [36]. The speedup is primarily due to improved
hardware.

cannot describe this parameter from Koziolek’s DoF
framework. This limits the types of system changes
describable by our tool.

2. A challenging configuration language: The com-
plexity of our configuration language may be en-
demic to the domain, but we are not satisfied that
it is as easy-to-use as possible

3. A lack of industrial-use data: Our use case was
helpful in illuminating a number of aspects of the
tool, but it is no substitute for getting the tool in the
hands of practitioners and soliciting their feedback.

4. Limited soundness checking for constraints:
Because our constraint checking, as described in Sec-
tion 5.2.2, only operates on a subset of property
types usable in AADL, it lacks soundness.

9 Future Work

We plan on addressing the limitations identified in the
previous section by working with the AADL Standard-
ization Committee, industrial users of OSATE, and con-
tinuing to refine our software.

9.1 Language: Simplify and Integrate into AADL

As we have based our work on AADL, we have a sig-
nificant opportunity to standardize system configura-
tion specification techniques in future revisions of the
AADL standard. What’s more, there are other uses
for these specifications, and a single, standardized ap-
proach would lead to more re-use of modeling artifacts,
a smoother learning curve, and include the ability to
address all AADL elements, such as annexes and flows.
There are important lessons we can draw on from the
literature, e.g., aspect orientation [30], which enables a
strong separation of concerns, or a proposed metamodel
for design space exploration [15] with which we could
align. The configuration language developed for this
work has already seeded conversations and prompted
refinements within the AADL standard committee; we
will continue to pursue this line of improvement by eval-
uating the incorporation of aspect orientation and the

20

proposed metamodel. In these conversations and revi-
sions, we are particularly focused on simplifying the
language so that it is easy to use while remaining suffi-
ciently expressive.

9.2 Evaluation: Work with Industry

We presented an early version of this work to an au-
dience with industrial users in late 2017[35]. There has
been interest in GATSE since that time, though un-
til recently we were focused on maturing the language
and tooling. As we are now satisfied with its maturity,
we plan on working with these industrial partners to
perform an larger evaluation of GATSE. In particular,
we are interested in system designer’s feedback on the
usability of the tool, and its applicability to real-world
design issues.

9.3 Tooling: Soundness Checking for Constraints

We aim to improve the GATSE tooling by making our
constraint checking sound. In order to do this, we will
need to be able to check constraints placed on proper-
ties that have unbounded integer or real types, which
we plan on doing by migrating from our SAT solver
backend (Sat4J [7]) to a SMT solver such as Z3 [33],
which will be able to operate on a much larger sub-
set of AADL’s property types. This would allow us to
check, e.g., constraints such as “CPU1 Power Consump-
tion must be less than 50.000W.”

9.4 Tooling: Performance

OSATE was designed for a single user following a tra-
ditional design methodology, rather than being given
automatically-generated specifications and continually
re-instantiating and re-analyzing them as when used
as part of GATSE. We believe that design space ex-
ploration becomes more useful the more quickly archi-
tecture candidates can be generated and analyzed—an
argument made by a number of others, including Ia-
cobucci [28]. While performance has improved—primarily
due to improvements in CPU / memory speed—since
the initial description of GATSE [36], the Software En-
gineering Institute continues to optimize OSATE itself
as well. This work continues independently of GATSE,
but the effects will benefit the performance of our tool.

10 Conclusion

In this work we described GATSE: a new extension
to the OSATE toolset that, by adapting it to work
with ATSV, enables interactive exploration of a sys-
tem’s architectural trade space. System designs can be
analyzed and constrained using a number of different
quality attribute measures, and new, domain-specific
analyses can be created in a straightforward manner
as well. We began this effort by aiming to understand
the overlap and potential synergy between MBSE and
DSE techniques. Based on the state-of-the-art, we laid
out six objectives (see Section 2). Overall, the effort
was a qualified (see Section 8) success. It was a success
in that, we argue, GATSE represents an advancement
over the state-of-art as it includes many of the features
found in similar projects (see Section 3), and also en-
ables design-by-shopping [5] using a standardized yet
highly-customizable system design language and tool.
By writing the configuration language to work with
AADL (which is widely used in critical system devel-
opment) and our tools with OSATE (a standard work-
bench used to develop AADL specifications) there is
significant opportunity for DSE models to be reused
beyond GATSE. As AADL and its analyses are largely
compositional, wholesale adoption of GATSE is not re-
quired for benefits to begin to accrue: defining only a
small number of choicepoints and exploring potential
architectures visually could still be advantageous given
a large design space.

Acknowledgements

The authors wish to thank Julien Delange, Min Young
Nam, and Peter Feiler for the original concept and feed-
back; Joseph Seibel for the configuration validator im-
plementation; and the anonymous reviewers for their
feedback which has been invaluable in improving this
paper. We also gratefully acknowledge the assistance of
Gary Stump and Penn State University’s Applied Re-
search Laboratory for their help and the modifications
made to ATSV as a result of this effort.

Copyright 2021 Carnegie Mellon University.
This material is based upon work funded and sup-

ported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon Univer-
sity for the operation of the Software Engineering In-
stitute, a federally funded research and development
center.

NOWARRANTY. THIS CARNEGIEMELLONUNI-
VERSITY AND SOFTWARE ENGINEERING INSTI-
TUTE MATERIAL IS FURNISHED ON AN "AS-IS"
BASIS. CARNEGIEMELLONUNIVERSITYMAKES

21

NO WARRANTIES OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY
OF FITNESS FOR PURPOSE ORMERCHANTABIL-
ITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THEMATERIAL. CARNEGIEMELLONUNI-
VERSITY DOES NOTMAKE ANYWARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGE-
MENT.

[DISTRIBUTION STATEMENT A] This material
has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Gov-
ernment use and distribution. DM21-0323

References

1. Abdeen, H., Nagy, A.S., Varró, D., Hegedüs, Á., Sahraoui,
H., Horváth, Á.: Multi-objective optimization in rule-based
design space exploration. In: ASE 2014 - Proceedings of the
29th ACM/IEEE International Conference on Automated
Software Engineering, pp. 289–300. Association for Comput-
ing Machinery, Inc, Vasteras, Sweden (2014). DOI 10.1145/
2642937.2643005. URL http://dl.acm.org/citation.cfm?
doid=2642937.2643005

2. Adventium Labs: https://www.adventiumlabs.com/
demonstration-combined-use-dse-rbd-and-tse-trade-space-analysis
(2017). Accessed: August 15, 2018

3. Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.:
ArcheOpterix: An extendable tool for architecture optimiza-
tion of AADL models. In: 2009 ICSE Workshop on Model-
Based Methodologies for Pervasive and Embedded Soft-
ware, pp. 61–71. IEEE, Vancouver, Canada (2009). DOI
10.1109/MOMPES.2009.5069138

4. Bąk, K., Czarnecki, K., Wąsowski, A.: Feature and meta-
models in clafer: Mixed, specialized, and coupled. In: B. Mal-
loy, S. Staab, M. van den Brand (eds.) Software Language
Engineering (SLE10), pp. 102–122. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2011)

5. Balling, R.: Design By Shopping: A New Paradigm? In: Pro-
ceedings of the Third World Congress of Structural and Mul-
tidisciplinary Optimization (WCSMO-3), pp. 295–297. Buf-
falo, NY, USA (1999)

6. Becker, S., Koziolek, H., Reussner, R.: The Palladio compo-
nent model for model-driven performance prediction. Jour-
nal of Systems and Software 82(1), 3–22 (2009). DOI
10.1016/J.JSS.2008.03.066

7. Berre, D.L., Parrain, A.: The SAT4J library, Release 2.2, Sys-
tem Description. Journal on Satisfiability, Boolean Modeling
and Computation 7, 59–64 (2010)

8. Bertolino, A., Strigini, L.: Assessing the risk due to software
faults: estimates of failure rate versus evidence of perfection.
Software Testing, Verification and Reliability 8(3), 155–166
(1998). DOI 10.1002/(SICI)1099-1689(1998090)8:3<155::
AID-STVR163>3.0.CO;2-B. URL http://onlinelibrary.
wiley.com/doi/10.1002/(SICI)1099-1689(1998090)8:
3{%}3C155::AID-STVR163{%}3E3.0.CO;2-B/full

9. Bishop, P., Bloomfield, R., Littlewood, B., Povyakalo, A.,
Wright, D.: Toward a Formalism for Conservative Claims
about the Dependability of Software-Based Systems. IEEE
Transactions on Software Engineering 37(5), 708–717 (2011).

DOI 10.1109/TSE.2010.67. URL http://ieeexplore.ieee.
org/document/5492693/

10. Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D.,
Kimberly, G., Petri, T., Robinson, R., Tonetta, S.: Formal
Design and Safety Analysis of AIR6110 Wheel Brake System.
In: D. Kroening, C. Păsăreanu (eds.) Computer Aided Verifi-
cation (CAV), pp. 518–535. Springer, Cham, San Francisco,
California, USA (2015). DOI 10.1007/978-3-319-21690-4\
_36

11. Chilenski, J.J., Ward, D.T.: System Architecture Virtual In-
tegration SAVI AFE 59S1 Report Summary Final Report.
Tech. rep., System Architecture Virtual Integration (2015)

12. Clark, B., Miller, C., McCurley, J., Zubrow, D., Brown,
R., Zuccher, M.: Department of Defense Software Factbook.
Tech. Rep. CMU/SEI-2017-TR-004, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA (2017)

13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation 6(2), 182–197
(2002). DOI 10.1109/4235.996017

14. Delange, J., Feiler, P., Gluch, D., Hudak, J.: AADL Fault
Modeling and Analysis Within an ARP4761 Safety Assess-
ment. Tech. rep., Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, USA (2014)

15. Diewald, A., Voss, S., Barner, S.: A Lightweight Design Space
Exploration and Optimization Language. In: Proceedings of
the 19th International Workshop on Software and Compilers
for Embedded Systems - SCOPES ’16, pp. 190–193. ACM
Press, New York, New York, USA (2016). DOI 10.1145/
2906363.2906367

16. DoD Architecture Framework Working Group: DoD Archi-
tecture Framework Version 1.0. Tech. rep., United States
Department of Defense (2003)

17. Eder, J., Voss, S.: Usable Design Space Exploration in Auto-
FOCUS3. In: Workshop on Open Source Software for Model-
Driven Engineering (OSS4MDE), in conjunction with MOD-
ELS conference. Brittany, France (2016)

18. Ericson II, C.A.: Hazard Analysis Techniques for System
Safety, second edn. John Wiley & Sons (2016)

19. Esfahani, N., Malek, S., Razavi, K.: GuideArch: guiding the
exploration of architectural solution space under uncertainty.
In: Proceedings of the 2013 International Conference on Soft-
ware Engineering, pp. 43–52. IEEE Press, San Francisco,
USA (2013)

20. Feiler, P., Delange, J.: Automated fault tree analysis from
aadl models. Ada Lett. 36(2), 39–46 (2017). DOI 10.1145/
3092893.3092900. URL https://doi.org/10.1145/3092893.
3092900

21. Feiler, P., Gluch, D.: Model-Based Engineering with AADL,
1st edn. Addison-Wesley Professional, Upper Saddle River,
NJ (2012)

22. Feiler, P., Hansson, J., de Niz, D., Wrage, L.: System Archi-
tecture Virtual Integration: An Industrial Case Study. Tech.
rep., Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA (2009)

23. Frank, S., van Hoorn, A.: SQuAT-Vis: Visualization and
Interaction in Software Architecture Optimization. In:
A. Jansen, I. Malavolta, H. Muccini, I. Ozkaya, O. Zim-
mermann (eds.) European Conference on Software Archi-
tecture (ECSA20), pp. 107–119. Springer, Cham, L’Aquila,
Italy (2020). DOI 10.1007/978-3-030-59155-7_9. URL
https://doi.org/10.1007/978-3-030-59155-7{_}9

24. Friedenthal, S., Moore, A., Steiner, R.: A practical guide to
SysML: the systems modeling language. Morgan Kaufmann
(2014)

25. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based soft-
ware engineering: Trends, Techniques, and Applications.

22

http://dl.acm.org/citation.cfm?doid=2642937.2643005
http://dl.acm.org/citation.cfm?doid=2642937.2643005
https://www.adventiumlabs.com/demonstration-combined-use-dse-rbd-and-tse-trade-space-analysis
https://www.adventiumlabs.com/demonstration-combined-use-dse-rbd-and-tse-trade-space-analysis
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1689(1998090)8:3{%}3C155::AID-STVR163{%}3E3.0.CO;2-B/full
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1689(1998090)8:3{%}3C155::AID-STVR163{%}3E3.0.CO;2-B/full
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1689(1998090)8:3{%}3C155::AID-STVR163{%}3E3.0.CO;2-B/full
http://ieeexplore.ieee.org/document/5492693/
http://ieeexplore.ieee.org/document/5492693/
https://doi.org/10.1145/3092893.3092900
https://doi.org/10.1145/3092893.3092900
https://doi.org/10.1007/978-3-030-59155-7{_}9

ACM Computing Surveys 45(1), 1–61 (2012). DOI 10.1145/
2379776.2379787

26. Hegedüs, Á., Horváth, Á., Varró, D.: A model-driven frame-
work for guided design space exploration. Automated
Software Engineering 22(3), 399–436 (2015). DOI 10.
1007/s10515-014-0163-1. URL https://link.springer.
com/article/10.1007/s10515-014-0163-1

27. Hwang, C.L., Masud, A.S.M.: Multiple Objective Decision
Making – Methods and Applications: A State-of-the-Art Sur-
vey, Lecture Notes in Economics and Mathematical Systems,
vol. 164. Springer-Verlag Heidelberg (1979)

28. Iacobucci, J.V.: Rapid Architecture Alternative Modeling
(Raam): a Framework for Capability-Based Analysis of Sys-
tem of Systems Architectures. Ph.D. thesis, Georgia Institute
of Technology (2012)

29. Kerzhner, A.A.: Using logic-based approaches to explore sys-
tem architectures for systems engineering. Ph.D. thesis,
Georgia Institute of Technology (2012)

30. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.M., Irwin, J.: Aspect-oriented programming.
In: M. Akşit, S. Matsuoka (eds.) ECOOP’97 — Object-
Oriented Programming, pp. 220–242. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1997)

31. Koziolek, A.: Automated Improvement of Software Architec-
ture Models for Performance and Other Quality Attributes.
Ph.D. thesis, Institut für Programmstrukturen und Datenor-
ganisation (IPD) (2013). DOI 10.5445/KSP/1000032342

32. Kroening, D., Strichman, O.: Decision Procedures: An Algo-
rithmic Point of View, second edn. Springer-Verlag, Berlin,
Germany (2016). DOI 10.1007/978-3-662-50497-0

33. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In:
C.R. Ramakrishnan, J. Rehof (eds.) Tools and Algorithms
for the Construction and Analysis of Systems (TACAS08),
pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008)

34. Owens, B., Leveson, N.: A comparative look at MBU hazard
analysis techniques. In: Annual Military and Aerospace Pro-
grammable Logic Device International Conference(MAPLD),
pp. 1–11. Washington DC, USA (2006). URL http://
sunnyday.mit.edu/papers/Owens-mapld.pdf

35. Procter, S.: Guided architecture trade space exploration for
safety-critical software systems. Presentation (2017)

36. Procter, S., Wrage, L.: Guided architecture trade space ex-
ploration: Fusing model based engineering design by shop-
ping. In: 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems (MOD-
ELS), pp. 117–127 (2019). DOI 10.1109/MODELS.2019.
000-9

37. Rago, A., Vidal, S., Andres Diaz-Pace, J., Frank, S.,
Van Hoorn, A.: Distributed qality-atribute optimization of
sofware architectures. In: Proceedings of the 11th Brazil-
ian Symposium on Software Components, Architectures, and
Reuse (SBCARS17), vol. Part F1306, pp. 1–10. Associa-
tion for Computing Machinery, Fortaleza, CE, Brazil (2017).
DOI 10.1145/3132498.3132509. URL http://dl.acm.org/
citation.cfm?doid=3132498.3132509

38. Ross, J.A., Murashkin, A., Liang, J.H., Antkiewicz, M., Czar-
necki, K.: Synthesis and exploration of multi-level, multi-
perspective architectures of automotive embedded systems.
Software & Systems Modeling pp. 1–29 (2017). DOI
10.1007/s10270-017-0592-y

39. SAE Aerospace: AIR6110: Contiguous Aircraft/System De-
velopment Process Example. Tech. rep., SAE International
(2011)

40. SAE AS-2C Architecture Description Language Subcom-
mittee: SAE Architecture Analysis and Design Language

(AADL) Annex Volume 2: Annex B: Behavior Annex. Tech.
rep., SAE International (2011)

41. SAE AS-2C Architecture Description Language Subcom-
mittee: SAE Architecture Analysis and Design Language
(AADL) Annex Volume 1: Annex A: ARINC653 Annex.
Tech. rep., SAE International (2015)

42. SAE AS-2C Architecture Description Language Subcom-
mittee: SAE Architecture Analysis and Design Language
(AADL) Annex Volume 1: Annex E: Error Model Annex.
Tech. rep., SAE International (2015)

43. Selva, D., Crawley, E.F.: VASSAR: Value assessment of sys-
tem architectures using rules. In: IEEE Aerospace Confer-
ence Proceedings, pp. 1–21. IEEE, Big Sky, Montana (2013).
DOI 10.1109/AERO.2013.6496936

44. Simpson, T., Carlsen, D., Congdon, C., Stump, G., Yuk-
ish, M.A.: Trade Space Exploration of a Wing Design Prob-
lem Using Visual Steering and Multi-Dimensional Data
Visualization. In: 49th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference.
Schaumburg, IL (2008). DOI 10.2514/6.2008-2139

45. Society for Automotive Engineers, Inc.: ARP4754: Certifica-
tion Considerations for Highly-Integrated or Complex Air-
craft Systems. Tech. rep., SAE International (1996)

46. Society for Automotive Engineers, Inc.: ARP4761: Guidelines
and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment. Tech. rep., SAE
International (1996)

47. Stewart, D., Whalen, M.W., Cofer, D., Heimdahl, M.P.:
Architectural Modeling and Analysis for Safety Engineer-
ing. In: M. Bozzano, Y. Papadopolous (eds.) Proceed-
ings of International Symposium on Model-Based Safety
and Assessment (IMBSA 2017), pp. 97–111 (2017). DOI
10.1007/978-3-319-64119-5_7

48. Stump, G., Lego, S., Yukish, M., Simpson, T.W., Don-
ndelinger, J.A.: Visual Steering Commands for Trade Space
Exploration: User-Guided Sampling With Example. Journal
of Computing and Information Science in Engineering 9(4),
044,501 (2009). DOI 10.1115/1.3243633

49. Stump, G., Yukish, M., Martin, J., Simpson, T.: The ARL
Trade Space Visualizer: An Engineering Decision-Making
Tool. In: 10th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference. Albany, New York (2004). DOI
10.2514/6.2004-4568

50. Stump, G., Yukish, M., Simpson, T., Harris, E.N.: Design
Space Visualization and Its Application to a Design by Shop-
ping Paradigm. In: 29th Design Automation Conference,
Parts A and B, vol. 2003, pp. 795–804. ASME, Chicago, Illi-
nois, USA (2003). DOI 10.1115/DETC2003/DAC-48785

51. Tseitin, G.S.: On the Complexity of Derivation in Propo-
sitional Calculus. In: Leningrad Seminar on Mathematical
Logic, pp. 1–11. Leningrad (1966)

52. Verendel, V.: Quantified security is a weak hypothe-
sis. In: Proceedings of the 2009 workshop on New se-
curity paradigms workshop - NSPW ’09, p. 37. ACM
Press, New York, New York, USA (2009). DOI 10.1145/
1719030.1719036. URL http://portal.acm.org/citation.
cfm?doid=1719030.1719036

53. Watkins, C.: Integrated Modular Avionics: Managing the
Allocation of Shared Intersystem Resources. In: 2006
IEEE/AIAA 25TH Digital Avionics Systems Conference, pp.
1–12. IEEE, Portland, OR (2006). DOI 10.1109/DASC.2006.
313743

54. Zantema, H., Groote, J.F.: Transforming equality logic to
propositional logic. In: FTP’2003, 4th International Work-
shop on First-Order Theorem Proving (in connection with
RDP’03, Federated Conference on Rewriting, Deduction

23

https://link.springer.com/article/10.1007/s10515-014-0163-1
https://link.springer.com/article/10.1007/s10515-014-0163-1
http://sunnyday.mit.edu/papers/Owens-mapld.pdf
http://sunnyday.mit.edu/papers/Owens-mapld.pdf
http://dl.acm.org/citation.cfm?doid=3132498.3132509
http://dl.acm.org/citation.cfm?doid=3132498.3132509
http://portal.acm.org/citation.cfm?doid=1719030.1719036
http://portal.acm.org/citation.cfm?doid=1719030.1719036

and Programming), pp. 162—-173 (2003). DOI 10.1016/
S1571-0661(04)80661-3

55. Zimmermann, H.J.: Fuzzy Set Theory–and Its Applications,
fourth edn. Springer Netherlands, Dordrecht (2001). DOI
10.1007/978-94-010-0646-0

24

	Introduction
	Motivation
	Related Work
	Background
	The GATSE Process
	The Choicepoint Language
	Use Case: A Wheel Brake System
	Evaluation
	Future Work
	Conclusion

