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ABSTRACT Model-based specification of embedded, critical systems (i.e., systems whose failure is deemed unacceptable) is
increasingly becoming the standard of practice. However, analysis of these models can prove challenging when the models
grow in size and complexity, which is common as more types and volume of data are loaded into them. One well-studied
technique for grappling with complexity in models is slicing, where slices of models are highlighted according to some criterion.
In this work, we describe a new software tool: the OSATE Slicer, which extends the concept of slicing to architectural models of
embedded, critical systems. It does this by calculating of various notions of reachability which can be used to support both
manual and automated analyses of system models. We then evaluate the utility of our approach based on several existing
analyses and its performance based on a pre-existing corpus of architectural models and find both to be satisfactory.

KEYWORDS Architecture Analysis and Design Language, Model Based Engineering, Slicing, Reachability, Model Analysis, Safety, Security

1. Introduction
Model-based engineering (MBE) is an increasingly popular way
to build a range of systems, including critical systems, i.e., sys-
tems where failure would cause injury, death, or unacceptable
financial losses. While the range of critical systems is broad,
common examples include medical devices, power-generation
systems (in particular those which rely on nuclear power), and
all manner of high-speed transportation such as aircraft, automo-
biles, and trains. The core idea of MBE is to construct a model
of a system which hides some implementation details in order
to allow human users (e.g., modelers, safety or security analysts,
certification authorities) or automated analyses to calculate prop-
erties of the final system without requiring access to it. Such
analyses can be run early in the system development lifecy-
cle, even before the modeled component or full system is built.
Many of these analyses rely on notions of reachability between
different system elements, but calculating reachability can be
error-prone and a source of significant performance degrada-
tion in MBE tooling. This paper describes recent work towards

JOT reference format:
Sam Procter. The OSATE Slicer: Graph-Based Reachability for
Architectural Models. Journal of Object Technology. Vol. 22, No. 2, 2023.
Licensed under Attribution - NonCommercial - No Derivatives 4.0
International (CC BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2023.22.2.a3

our goal of supporting accurate, maintainable, and performant
reachability calculations on models of critical systems.

1.1. A Single Source of Truth
The Architecture Analysis and Design Language (AADL) (SAE
Architecture Analysis and Design Language (AADL) 2022) is a
language used for MBE, particularly of embedded, critical sys-
tems. The Open Source AADL Tool Environment (OSATE) is an
integrated development environment that supports editing and
analyzing architecture models specified in AADL. One of the
selling points of AADL, and indeed MBE more generally, is that
a range of different system domains (e.g., safety, security, perfor-
mance) can be modeled in a single specification; this provides a
number of advantages over a siloed approach where different
stakeholders develop and analyze domain-specific models. This
single source of truth approach (Feiler et al. 2009) can help dif-
ferent stakeholders stay synchronized, reduce integration issues,
and reduce overall modeling effort. However, a gap remains be-
tween the potential power and ease of having multiple analyses
operate on a single input model and its realization.

Easy traversal of a model and identification of data flows
through a system would reduce this gap considerably. In par-
ticular, we advocate for the use of efficient slicing in general,
and reachability calculations in particular, in addressing two
primary reasons for the gap between the single source of truth
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concept’s potential and its realization: the cognitive burden of
multiple domain-specific annotations on a single model and the
challenge of repeatedly traversing large models.

1.1.1. Cognitive Burden Architecture models extended
with domain-specific annotations are, as a truism, likely to be
useful to analysts and certification authorities from that specific
domain. That utility decreases, or at least is more difficult to
fully and easily realize, when annotations from multiple do-
mains are combined into a single model. While required for the
single source of truth approach, multi-domain models can be
larger and more challenging to understand than those focused
on a single domain; Androutsopoulos et al. note that “models
convey many types of information better than programs, but
become unwieldy in scale far quicker.” (Androutsopoulos et
al. 2013) This challenge is directly correlated with the scale
of system models, and presents a burden for large, industrial
projects.

1.1.2. Model Traversal OSATE, which is based on Eclipse,
has an open, plug-in based architecture. It provides plug-in
authors with support for accessing a model’s elements and their
relationships using the visitor pattern (Gamma et al. 1995).
While well-known and powerful, the visitor pattern relies on the
model’s structure and most naturally supports system analyses
based on hierarchical decomposition into subcomponents. This
can prove challenging to use, in particular for the many analyses
that require a data-flow based ordering of components in a sys-
tem. These analyses typically re-implement similar reachability
calculation metapatterns, which can be a time-consuming and
error-prone task.

1.2. The OSATE Slicer
This paper details a new software tool: a plug-in for OSATE,
which we term the OSATE Slicer (or, where context makes it
clear, simply the Slicer). It automatically constructs a reachabil-
ity graph, which can then be queried by other plug-ins to support
both manual and automated analyses or—in future work—used
to create submodels specific to particular system aspects. Specif-
ically, this paper makes two contributions:

1. Description of OSATE Slicer: We provide details on
the reachability graph’s definition, construction from an
AADL model, and supported queries.

2. Evaluation: We evaluate the suitability of the queries
for various assessments of system architectures, including
both existing and potential analyses. We also compare the
slicer’s performance to existing state-of-the-art, finding
significant performance improvements.

We present an overview of the technologies we build on
in the next section. In Section 3 we discuss the Slicer, then
review the state of the art in Section 4. We evaluate the Slicer’s
performance against this state of the art and its suitability for
various applications in Section 5. We discuss future work in
Section 6 and conclude in Section 7.

2. Technical Background

2.1. Slicing
Program slicing, as originally described, decomposes a program
by analyzing its data and control flow to produce a minimal
version of the program that still produces some desired subset
of the original program’s behavior (Weiser 1984). Other slicers,
like the tool described in this paper, “highlight the identified
subprogram within the larger program” (Androutsopoulos et al.
2013) but do not do any rewriting / do not produce a minimal
program. Regardless of the output format, program slicing has
become a well-established and broadly-applied technique with
a number of refinements and specializations (Silva 2012).

2.1.1. Reachability Graphs Directed graphs are a common
formalization / data structure for slicing implementations, in-
cluding in Weiser’s original formalization and implementation
(Weiser 1984). The specifics of these graphs differ in what the
nodes and edges represent, but in general vertices represent
some notion of program state and edges represent allowable,
i.e., reachable, state transitions. Walks through—and projec-
tions over—the graph are often helpful, though their semantics
(e.g., execution traces, impact of a single program statement)
are dependent on the specifics of the vertex and edge definitions.

2.1.2. Model Slicing Application of program slicing tech-
niques to models is non-trivial task, for reasons both syntactic
(e.g., graphical vs textual representations) and semantic (e.g.,
support for nondeterminism) (Androutsopoulos et al. 2013).
The overlap between state-based model slicing and program
slicing continues to be explored; notable examples include:

– SafeSlice: Operates on SysML, and its primary goal is
requirement traceability rather than reachability analysis
(Briand et al. 2014).

– Ahmadi et al.’s Slicer: Operates on UML-RT, and its pri-
mary goal is preservation of the structural and behavioral
aspects of a reduced model (e.g., Weiser’s original goal)
(Ahmadi et al. 2018).

– Kompren: Operates on any metamodel and conformant
model to automatically generate a slicer for the model
(Blouin et al. 2015).

– Awas: Operates on AADL models, and is very closely
related to this work (Thiagarajan et al. 2021). We use
Awas as a basis for our evaluation; it is described in detail
in Section 4.

2.2. MBE for Critical Systems: AADL, EMV2 and OSATE
Developers of critical systems who want to utilize model-based
engineering have a number of options in terms of modeling
languages and tools, including both OMG’s System’s Modeling
Lanaguage (SysML) (OMG Systems Modeling Language (OMG
SysML), Version 1.6 2019) and SAE International’s Architec-
ture Analysis and Design Language (AADL) (SAE Architecture
Analysis and Design Language (AADL) 2022). For this work we
used AADL because of its strong semantics which enable the
single source of truth concept’s realization, support for multi-
domain modeling (including off-nominal behavior via its error
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1 package BasicErrorFlow
2 public
3 system sys
4 end sys;
5 system implementation sys.impl
6 subcomponents
7 a : abstract Thing.one;
8 b : abstract Thing.two;
9 c : abstract Thing.three;

10 connections
11 aToB1 : feature a.o1 −> b.i1;
12 aToB2 : feature a.o2 −> b.i2;
13 aToB3 : feature a.o3 −> b.i3;
14 bToC1 : feature b.o1 −> c.i1;
15 bToC2 : feature b.o2 −> c.i2;
16 bToC3 : feature b.o3 −> c.i3;
17 annex EMV2 {∗∗ ∗∗};
18 end sys.impl;
19 abstract Thing
20 features
21 i1 : in feature;
22 i2 : in feature;
23 i3 : in feature;
24 o1 : out feature;
25 o2 : out feature;
26 o3 : out feature;
27 end Thing;
28 −− continued in Listing 2

Listing 1 A snippet of AADL’s core language’s textual syntax
showing the BasicErrorFlow example.

modelling language annex (SAE Architecture Analysis and De-
sign Language (AADL) Annex Volume 1 2015)), and extensible
analysis tooling that could benefit from slicing and reachability-
based support.

2.2.1. Core Language: AADL AADL is a language for
modeling the architecture of critical, embedded systems. It
supports the modeling of hardware (e.g., processor, memory) and
software (e.g., thread, subprogram) elements, their interconnec-
tions and any access points or bindings between them. It also
contains element types for aggregating other elements (system),
placeholders for future modeling when details are either unnec-
essary or unavailable (abstract) and “black box” components
where the interface is known but the decomposition and imple-
mentation details should be hidden (device).

AADL has both textual and graphical syntaxes; an example
of its textual syntax is shown in Listing 1 and corresponding
graphical syntax in Figure 1. In order to illustrate the con-
cepts discussed in this section and the next, we will use a
simple system architecture model called the BasicErrorFlow
model. It consists of a single AADL system, which has a single
implementation sys.impl and three abstract components: a, b,
and c. Each component has three inputs (i1, i2, and i3) and
three outputs (o1, o2, and o3).

Notable language features include the separation of an el-
ements’ interface from its implementation: observe that the
system sys is declared on lines 3-4, but it has no ports or other
means to communicate with its environment, so its interface is
empty. However, the abstract component specification named
“thing” has three input and three output features (essentially

sys.impl*
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i3

i1*

i2

o1

o2

o3*

a*

i3

i1

i2

o1*

o2

o3
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i3*
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o1

o2

o3

Source
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Figure 1 A snippet of graphical AADL, showing the BasicEr-
rorFlow model from Listing 1. The black elements and lines
are valid AADL graphical syntax; the red elements and lines
are notional (as EMV2 does not have a graphical syntax) and
correspond to the textual error-modeling annotations in List-
ing 2.

generic communication ports), which are declared in its inter-
face on lines 19-27. sys’s implementation contains a decompo-
sition specification: both subcomponents (lines 6-9) and their
interconnections (lines 10-16) are specified as is an (empty, in
this listing) extension via AADL’s language annex mechanism
(line 17).

Although AADL is a modeling language, its processing is
similar to that of a programming language. Users specify a
declarative model of a system: a collection of component spec-
ifications which tooling automatically compiles into a fully
resolved abstract syntax tree called the instance model. This
instantiation process is critical to resolve references, property
values, etc.

2.2.2. Off-Nominal Language Annex: EMV2 In addition
to the core elements of the language, AADL supports exten-
sions into a number of related modeling domains via language
annexes. A number of annexes exist for modeling e.g., data,
nominal behavior, or off-nominal behavior, i.e., behavior in
the presence of errors. We make extensive use of this latter
annex. The Error Modeling Annex, (in its second revision,
so it uses the abbreviation EMV2) has a number of features
to support various safety and reliability-oriented system devel-
opment and certification activities (SAE Architecture Analysis
and Design Language (AADL) Annex Volume 1 2015). In this
work, we relied heavily on EMV2’s error type, propagation,
and error flow mechanisms; Listing 2 shows a continuation
of the previous listing with EMV2 annotations. These mecha-
nisms broadly align with concepts from the Fault Propagation
and Transformation Calculus, which was designed to support
compositional safety and reliability analysis (Wallace 2005).

1. Error Types: One of the core features of EMV2 is the
ability to define different error types, which are ways in
which communication between system elements can be
malformed, e.g., timing (a message arrives too early or
too late) or value (the value of some data is incorrectly
high or low). The EMV2 annex comes with a library of
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29 −− continued from Listing 1
30 abstract implementation Thing.one
31 annex EMV2 {∗∗
32 use types ErrorLibrary;
33 error propagations
34 o1 : out propagation {ItemTimingError };
35 flows
36 o1TimingSrc : error source o1 {

ItemTimingError };
37 end propagations;
38 ∗∗};
39 end Thing.one;
40 abstract implementation Thing.two
41 annex EMV2 {∗∗
42 use types ErrorLibrary;
43 error propagations
44 i1 : in propagation {ItemTimingError };
45 o3 : out propagation {ItemTimingError };
46 flows
47 i1ToO3 : error path i1 {ItemTimingError

} −> o3 {ItemTimingError };
48 end propagations;
49 ∗∗};
50 end Thing.two;
51 abstract implementation Thing.three
52 annex EMV2 {∗∗
53 use types ErrorLibrary;
54 error propagations
55 i3 : in propagation {ItemTimingError };
56 flows
57 i3TimingSink : error sink i3 {

ItemTimingError };
58 end propagations;
59 ∗∗};
60 end Thing.three;
61 end BasicErrorFlow;

Listing 2 A snippet of textual AADL extending the
BasicErrorFlow example from Listing 1 showing the error
modeling (EMV2) language annex.

common error types, and is designed to be extended by
users via domain- and model-specific type declarations
(Procter & Feiler 2018). We use only one error type
(ItemTimingError, see, e.g., line 34) in our example;
it is part of the standard EMV2 Error Library which is
referenced via the use types declaration on line 32.

2. Propagation Paths: The potential paths error tokens take
between components are represented as propagation paths:
these can be along connections, bindings (e.g., a bus fails,
causing errors with messages sent on the connections that
were bound to it), or any user-defined path through a sys-
tem (which enables modeling propagations that do not
follow a system’s communication topology). Importantly,
propagation paths are not part of the declarative model (i.e.,
they are created as part of the instantiation process). Rather,
they are specified by the modeler in a piecemeal fashion
as part of a component’s interface, see e.g. line 45 of List-
ing 2 which specifies that the component Thing.two may
propagate out an ItemTimingError on its o3 feature.

3. Error Flows: The specification of how error tokens move
through a component—i.e., are created, propagated, trans-

formed, or consumed—is detailed by the component’s
error flows.

(a) Creation: The instantiation of an error type at an
error source creates a token; see line 36 of Listing 2.

(b) Propagation: The transmission of an error token
from one element to another. Used when an element
cannot compensate for a particular error, e.g., if a
sensor is connected to a bus and produces late output,
the bus will propagate the late error tokens. The
declaration on line 47 of Listing 2, specifies that
an ItemTimingError token will be output on the
component’s o3 output feature if a token of that same
type arrives on the component’s i1 input feature.

(c) Transformation: The conversion of a token of a
particular type into a token of a different type. Used
when a model element’s behavior changes an error,
but does not eliminate it, e.g., if a sensor is con-
nected to a controller and produces late output, the
controller may transform late error tokens into unsafe
commands (not shown in Listing 2).

(d) Consumption: The consumption of error tokens at
an error sink; see line 57 of Listing 2.

2.2.3. Tooling: OSATE The Open Source AADL Tool En-
vironment (OSATE)1 is the reference implementation for the
AADL language. It supports editing and analyzing AADL mod-
els, including many of the more popular automated analyses
across a number of domains including safety, security, perfor-
mance, and others. It can be used directly by modelers, but
has also been used by other tools as an instantiator / analyzer
for automatically-generated AADL models. The OSATE Slicer
also makes extensive use of OSATE’s instantiator’s recent exten-
sions to support the EMV2 Annex. Much like the instantiation
process for the core language, these extensions make EMV2
more amenable to automated analysis by, among other things,
supporting easier model traversal and concretizing model ele-
ments whose specifications span multiple components or levels
of the system hierarchy.

3. The OSATE Slicer
The OSATE Slicer calculates the reachability between different
elements of an AADL model. It does this by generating, and
then querying, two separate reachability graphs: one for nom-
inal behavior, i.e., the connectivity and reachability between
elements when the system is operating under expected condi-
tions, and one for off-nominal behavior, i.e., connectivity and
reachability between elements in the presence of errors. Both
graphs are generated simultaneously from a single instance
model, the nominal reachability graph from AADL’s core ele-
ments and the off-nominal reachability graph from AADL’s core
elements as well as any available EMV2 annotations. In this
section we first define the graph representation (Section 3.1),
then discuss how the graph is generated from an input model
(Section 3.2), and available traversals and queries are presented
in Section 3.3.
1 https://osate.org
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(b) Off-Nominal Reachability(a) Nominal Reachability

sys_impl_Instance.a.i1

sys_impl_Instance.a.o1sys_impl_Instance.a.o2 sys_impl_Instance.a.o3

sys_impl_Instance.a.i2 sys_impl_Instance.a.i3

sys_impl_Instance.b.i1sys_impl_Instance.b.i2 sys_impl_Instance.b.i3

sys_impl_Instance.b.o1sys_impl_Instance.b.o2 sys_impl_Instance.b.o3

sys_impl_Instance.c.i1sys_impl_Instance.c.i2 sys_impl_Instance.c.i3

sys_impl_Instance.c.o1sys_impl_Instance.c.o2 sys_impl_Instance.c.o3

sys_impl_Instance.a.o1TimingSrc.ItemTimingError

sys_impl_Instance.a.o1.ItemTimingError

sys_impl_Instance.b.i1.ItemTimingError

sys_impl_Instance.b.o3.ItemTimingError

sys_impl_Instance.c.i3.ItemTimingError

sys_impl_Instance.c.i3TimingSink.ItemTimingError

Figure 2 (a) Left, the nominal reachability graph for the BasicErrorFlow example. (b) Right, the model’s off-nominal reachability
graph. Filled arrowheads represent edges added in the first phase of the respective graph generation algorithms, edges with empty
arrowheads are added in their second phase.

3.1. Graph Representation
3.1.1. Nominal Graph Representation The nominal graph
representation GN is comprised of a set of vertices and directed
edge relation: GN = (VN ,→eN ):

1. Vertices (VN) include all of a model’s features (F) and the
access points (A) used by connections: VN = F ∪ Aused

2. Edges (→eN ) are pairs of features that are directly (i.e.,
intransitively) connected: →eN⊆ VN × VN

In the BasicErrorFlow example’s nominal reachability graph,
shown in Figure 2(a), there are 18 vertices, identified by their
full path from the root of the system instance, i.e., VN =
{sys_impl_Instance.[a − c].[i, o][1 − 3]}. Edges are anony-
mous, but since only one edge is allowed per pair of vertices
in our representation2, they can be uniquely identified by their
source and destination vertex’s names.

3.1.2. Off-Nominal Graph Representation The off-
nominal graph representation GO is similarly comprised of a
set of vertices and directed edge relation: GO = (VO,→eO).
However, its vertex definition is extended to also include error
information.

1. Vertices (VO) are the elements of the model that can prop-
agate error tokens (Propagations (PF ∪ PB ∪ PA ∪ PP),
Error Sources (RSrc), Error Sinks (RSnk)) and the to-
ken (T) that is propagated, i.e., VO = L × T, L =
PF ∪ PB ∪ PA ∪ PP ∪ RSrc ∪ RSnk:

2 This is a restriction of our formalization (not AADL) and we can remove it if
necessary. However, it simplifies the graph representation and does not impact
the expressiveness of our query types.

(a) Feature Propagations, PF

(b) Binding Propagations, PB

(c) Access Propagations, PA

(d) Point Propagations, PP

(e) Error Sources, RSrc

(f) Error Sinks, RSnk

(g) Error Tokens, T

2. Edges are connections between vertices →eO⊆ VO × VO

In the BasicErrorFlow’s off-nominal reachabil-
ity graph, shown in Figure 2(b), there are six
vertices labeled by their full paths including the
name of the propagated error token. So, PF =
{sys_impl_Instance.[a.o1, b.i1, b.o3, c.i3].ItemTimingError},
RSrc = {sys_impl_Instance.a.o1TimingSrc.ItemTimingError},
RSnk = {sys_impl_Instance.c.o3TimingSrc.ItemTimingError},
T = {ItemTimingError}, PB = PA = PP = ∅.

3.2. Graph Generation
The OSATE Slicer’s implementation is open-source and pub-
licly available3. Its reachability graphs are implemented using
JGraphT (Michail et al. 2020). Edges use JGraphT’s default
representation, and are directed, anonymous, and unweighted.
Vertices point to the AADL model elements (e.g., features, er-
ror sources / sinks) they are associated with; maintaining these
pointers enables users of the Slicer to query linked AADL ele-
ments directly to, e.g., fetch associated property values (such
as latency) or perform more in-depth processing. Generation of
both the nominal and off-nominal graphs involves two distinct
3 https://github.com/osate/osate2/tree/master/core/org.osate.slicer
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Algorithm 1 Nominal Graph Generation. VERT(Elem) and
EDGE(Src, Dst) create (if necessary) and retrieve vertices
and edges associated with supplied parameters. CONTAINER
retrieves the model element that contains the supplied parame-
ter.

Require: AADL instance Model m
Ensure: Populated set of vertices VN and edges →eN

1: function CONSTRUCTNOMINAL(m)
2: ED := ∅ ▷ Components with explicit decompositions
3: GN = (VN ,→eN ) := (∅, ∅) ▷ Initialize GN
4: for f eat ∈ m do ▷ f eat is a feature
5: VN := VN ∪ VERT( f eat)
6: for conn ∈ m do ▷ conn is a connection
7: VN := VN ∪ VERT(connSrc) ∪ VERT(connDst)
8: →eN := →eN ∪EDGE(connSrc, connDst)
9: ED := ED ∪ CONTAINER(conn)

10: for f low ∈ m do ▷ f low is a end to end flow
11: →eN := →eN ∪EDGE( f lowSrc, f lowDst)
12: ED := ED ∪ CONTAINER( f low)

13: for comp ∈ (m \ ED) do ▷ comp is a component
14: for f eatin ∈ comp do
15: for f eatout ∈ comp do
16: →eN := →eN ∪EDGE( f eatin, f eatout)

phases which we detail in the following sections; at a high-level
the first phase uses the model’s explicit declarations for generat-
ing most of the vertices and edges, the second phase generates
additional vertices and edges based on implicit relationships
derived from the semantics of AADL and EMV2.

3.2.1. Nominal Graph Generation Phase 1 Generation
of the nominal graph is fairly straightforward, as shown in
Algorithm 1. First, a vertex is created for each of the model’s
features (lines 4-5) and an edge is created for every connection
(lines 6-8). connections can also connect model elements which
are not features; in this case only necessary vertices will be
created, i.e., no vertex will be created for unused access points.
Edges are also created if a flow specification instance describes
an intra-component connection (lines 10-12). Edges added in
this phase have filled arrowheads in Figure 2(a).

Phase 2 If a component is a leaf (i.e., it does not specify any
subcomponents and their interconnections) and does not define
relationships between its inputs and outputs using at least one
end to end flow, we assume the worst case and map to every
input feature to every output feature (lines 13-16). In Figure
2(a), these edges have empty arrowheads. While this strategy
ensures that reachability queries do not produce false negatives,
it can lead to a potentially significant number of false positives,
i.e., multiple non-existent paths through the system may be
identified. To reduce the number of non-existent paths, flow
specifications should be provided by the modeler when possible.

3.2.2. Off-Nominal Graph Generation This is notionally
similar to the previous case; however the specific sources of

Algorithm 2 Off-Nominal Graph Generation. VERT(Elem, T)
and EDGE(Src, Dst) create (if necessary) and retrieve vertices
VElem and edges VSrc, VDst associated with supplied parame-
ters.

Require: AADL instance model m
Ensure: Populated set of vertices VO, partially populated set

of edges →eO , set of possible propagations PP

1: function CONSTRUCTOFFNOMINAL(m)
2: PP := ∅ ▷ Set of possible propagations
3: GO = (VO,→eO) := (∅, ∅) ▷ Initialize GO
4: for (src, Psrc, Tsrc) ∈ mRSrc do ▷ Rsrc is a error source
5: VO := VO ∪ VERT(src, Tsrc) ∪ VERT(Psrc, Tsrc)
6: →eO := →eO ∪EDGE(Vsrc, VPsrc)

7: for (snk, Psnk, Tsnk) ∈ mRSnk do ▷ Rsnk is a error sink
8: VO := VO ∪ VERT(snk, Tsnk) ∪ VERT(Psnk, Tsnk)
9: →eO := →eO ∪EDGE(VPsnk , Vsnk)

10: for ErrPath ∈ m do ▷ ErrPath is a error path
11: VO := VO ∪ VERT(ErrPathdst, Tdst)
12: for (src, Tsrc) ∈ ErrPath do
13: VO := VO ∪ VERT(ErrPathsrc, Tsrc)
14: →eO := →eO ∪EDGE(VErrPathsrc , VErrPathsnk

)

15: for PPath ∈ m do ▷ PPath is a propagation path
16: PP := PP ∪ PPROP(PPathsrc, PPathdst)

the vertices and edges differ, as does the strategy for generating
intracomponent flows in the second phase.

Phase 1 The first phase, shown in Algorithm 2, begins by
creating a vertex for each error source, a second vertex for the
associated propagation (i.e., feature, binding, access, or point
propagation) and then creating an edge from the source to the
propagation (lines 4-6). Incoming propagations are mapped to
sinks in a similar fashion (lines 7-9).

Because it is possible to have multiple errors transform into
a single error without requiring nondeterminism (e.g., both a
timing error and a value error could cause a component to fail),
EMV2’s error paths can have multiple error tokens associated
with their source. However, the reverse (e.g., a timing error that
could cause either a value error or component failure) requires
nondeterminism and is thus not allowed: destinations can only
have a single error token. Thus, each error path requires the
creation of a single vertex for its destination, but potentially
multiple for its source (one for each error type), as well as an
edge from each source vertex to the destination vertex (lines
10-14). Edges added in this phase are represented with filled
arrowheads in Figure 2(b).

Finally, we iterate over the model’s propagation paths, which
document potential links between one model element’s outgo-
ing propagation and another model element’s incoming one.
Importantly, these may not be feasible: if the required inputs
cannot arrive at the source propagation, the propagation will
not trigger and the outputs will not be propagated to the des-
tination. It is the responsibility of the reachability analysis to
create edges only for feasible paths. In order to support this
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Algorithm 3 Fixpoint Calculation. POP removes an item
from the stack, EDGE(Src, Dst) creates and retrieves edges
associated with supplied parameters.

Require: AADL model’s error sources RSrc, populated set of
vertices VO, partially populated set of edges →eO , set of
possible propagations PP

Ensure: Fully populated set of edges →eO

1: function CALCULATEFIXPOINT(RSrc, VO,→eO , PP)
2: repeat
3: →′

eO
:= →eO

4: for src ∈ RSrc do ▷ src is a error source
5: edges := VsrcOut ▷ Outgoing edges of Vsrc
6: while |edges| > 0 do
7: CurrEdge := POP(edges)
8: src := VCurrEdgeDst ▷ CurrEdge’s dest.
9: for OutEdge ∈ srcOut do

10: edges := edges ∪ OutEdge
11: for Prop ∈ {PP|Src = src} do
12: tgt := PropDst
13: NewEdge := EDGE(src, tgt)
14: if NewEdge /∈→eO then
15: edges := edges ∪ NewEdge
16: →eO := →eO ∪NewEdge
17: until →′

eO
=→eO ▷ Halt when edge set is unmodified

calculation, performed in Phase 2, we collect source and destina-
tion propagations into a set of possible propagations for further
analysis (lines 15-16).

Phase 2 The second phase, shown in Algorithm 3, starts
at each error source and follows all possible edges, including
those described in the set of possible propagations identified
previously. If a possible propagation is feasible, it is concretized
into an edge and the algorithm repeats in case this new edge
opened up previously infeasible propagation paths; it terminates
when propagating a token from each source no longer adds any
edges to the graph. Edges added in this phase are represented
with empty arrowheads in Figure 2(b).

We begin by selecting an error source (line 4) and initializ-
ing a stack of edges to the error source’s outgoing edges (line
5). Then, as long as the stack isn’t empty (line 6), an edge is
popped from the stack, and we store its destination (the start
of the next step, so we term it src). Next, src’s outgoing edges
are pushed onto the stack (lines 7-10). We then get all possible
propagations which have src as a source (line 11), get the target
for each one and create an edge from src to the target (lines
12-13). If that edge is new to the graph, we add it to both the
graph and the stack (lines 14-16); this modifies the graph which
means CALCULATEFIXPOINT will repeat.

3.3. Graph Queries

Once the reachability graph has been created, we can perform
various queries that may be of interest to users and automated
analyses. These four query types align directly with the “query

Algorithm 4 Reachability Calculation, which is a simple
breadth-first walk of the graph to construct the reachable
subgraph. EDGE(Src, Dst) creates and retrieves the edge
associated with supplied parameters, BFITER retrieves a
breadth-first graph iterator for the supplied graph starting at
the supplied vertex, SUBGRAPH creates an initially empty
subgraph of the supplied graph.

Require: Graph G, Slicing criterion vorigin
Ensure: Reachable subgraph Gsub

1: function REACH(G, vorigin)
2: Gsub = (Vsub,→esub) := (∅, ∅) = SUBGRAPH(G)
3: Vsub := Vsub ∪ vorigin
4: vprevious := vorigin
5: for vcurrent ∈ BFITER(G, vorigin) do
6: Vsub := Vsub ∪ vcurrent
7: →esub := →esub ∪EDGE(vprevious, vcurrent)
8: vprevious := vcurrent

concepts”4 identified by Thiagarajan et al., though we modify
some of their nomenclature slightly (Thiagarajan et al. 2021).

3.3.1. Forward Reachability The first query type, shown
graphically in Figure 3(a) and termed forward reachability,
answers the question “What model elements can this model
element affect?” That is, given a slicing criterion of some model
element e, this query returns a subgraph containing all vertices
and edges that could be reached by data, events, or errors that
leave e. Since an entire subgraph is generated, the results of
this query may be quite large. The query is therefore likely to
be most useful either to support visualization, or as a first step
in a multi-stage query. The process for creating the subgraph,
shown in Algorithm 4, is a straightforward breadth-first walk
of the reachability graph, where visited vertices and edges are
added to an initially-empty subgraph. Note that the process is
transparent to callers and identical regardless of if the nominal
or off-nominal graph is being queried: the nominal graph is
used if the slicing criterion is a core AADL model element, the
off-nominal graph is used if the criterion is an EMV2 element.

3.3.2. Backward Reachability The second query type,
shown graphically in Figure 3(b) and termed backward reacha-
bility, answers the question “What model elements can affect
this model element?” That is, given a model element e, this
query returns a subgraph containing all vertices and edges that
can produce data, events, or errors that will reach e. Backward
reachability is calculated with the same algorithm as forward
reachability, the difference is that a reversed view of G (i.e., one
with an identical vertex set but reversed edges) is queried.

3.3.3. Reachability From The third query type, shown
graphically in Figure 3(c) and termed reachability from, an-
swers the question “Can this model element reach that one?”

4 Thiagarajan et al. identify five query concepts; the fifth concept is queries
involving errors. Since any of the Slicer’s queries can use errors as a slicing
criterion, we distinguish only four.
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Figure 3 Visualization of various queries on the BasicErrorFlow reachability graphs from Figure 2. Origin and target (in parts (c)
and (d)) vertices are shown in black, and labeled e. Vertices which will be part of the returned subgraphs (parts (a) and (b)) or are
used in calculating the result (parts (c) and (d)) are grey; the special intermediate element used in reach through queries (d) is dark
grey. Dashed edges and vertices are eliminated by the query.

Algorithm 5 Reachability Through Calculation, which
verifies that all paths from an origin to a target pass
through a specified midpoint, or finds a counterexample.
PATH(G, vorigin, vtarget) finds a path from vorigin to vtarget in
G, CUTPOINTS identifies the set of cutpoints in the supplied
graph.

Require: Graph G = (V,→e), Vertices vorigin, vmid, vtarget
Ensure: Path Gpath containing counterexample, or nothing

1: function REACHTHROUGH(G, vorigin, vmid, vtarget)
2: G f wd := REACHFORWARD(G, vorigin)
3: Gback := REACHBACKWARD(G f wd, vtarget)
4: if vmid /∈ CUTPOINTS(Gback) then

▷ Remove midpoint and all edges connected to it
5: Gmask := (V \ vmid,→e \(vmid, __) ∪ (__, vmid))
6: Gpath := PATH(Gmask, vorigin, vtarget)
7: else
8: Gpath := (∅, ∅)

That is, given model elements e1 and e2, this query returns true
if e2 is reachable from e1; this aligns with the slicing concept
of chopping (Silva 2012). Since this query returns a boolean,
the implementation is somewhat optimized in that it simply per-
forms a forward reach from e1 and then checks if e2 is included
in the returned subgraph’s set of vertices.

As this query returns a boolean result rather than a subgraph,
it is useful for automated analyses that pose safety- or security-
specific questions such as “Can an error from this sensor be
propagated into that actuator?” or “Can data from this classified
source reach that untrusted component?”

3.3.4. Reachability Through The fourth query type, shown
graphically in Figure 3(d) and termed reachability through, an-

swers the question “Do all paths from this model element which
reach that one go through some intermediate element?” That is,
given model elements e1, e2, and e3, this query returns true if
every path from e1 to e3 passes through e2. In our implementa-
tion, we also support the retrieval of a counterexample if a path
from e1 to e3 is found that doesn’t use e2.

This query type is essentially a more powerful (though
slower) version of the previous type, and is designed to an-
swer more subtle / realistic safety- or security-specific questions
such as “Will errors from this sensor be mitigated by a filter
before reaching that actuator?” or “Can data from this classified
source reach that less-trusted component without first passing
through an encryption module?”

The algorithm for this query type, shown in Algorithm 5,
is less trivial than the previous three. First, we calculate the
forward reachability from the origin (line 2), this gives the
subgraph reachable from the origin. We then do a backwards
reachability query on that subgraph from the target (line 3), this
produces a subgraph with all paths from the origin to the target.
We then calculate the set of cutpoints5 of this second subgraph
and see if it contains the specified midpoint. If not, we calculate
a counterexample by creating a subgraph without the midpoint
(line 5) and use it to find a path from the origin to the target
(line 6). Note that our implementation contains a number of
optimizations which are not shown in this pseudocode, e.g.,
checking for reachability immediately (in case the target is
completely unreachable from the origin).

3.3.5. Other Queries The previous four query types were
the primary motivators in the Slicer’s development, and will
likely provide most of the utility from the reachability graph.
There are, however, other interesting queries that are easily
specified and / or implemented using reachability graphs, and

5 Cutpoints, also called cut or articulation vertices are vertices whose removal
will disconnect an otherwise connected graph (Chartrand et al. 2015, pg. 57).
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we briefly discuss them here.

Model Validation Many analyses, both manual and automated,
begin with the premise that an architectural model is well-
formed according to some criteria, but establishing the validity
of these assumptions can be challenging. As an example, a
safety analysis might reasonably assume that all error sources
produce error tokens that can reach error sinks, and all error
sinks are reachable: if not, the model may be incomplete or
incorrect. A new implementation of an existing safety analysis
(the Fault Impact Analysis, described in more detail in Section
5.1.1) makes these assumptions and it was straightforward to
implement verification of them using depth-first traversals of
the off-nominal reachability graph.

Neighbors One of the strengths of AADL is its support for
describing hierarchical (de)composition, which is flexible and
powerful. This expressiveness is a boon to users but can prove
challenging for tool developers.

One seemingly simple task is finding a component’s neigh-
bors, i.e., given some model element e, discovering what model
elements produce e’s input or consume its output. Finding these
same-abstraction-depth neighbors can be challenging using only
the instance model, however, since the AADL instantiation pro-
cess “flattens” the hierarchy: if a process contains a thread that
communicates with a thread in a separate process, extracting the
relationship between the two processes is not straightforward.
Our implementation’s use of an element’s full path through
the system model as the vertex label, however, allows us to
extract its abstraction depth (i.e., the number of elements it is
contained within) as a derived attribute. With easy access to
an element’s abstraction depth and those that it communicates
with—provided trivially by the incoming and outgoing edges
of the element’s associated vertex—neighbor calculation is also
straightforward and in use by an existing safety analysis (the Ar-
chitecture Supported Audit Processor, described in more detail
in Section 5.1.1).

4. Related Work: Awas
Awas, an “AADL information flow and error propagation anal-
ysis framework” (Thiagarajan et al. 2021) is a software tool
that addresses many of the same technical and technological
challenges as the OSATE Slicer. In this section, we describe
Awas to give a context for the evaluation of the Slicer; for a
broader survey of related work the interested reader is referred
to Thiagarajan’s work or Androutsopoulos’s survey of slicing
on behavioral models (Androutsopoulos et al. 2013).

The conceptual differences between Awas and the Slicer
center around different design goals: the Slicer aims to be
smaller and more performant, while Awas is more flexible. To
this end, compared to Awas, the Slicer has:

– A Simpler Formalization: The Slicer’s formalization is
relatively straightforward, and does not include first-class
support for some AADL features (e.g., a component’s
abstraction hierarchy) that Awas does.

– A Simpler Implementation: This simpler formalization
and use of JGraphT lends itself to a simpler implemen-

tation as well. Awas is built on top of Sireum6, which
is a “high-assurance system engineering platform” that
supports a range of activities across the development life-
cycle for critical, embedded systems (Hatcliff et al. 2018).
Sireum makes use of AADL in some of these activities, but
its scope extends beyond the architectural modeling that
AADL supports. Sireum’s use can pose some challenges if
its full set of capabilities are not needed: it is implemented
in a different language (Scala, though Java interaction is
supported via a facade), a somewhat heavyweight installa-
tion (distribution via two .jar files totalling nearly 50MB
with another 50MB of libraries, as opposed to the Slicer’s
<30KB .jar with 1.3MB of libraries), and a more compli-
cated installation process. The benefits of this integrated
approach are significant and will likely outweigh the costs
for some use cases (see, e.g., (Cofer et al. 2022)).

– A Stronger Adherence to OSATE Meta-Model: The
Slicer builds its reachability graph directly in-memory
from the OSATE-supplied instance model, as opposed
to Awas / Sireum’s custom intermediate representation.
Maintenance, performance, and ease-of-comprehension
by clients (i.e., plugin authors) should be aided by this
consistency.

– No Inbuilt Support for Visualization: Awas can generate
HTML5-based visualizations which are rendered in and
and can be interactively explored with a web-browser. The
reachability graph can be explored by clicking on ports or
connections, queried using stored or hand-written queries,
and multiple levels of the hierarchy displayed in different
windows.

– No Arbitrary Query Support: While queries in the Slicer
are performed by calling specific API methods, Awas has
a query language which allows the execution of arbitrary
queries by either other plugins or end users.

5. Evaluation
We now turn to an evaluation of the OSATE Slicer along two
dimensions: first, its suitability for some of the more common
types of analyses performed by modelers, and second, its per-
formance on a corpus of open-source system models.

5.1. Suitability for Analysis
Many of the analyses for AADL models are compositional: com-
ponents are modeled individually by a user, and then an analysis
(possibly, but not necessarily, automated) considers their com-
position into an entire system or subsystem. Safety analyses,
for example, seek to answer questions about the overall system
using EMV2 specifications from individual components; OS-
ATE’s built-in latency analysis calculates the end-to-end time
necessary to respond to some input or actuate based on a sensed
value. Many of these system-level properties are really analy-
ses not of the entire system but of paths through it, it is these
analyses that the Slicer can aid. Other analyses will not benefit,
however, such as analyses that aggregate properties across entire
systems or subsystems rather than individual paths (to calculate,

6 https://sireum.org/
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e.g., power consumption or system cost) or those that are fo-
cused on component-level properties such as task scheduling
that is local to a processor. In this section we discuss the Slicer’s
utility in three domains of analysis: safety, security, and system
latency. We find that reimplementations of existing analyses are
far simpler (as they do not require extracting data flow from a
visitor-pattern traversal of the model’s abstract syntax tree) and
less error prone (as the algorithms have been previously tested
for correctness) than the original implementations.

5.1.1. Safety

Theory System safety relies heavily on concepts defined on
paths through the system. The semantics of error propagation
in AADL’s EMV2 is based in large part on the Fault Propaga-
tion and Transformation Calculus which supports answering
system-level questions (akin to forward and backward reacha-
bility queries) like “What happens if this component produces
erroneous output?” or “How might erroneous input be propa-
gated into that component?” (Wallace 2005)

Fault Tree Analysis, a popular system-level hazard analysis
technique, also supports the identification of cut sets, which are
sets of “component failures and/or event combinations that can
cause” undesired events to occur (Ericson II 2016). These cut
sets can be conceptualized and reasoned about as paths through
the off-nominal behavior of the system.

Usage We are currently using the OSATE Slicer in two safety
analyses. The first, the Architecture Supported Audit Processor
(ASAP), is a plugin for OSATE that presents safety-specific
views of a system (Procter & Hugues 2022). ASAP, which
was first implemented using Awas, relies heavily on both for-
ward and backward slicing and the neighbor-finding algorithm
discussed in Section 3.3.5. While heavily automated, ASAP
provides support for manual safety analysis and this usage of
the Slicer aligns well with our goal of reducing the cognitive
burden associated with analyzing multi-domain models (see
Section 1.1.1). The models used by ASAP have been small
enough that the performance impacts of switching from Awas
to the OSATE Slicer have been noticeable but not significant.
The reduction in complexity of use, however, (by, e.g., not need-
ing a full Sireum installation) has accelerated development and
simplified distribution.

The second safety analysis that the Slicer has been used in is
a (currently in-development and unreleased) re-implementation
of the Fault Impact Analysis (FIA), a relatively simple hazard
analysis (see, e.g., Larson et al.’s description of the existing
implementation (Larson et al. 2013)). The FIA produces a
spreadsheet documenting, for each error source, the path of
generated errors through a system, i.e., which components prop-
agate or transform which errors. A straightforward application
of the forward reachability query, the new implementation us-
ing the Slicer is far simpler and has fewer limitations than the
existing version. For example, the existing implementation has
a hardcoded limit on the length of the propagation path an error
can take through a modeled system.

5.1.2. Security

Theory Much of the effort spent on securing critical systems
focuses on security by design: establishing that various prop-
erties hold across the entire system, as opposed to preventing
specific attacks. This higher-level focus can involve showing
that the system’s architecture guarantees various types of prop-
erties; two of the most common are confidentiality and integrity
of information (Anderson 2020). Confidentiality—the need to
keep secret information secret—can be at least partially estab-
lished using data flow / reachability information: if secret data
can be shown to only flow through specific components, then
the whole system need not be scrutinized as closely as those
specific components. Similarly, integrity—that information is
genuine as opposed to forged—is easier to establish when it can
be shown that only certain trusted components have had access
to it.

The flow of malicious data and control through a system
are also of interest to system modelers; recent work has also
demonstrated the viability of AADL for the generation of attack
trees, e.g., TAMSAT (Wortman & Chandy 2022). Attack trees
are similar to fault trees except they focus on malicious activities
rather than component failures or unintended occurrences.

Usage None of the existing AADL / OSATE tooling uses
the Slicer for security analysis. However, there are two anal-
yses where its usage is being evaluated. The first involves
verification of a number of security properties specified by the
Bell-LaPadula (BLP) security policy (Anderson 2020). Green-
house et al. identify four classes of properties that are necessary
to establish an AADL model’s compliance with a BLP policy
(Greenhouse et al. 2021); verification of three7 of them could
potentially be simplified with the OSATE Slicer:

1. The Star Property: This property specifies that high-
security information should not be readable by a compo-
nent that can send it to a low-security component. This
can be established by examining the reachability of data
leaving high-security ports.

2. Architectural Consistency: Greenhouse et al. describe
a number of checks required to make sure that a model’s
“security attributes are consistent with AADL-specific struc-
tures” such as flow path specifications. This can be estab-
lished by retrieving the path through the system described
by the flow.

3. Information Sanitization: Violations of the star property
are necessary in practice, e.g., high-security information
is routinely transmitted through low-security components
after it is encrypted. The challenge lies in making sure that
it will always be encrypted; this can be established using
the Reach Through query type described in Section 3.3.4.

The second security analysis where we expect the OSATE
Slicer to prove helpful is in the generation of attack trees. Ex-
isting tooling for calculating attack trees (Delange et al. 2016)
has proven difficult to maintain and less robust than desired;

7 The fourth property identified by Greenhouse et al., the Simple Security
Property, is verifiable locally and does not require system-level reasoning.
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this stems in part from the difficulty of calculating reachability
directly on the AADL instance model. This corresponds directly
to our goal of simplifying model traversal (see Section 1.1.2).

5.1.3. System Latency OSATE’s latency analysis, which
calculates the total latency along end to end flows through a
system, is one of the more popular and frequently-used sys-
tem analyses (Feiler et al. 2009). Intuitively, the analysis is a
candidate for re-implementation using the OSATE Slicer: the
analysis calculates the sum of individual latencies along a path
through a system, e.g., the processing times of components,
the transmission delay along connections, or the delay asso-
ciated with the type of sampling used by a particular sensor.
What’s more, the existing implementation is somewhat dated
and complex; refactoring could service considerable technical
debt. However, there are sophisticated features of the existing
implementation, such as use of AADL’s modes, which the Slicer
does not currently support. Addressing these limitations will be
necessary to reach feature parity, and likely enable broader use
of the Slicer.

5.2. Performance
Our overall goals of increasing the usability of both manual and
automated model analyses by improving tooling requires exam-
ining the user experience. Software tooling that is responsive
and performant contributes to that goal: both because the us-
ability of software is negatively impacted by poor performance
and because some models may simply not be analyzable by
unoptimized tooling. To that end, in this section we examine
the execution times of various queries using the Slicer, and as
a point of comparison, the execution times of the same queries
using Awas.

5.2.1. Experimental Setup All but one of the models in
our testing corpus (the “Large” version of the Wheel Brake
System) were originally used in the performance evaluation
of Awas (Thiagarajan et al. 2021). We have made the models,
our automated testing infrastructure, the exact queries executed,
human-readable versions of the reachability graphs generated by
both the OSATE Slicer and Awas, raw runtime and complexity
data, and our notes on modifications required by the models
(e.g., fixes for compilation or parse errors) available as part of
the artifacts supporting this paper and online8. Tests were run
on a 2019 MacBook Pro with a 2.4GHz Core i9 processor and
32GB of RAM.

As both graph generation and query calculation encountered
significant speedups in subsequent executions (presumably due
to the effects of caching and the JVM’s just-in-time compila-
tion), we ran the full evaluation suite twice for both the Slicer
and Awas. We used the timing values from the second exe-
cutions, and performed three distinct queries for each query
type; the first query’s execution time is shown in the “Cold
Start” column of Tables 1 and 2 and the third query’s execution
time is shown in the “Hot Start” column. Minor differences in
execution time are largely attributable to the different queries
themselves: the slicing criteria / query parameters were selected

8 https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=974364

somewhat arbitrarily, e.g., some are valid, some invalid, some
return large subgraphs or involve significant portions of the
graph while others are restricted to smaller subgraphs or can
trigger short-circuit optimizations that one or both of the Slicer
and Awas support. As the typical use case of the Slicer has
not been well-established, it is not immediately clear whether
the cold- or hot-start times represent a more accurate execution
time for the average user. While it is unlikely that a user would
rapidly and repeatedly generate or query the reachability graph,
it is possible or even likely that some automated analyses will.
For completeness, we have included both in our results.

5.2.2. Discussion Though execution time varied depending
on model, query type, and slicing criterion, in general we ob-
served that the Slicer generated its graph and executed queries
one to two orders of magnitude faster than Awas. Additionally,
the OSATE Slicer successfully analyzed several queries that did
not terminate (given a maximum execution time of 30 seconds)
when using Awas.

We found the Slicer’s performance to be satisfactory. Execu-
tion times are low compared to: Awas, the duration considered
instantaneous by users (below 100-200ms (Seow 2008)), and
other system modeling activities. Regarding the latter, we note
that the Slicer’s graph generation took between roughly 1-6%
of the time required to instantiate the models, which is required
to perform essentially any useful system analysis.

Differences in Formalization Strategy As discussed in Sec-
tion 4, some of the performance difference is attributable to
the formalization strategies employed by Awas and the Slicer,
namely, that the OSATE Slicer’s formalization (see Section 3.1)
is relatively lightweight compared to that used by Awas. For
example, Awas’s formalization includes first-class support for
the containment hierarchy specified by an AADL model: a com-
ponent’s associated vertex in the graph representation contains a
subgraph of the component’s decomposition; the OSATE Slicer
does not store the hierarchical relationships between model ele-
ments directly, but can regenerate it due to its implementation
strategy (see the discussion of finding a model element’s neigh-
bors in Section 3.3.5). Additionally, Awas’s edge specification
contains two binary relations as opposed to the single relation
used by the Slicer; which the analysis uses depends on the gran-
ularity of the query. The primary impact of these differences
are in the complexity of the implementation: the algorithms
used by Awas for calculating query results are, in general, more
complex than their Slicer counterparts.

6. Future Work

In our work on the OSATE Slicer, we have identified two pri-
mary avenues for future work: enhancing the design of the API
used to query the reachability graph and moving from calcu-
lating model slices to automated rewriting. The first depends
on identifying and profiling real-world uses and users of the
Slicer, while the second is more of an engineering (and, to a
lesser degree, scientific) challenge.

The OSATE Slicer: Graph-Based Reachability for Architectural Models 11

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=974364


OSATE Slicer Cold Start Runtime (µs) Hot Start Runtime (µs)

Generate Reach From Through Generate Reach From Through

Aircraft System 36359 4873 150 2700 2296 60 68 68

Display Manager 4166 138 83 356 2486 157 46 63

Flight Guidance System 9234 89 44 252 2675 101 50 243

Flight Guidance TwoGPS 4523 176 57 235 3055 80 61 82

Isolette 955 117 45 182 733 36 35 142

Speed Regulation 9037 363 136 1008 10193 266 86 513

Simple UAV 2950 91 60 240 1896 79 33 203

AFRL UxAS 4291 388 239 312 3486 207 204 354

Wheel Brake System 3683 276 52 267 4123 51 35 154

Wheel Brake System (Large) 9627 601 443 664 8149 434 476 772

Table 1 Complexity and runtime data when using the OSATE Slicer on a collection of open-source AADL models. Vertices
and edges refer to elements of the reachability graph generated by the OSATE Slicer. Cold Start runtimes refer to the first graph
generation, forward reach, reach from, and reach through queries, Hot Start runtimes refer to the third.

Awas Cold Start Runtime (µs) Hot Start Runtime (µs)

Generate Reach From Through Generate Reach From Through

Aircraft System 668252 74669 30738 4696 74550 1927 1607 2336

Display Manager 249359 11367 14463 47066 137806 4728 2610 2112

Flight Guidance System 165695 3187 2021 9767 14620 2382 2094 4600

Flight Guidance TwoGPS 74854 2101 2456 3681 17828 1474 4219 8025

Isolette 36083 1960 2578 11196 25408 1391 3448 3583

Speed Regulation 139226 2512 6878 91183 62313 4459 4133 92564

Simple UAV 82561 4104 2760 11899 46127 751 2028 769

AFRL UxAS 162572 4658 15023 — 141311 4137 15228 —

Wheel Brake System 131787 786 2091 3303 45967 539 907 16816

Wheel Brake System (Large) 1203040 27476 78998 88022 1058152 24480 81478 —

Table 2 Complexity and runtime data when using Awas on a collection of open-source AADL models. Vertices and edges refer to
elements of the flow graph generated by Awas. Cold Start runtimes refer to the first graph generation, forward reach, reach from,
and reach through queries, Hot Start runtimes refer to the third. — denotes that execution did not terminate within 30 seconds.
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6.1. API Design
The design of the API has been, and will continue to be, in-
formed by the needs of the analyses that use it. So far, this
has only been a small number of safety analyses (as discussed
in Section 5.1.1) and some early planning work for use in a
security analysis (see Section 5.1.2). As the number of analyses
and domains of application expand, we expect to broaden the
range of queries and tune the specific parameters used by the
various query types.

6.1.1. Additional Query Support The initial set of four
reachability queries that the Slicer supports were aligned with
common slicing concepts, the capabilities of Awas (Thiagarajan
et al. 2021), and the capabilities necessary to support exist-
ing analyses. Additional queries (discussed in Section 3.3.5),
came from applying the Slicer in previously unintended ways;
we expect that other novel uses of the reachability graph will
continue to present themselves as we expand its range of use.
Androutsopolous et al.’s survey (Androutsopoulos et al. 2013)
also presents a number of slicing types that we do not sup-
port (e.g., dynamic slicing (Guo & Roychoudhury 2008) or
environment-based slicing (Androutsopoulos et al. 2011)) but
that could potentially be quite useful given AADL’s domains of
application in embedded, critical systems.

6.1.2. Graph Exposure Whether or not to expose the raw
reachability graph via the API, which would enable analysis
authors to perform their own queries, is an ongoing discussion.
While undoubtedly useful to sophisticated users, exposure of
the graph comes with risks as well. These range from inflexi-
bility for future structural changes and optimizations, plug-in
authors inadvertently writing redundant or poorly-optimized
queries, and the need to ensure that the underlying graph is not
modifiable by incorrect or malicious plug-ins.

6.2. Model Rewriting
The Slicer produces slices of models by highlighting paths
through them. As originally described, however, slicing in-
volved actually re-writing programs to produce smaller pro-
grams that only had program statements that affected the slicing
criterion (Weiser 1984). Supporting such re-writing for AADL
models would potentially be useful for automated analyses,
which could instantiate and operate on the smaller model, sav-
ing significant computational resources. Its utility for manual
debugging, though, would likely be even higher: production of
minimal examples helps with system comprehension and is a
routine but challenging task in debugging, error reproduction,
and other model-development tasks.

7. Conclusion
In this paper we have presented the design, implementation, and
an evaluation of the OSATE Slicer. Our goals for the work were
to ease existing challenges with model traversal (by automated
analyses) and model understanding (by human users performing
manual analyses). Though early, the tool makes progress on
these goals, its applicability and utility across different analyses

is promising, and its performance is better than existing state-
of-the-art.
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