
Software Engineering
Institute

SEI Blog

Home Publications Blog The AADL Error Library: 4 Families of Syste…

The AADL Error Library: 4
Families of System Errors

SAM PROCTER

MAY 20, 2019

PUBLISHED IN

Software Architecture

CITE

Get Citation

TAGS

Software Architecture Architecture Analysis and Design Language (AADL)

Classifying the way that things can go wrong in a component-based system is
a hard challenge since components--and the systems that rely on them--can

Search the blog

› › ›

”

10/17/24, 9:02 PM The AADL Error Library: 4 Families of System Errors

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/ 1/11

https://www.sei.cmu.edu/
https://insights.sei.cmu.edu/blog/
https://www.sei.cmu.edu/
https://www.sei.cmu.edu/publications/
https://insights.sei.cmu.edu/blog/
https://insights.sei.cmu.edu/authors/sam-procter
https://insights.sei.cmu.edu/blog/topics/software-architecture/
https://insights.sei.cmu.edu/blog/tags/software-architecture
https://insights.sei.cmu.edu/blog/tags/architecture-analysis-design-language-aadl
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://www.cmu.edu/

fail in myriad, unpredictable ways. It is nonetheless a challenge that should
be addressed because component-based, software-driven systems are
increasingly used for safety-critical applications. Unfortunately, many well-
established classi�cations and taxonomies of system errors are not what we
would term operationalized (i.e., directly usable in modern, model-based
system engineering e�orts). Instead, they are speci�ed and described in
natural language instead of any formal or semiformal speci�cation language.

In this blog post, which is adapted from a recently published paper, we
present the Architecture Analysis and Design Language's (AADL) EMV2 Error
Library, which is an established taxonomy that draws on a broad range of
previous work in classifying system errors. The second version of AADL's
error modeling annex (EMV2) Error Library is now part of an international
standard that has been used in a range of systems and domains.

The AADL EMV2 Error Library is deeply integrated in AADL, a rich, semi-
formal embedded system modeling language. The errors included in the
library have formalized semantics and the library is designed to be easily
extended by system developers to become domain- or system-speci�c.
Speci�cally, the EMV2 Annex provides:

An ontology of system errors (i.e., the Error Library) that is embeddable
into system architecture models that have been speci�ed in AADL. This
ontology relates error types to one another through type extension, which
enables modeling di�erent layers of abstraction. The types are also
instantiable into tokens, which �ow through Petri-net-like speci�cations of
component error behavior.
Formal speci�cations of the semantics of the error types in the library.
These are not included in the blog post, but there are a few examples
included in the paper.

The Importance of E�ects-Based Reasoning

One of the key aspects of the AADL EMV2 taxonomy is its enforcement of
local, e�ects-based error classi�cation. The importance of focusing on the
e�ects of errors (rather than their causes) in system analysis has been
discussed previously, including by Walter and Suri, who made it an important
part of their Customizable Fault/Error Model. At a high level, the primary
justi�cations for taking an e�ects-based approach include

10/17/24, 9:02 PM The AADL Error Library: 4 Families of System Errors

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/ 2/11

https://en.wikipedia.org/wiki/Safety-critical_system
https://samprocter.com/wp-content/uploads/2018/12/hilt18-emv2-library.pdf
https://www.sei.cmu.edu/research-capabilities/all-work/display.cfm?customel_datapageid_4050=191439
https://www.sei.cmu.edu/research-capabilities/all-work/display.cfm?customel_datapageid_4050=191439
https://www.sei.cmu.edu/research-capabilities/all-work/display.cfm?customel_datapageid_4050=191439
https://samprocter.com/wp-content/uploads/2018/12/hilt18-emv2-library.pdf
https://doi.org/10.1016/S0304-3975(01)00203-1
https://doi.org/10.1016/S0304-3975(01)00203-1

Reducing Ambiguity: Walter and Suri argue that cause-based
classi�cation methods, such as the Laprie taxonomy, can lead to the same
fault being classi�ed di�erently in di�erent systems, but note that this is
impossible with an e�ects-focus.
Reducing Analysis Space: Procter et al. note that the set of causes is
essentially unbounded, while observable fault e�ects can, at a given level
of abstraction, be known statically--making analysis of larger systems
more tractable.
Enabling Local Reasoning: As the analysis space is reduced to a more
manageable level, it is possible to gain a notion of completeness and
minimality with some e�ect-classi�cation taxonomies (eg, Dolev and
Yao's). This reduction means that, to a limited extent, a component can be
analyzed independently of other parts of the system of which it is a part.
Connecting to Compositional Reasoning: There is an important
connection between e�ects-based reasoning, assume/guarantee logics,
and design by contract styles. Errors can also be conceptualized as
violations of a component's assumptions. Similarly, the e�ects of those
errors are typically violations of the component's guarantees.
Enabling Safety and Security Co-Analysis: There is a growing recognition
of the overlap between traditional safety and security concerns. An e�ects
focus allows, in some cases, for the simultaneous co-analysis of safety and
security, a topic that has been previously explored.

4 Families of Errors in the AADL EMV2 Error Library

This blog post isn't the appropriate place to fully describe the semantics of
each error type; rather, full details are located in the AADL EMV2 standard. In
this section of the post, we provide an overview of the families of error types
used in the libraries.

Service Errors. We use the terms sequence and service to refer to bounded
and unbounded (respectively) ordered collections of service items (i.e.,
messages, inputs, etc.), where accuracy and timeliness are required for
correctness. The �rst family of error types, Service Errors, shown in Figure 1
below, contains errors in "the number of service items delivered by a
service."

10/17/24, 9:02 PM The AADL Error Library: 4 Families of System Errors

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/ 3/11

https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1016/S0304-3975(01)00203-1
https://doi.org/10.1145/3098954.3105823
https://doi.org/10.1145/3098954.3105823
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
http://qav.comlab.ox.ac.uk/papers/facs12.pdf
https://www.sae.org/standards/content/as5506/1/
https://www.sae.org/standards/content/as5506/1/
https://doi.org/10.1145/3098954.3105823
https://www.sae.org/standards/content/as5506/1/
https://www.sae.org/standards/content/as5506/1/
https://www.sae.org/standards/content/as5506/1/

Figure 1. Hierarchy of service errors. Adapted from
http://www.aadl.info/aadlinfosite/LinkedDocuments/AADLFeilerCACSD2006.pdf.

Commission and Omission. Of the six error types that extend the top
level ServiceError type, four deal directly with either unexpected items and
services (commission) or missing ones (omission). If the errors are single
events, the ItemCommission and ItemOmission types should be used; if it
is an entire service that is in error, the Service counterparts should be
used instead.
Sequences. Errors that are more subtle than single service items or
complete services are captured using the children of the
SequenceOmission and SequenceCommission types. Some, such as early
and late service start and termination, have an intuitive meaning. Two of
the remaining four--TransientServiceOmission and
TransientServiceCommission--are used for intermittent versions of their
service-based counterparts. The �nal error types,
BoundedOmissionInterval and BoundedCommissionInterval are used
when service item errors occur more frequently than some speci�c bound.
Note that if a sequence error persists longer than the system-speci�c k
bound, it becomes a service error.

Value Errors. The second error family, shown in Figure 2 below, collects
errors that represent incorrect values. The collection is split into three
hierarchies: one dealing with items, one with sequences, and one with
services.

10/17/24, 9:02 PM The AADL Error Library: 4 Families of System Errors

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/ 4/11

https://insights.sei.cmu.edu/media/images/figure1_hierarchyofserviceerrors_05202019.original.png
https://insights.sei.cmu.edu/media/images/figure1_hierarchyofserviceerrors_05202019.original.png
http://www.aadl.info/aadlinfosite/LinkedDocuments/AADLFeilerCACSD2006.pdf

Figure 2. Hierarchy of value errors. Adapted from
http://www.aadl.info/aadlinfosite/LinkedDocuments/AADLFeilerCACSD2006.pdf.

ItemValueError. These errors deal with individual service items with
incorrect values. The family is divided �rst by the detectability of the errors
(i.e., if only an omniscient observer could detect them or if the system
itself can as well). If they are detectable, errors can be classi�ed as either
out of range, which means they are outside of some domain-speci�c range
(e.g., a percentage that is more than 100 or less than 0) or out of bounds,
which means the value is unrepresentable in the expected type (e.g., a
string is received instead of an integer).
SequenceValueError. Some programs may be able to behave correctly
when a small number of input values are incorrect, but longer sequences
of erroneous values cannot be compensated for. This is further extended
into out-of-order sequences and values that are Stuck, (i.e., repeating the
same value). A �nal type, BoundedValueChange, signi�es successive
values that are both in range but are implausibly far apart (according to
some user-speci�ed boundary).
ServiceValueErrors. Value errors with entire services signify that all
service items have value errors.

Timing Errors. Timing errors, the third family of errors, can be challenging to
model because two di�erent notions of timing can be used. The �rst, inter-
arrival time, speci�es the length of time allowable between service items. The
second, clock time, speci�es delivery deadlines according to some more
absolute notion of time (e.g., time-of-day, Unix time, time since system
initialization, etc.). Both types of timing issues can be modeled using our
library's timing error hierarchy, shown in Figure 3 below. Note that
ItemTimingErrors can occur using either type of timing speci�cation: they
signify only that a single service item is either early or late according to some
system-speci�c deadline.

10/17/24, 9:02 PM The AADL Error Library: 4 Families of System Errors

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/ 5/11

https://insights.sei.cmu.edu/media/images/figure2_hierarchyofvalueerrors_05202019.original.png
https://insights.sei.cmu.edu/media/images/figure2_hierarchyofvalueerrors_05202019.original.png
http://www.aadl.info/aadlinfosite/LinkedDocuments/AADLFeilerCACSD2006.pdf

Figure 3. Hierarchy of timing errors. Adapted from
http://www.aadl.info/aadlinfosite/LinkedDocuments/AADLFeilerCACSD2006.pdf.

SequenceTimingError. This sub-family uses inter-arrival timing
speci�cations. The more abstract SequenceTimingError can be re�ned into
HighRate (violations of the minimum inter-arrival time), LowRate
(violations of the maximum inter-arrival time), and RateJitter, which is a
combination of the two.
ServiceTimingError. This error sub-family uses clock timing speci�cations.
The generic notion of ServiceTimingError is extended by both EarlyService,
where service items arrive consistently early, and DelayedService, where
they are late.

Replication Errors. The family of replication error types shown in Figure 4
below is used to model errors in replicated service items, which may come
about as a result of various architectural mechanisms, (e.g., redundancy
patterns, parallel execution, etc.) Work in this area was inspired in part by
Walter and Suri's ideas on communication symmetry, which posited that
otherwise undetectable errors could, in some systems, be detected if service
items were replicated and used in multiple places.

Figure 4. Hierarchy of replication errors. Adapted from
http://www.aadl.info/aadlinfosite/LinkedDocuments/AADLFeilerCACSD2006.pdf.

10/17/24, 9:02 PM The AADL Error Library: 4 Families of System Errors

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/ 6/11

https://insights.sei.cmu.edu/media/images/figure3_hierarchyoftimingerrors_05202019.original.png
https://insights.sei.cmu.edu/media/images/figure3_hierarchyoftimingerrors_05202019.original.png
http://www.aadl.info/aadlinfosite/LinkedDocuments/AADLFeilerCACSD2006.pdf
https://doi.org/10.1016/S0304-3975(01)00203-1
https://insights.sei.cmu.edu/media/images/figure4_hierarchyofreplicationerrors_05202019.original.png
https://insights.sei.cmu.edu/media/images/figure4_hierarchyofreplicationerrors_05202019.original.png
http://www.aadl.info/aadlinfosite/LinkedDocuments/AADLFeilerCACSD2006.pdf

In the error library, this gives rise to the family of replication error types. It
combines the previous error families--service, value, and timing--with either
symmetric or asymmetric presentation. If all replicates are in error, the error
is said to be Symmetric, otherwise it is Asymmetric. In addition to timing
errors, which have their intuitive meaning, replicates can di�er in value and
presence.

Value Errors. If one or more of the values of the replicates di�ers from
other replicates, two errors are possible, depending on the test for
equality used: if any variation in replicates produces di�erent behaviors
(e.g., if the inputs are used in a hash function) then an
AsymmetricExactValue error is present. Otherwise the most appropriate
error type is AsymmetricApproximateValue.
Omission Errors. Errors of omission can occur in replicated services
either symmetrically or asymmetrically. We further distinguish between
the omission of individual service items and entire services.

The AADL Error Library: A Case Study

The AADL Error Library is not typically used on its own. Instead, it is most
often used as a piece of the larger safety analysis process in safety-critical
engineering projects. In addition to e�orts to analyze or demonstrate the
error annex, a number of larger projects have used the ontology in a range
of settings, typically in the avionics domain. These include post-hoc analysis
of an industrial safety accident, extensive analysis of an individual
component, and large-scale feasibility demonstration in a military shadow
project.

The SEI published a detailed description of a typical use of the error ontology
in a report on the aforementioned military shadow project. Steps 0, 1, and 3
(in the process below) compose the �rst phase of the e�ort: identifying which
error types to use. Steps 2 and 4 compose the second phase: specifying how
the error types are consumed and produced. This second phase--essentially
specifying the input and output error speci�cations of each component--is
what takes advantage of both the propagation paths (created during
instantiation) and the type system that underlies the library to enable
forward and backward reasoning.

10/17/24, 9:02 PM The AADL Error Library: 4 Families of System Errors

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/ 7/11

https://link.springer.com/chapter/10.1007%2F978-981-10-4436-6_2
https://link.springer.com/chapter/10.1007%2F978-981-10-4436-6_2
https://link.springer.com/chapter/10.1007%2F978-3-319-64119-5_7
https://link.springer.com/chapter/10.1007%2F978-3-319-64119-5_7
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447189
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447189

(0) At a high level, the safety process (in the shadow project) began with a
functional and hardware model of a system speci�ed in AADL. The ontology
was used, along with the functional model of the system, to drive
conversations between a safety analyst and a domain expert.

(1) The output of this conversation was a collection of error types that had
been customized to the domain (e.g., the ServiceOmissionerror type was
extended into a speci�c subsystem failure). One of the most interesting error
discoveries was that information on the system's location traveled along two
paths, one of which had a signi�cantly longer computation time. This led to
the discovery of an AsymmetricTimingError.

(2) All of the �ndings from the dialogue were operationalized by extending
error types from the ontology into a system-speci�c error library. These
types were then used to drive a hazard analysis of the system.

(3) Steps 1 and 2 were then repeated for the hardware model.

(4) Finally, interactions between the hardware and functional model were
analyzed using the combined set of system-speci�c error types to determine
the �nal error behavior of the system.

Looking Ahead

Both AADL and its error modeling annex continue to evolve, and there is
more work to do in the future, including in the following areas:

Safety and Security. There is growing interest in the overlap of security
analysis with traditional safety assessment tasks. The extent to which the
Error Library, and the EMV2 itself, can support these tasks is an open area
of research. While we are encouraged that most security issues eventually
manifest in one of the same error types as traditional safety concerns,
others, such as the inadvertent leaking of privileged data, have no safety
equivalent and will likely require modi�cations to the library.
Limitations of an E�ects Focus. A strict focus on the e�ects of errors is
one of the strengths of the Error Library, though there may be limits to
this approach. To this end, we are experimenting with less e�ects-focused
error families that deal with, for example, concurrency issues. The costs,

10/17/24, 9:02 PM The AADL Error Library: 4 Families of System Errors

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/ 8/11

bene�ts, and tradeo�s involved in expanding beyond a strict e�ects focus
is not yet clear, however, so more study needs to be done.
Patterns for Co-Occurring Errors. System behavior in the presence of
errors can become arbitrarily complex when those errors can co-occur, so
a concise way of specifying co-occurrence is desirable. The Error Library's
set of replication errors (i.e., the creation of wholly new types, see Section
5.4 in the paper) is one attempt at this, as is the more general error type
product construct, which creates a new error type from two extant types
(e.g., a value error and a time error). We are still researching when one
speci�cation mechanism is preferable to another.

Additional Resources

Read the paper from which this blog post is adapted, The AADL Error Library:
An Operationalized Taxonomy of System Errors.

Read the SEI Special Report Architecture-Led Safety Analysis of the Joint Multi-
Role (JMR) Joint Common Architecture (JCA) Demonstration System.

WRITTEN BY

Sam Procter
DIGITAL LIBRARY PUBLICATIONS

SEND A MESSAGE

MORE BY THE AUTHOR

The OSATE Slicer: Fast Reachability Query Support for
Architectural Models
NOVEMBER 13, 2023 • BY SAM PROCTER

10/17/24, 9:02 PM The AADL Error Library: 4 Families of System Errors

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/ 9/11

https://samprocter.com/wp-content/uploads/2018/12/hilt18-emv2-library.pdf
https://samprocter.com/wp-content/uploads/2018/12/hilt18-emv2-library.pdf
https://samprocter.com/wp-content/uploads/2018/12/hilt18-emv2-library.pdf
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447189
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447189
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/authors/sam-procter/
https://resources.sei.cmu.edu/library/author.cfm?authorid=506732
https://www.sei.cmu.edu/contact-us/index.cfm?f=Sam&l=Procter
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/authors/sam-procter/

A Model-Based Tool to Assist in the Design of Safety-Critical
Systems
MARCH 7, 2022 • BY SAM PROCTER

Integrating Safety and Security Engineering for Mission-
Critical Systems
MAY 10, 2021 • BY SAM PROCTER, SHOLOM G. COHEN

Simultaneous Analysis of Safety and Security of a Critical
System
SEPTEMBER 11, 2017 • BY SAM PROCTER

MORE IN SOFTWARE ARCHITECTURE

Building Quality Software: 4 Engineering-Centric Techniques
AUGUST 19, 2024 • BY ALEJANDRO GOMEZ

The OSATE Slicer: Fast Reachability Query Support for
Architectural Models
NOVEMBER 13, 2023 • BY SAM PROCTER

How to Use Docker and NS-3 to Create Realistic Network
Simulations
MARCH 27, 2023 • BY ALEJANDRO GOMEZ

Software Isolation: Why It Matters to Software Evolution and
Why Everybody Puts It O�
MARCH 20, 2023 • BY MARIO BENITEZ PRECIADO

Experiences Documenting and Remediating Enterprise
Technical Debt
DECEMBER 19, 2022 • BY STEPHANY BELLOMO

10/17/24, 9:02 PM The AADL Error Library: 4 Families of System Errors

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/ 10/11

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/
https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/
https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/
https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/authors/sanford-cohen/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/blog/building-quality-software-4-engineering-centric-techniques/
https://insights.sei.cmu.edu/blog/building-quality-software-4-engineering-centric-techniques/
https://insights.sei.cmu.edu/blog/building-quality-software-4-engineering-centric-techniques/
https://insights.sei.cmu.edu/authors/alejandro-gomez/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/authors/alejandro-gomez/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/authors/mario-benitez-preciado/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/authors/stephany-bellomo/

Get updates on our latest
work.

Subscribe

 Get our RSS feed

10/17/24, 9:02 PM The AADL Error Library: 4 Families of System Errors

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/ 11/11

https://insights.sei.cmu.edu/blog/subscribe
https://insights.sei.cmu.edu/blog/feeds/latest/rss/

