10/17/24, 9:00 PM A Model-Based Tool to Assist in the Design of Safety-Critical Systems

Search the blog

Software Engineering
Institute

SEI Blog

Home > Publications > Blog > A Model-Based Tool to Assist in the Design ...

A Model-Based Tool to Assist in
the Design of Safety-Critical
Systems

SAM PROCTER
MARCH 7, 2022

/]

PUBLISHED IN

Software Architecture

CITE

Get Citation99

The design of critical systems—those used in aircraft, medical devices, etc.—
is becoming increasingly challenging as they increase in sophistication and
complexity. A recent research project at the SEI aims to improve the way
these systems are designed by allowing engineers to evaluate more design

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/ 114

https://www.sei.cmu.edu/
https://insights.sei.cmu.edu/blog/
https://www.sei.cmu.edu/
https://www.sei.cmu.edu/publications/
https://insights.sei.cmu.edu/blog/
https://insights.sei.cmu.edu/authors/sam-procter
https://insights.sei.cmu.edu/blog/topics/software-architecture/
https://www.cmu.edu/

10/17/24, 9:00 PM A Model-Based Tool to Assist in the Design of Safety-Critical Systems
options in less time than they do now. The state of the art in critical system
design is model-based engineering, but it requires engineers to manually
construct a model of their system and then analyze it for various
performance and cost characteristics. As this post describes, we prototyped a
language extension and software tool—collectively referred to as the Guided
Architecture Trade Space Explorer (GATSE)— that partially automates this
process so system engineers can rapidly explore combinations of different
design options.

A New Paradigm

We are not the first to look at the integration of automation and system
design. At first blush, it may seem like an optimization problem, where system
designers might simply specify requirements—e.g., “the system shall cost
less than $10M” and “the system shall respond to inputs in less than 5ms”"—
and then, given a supply of components and configuration options, simply
find an architecture that satisfies all design constraints. Indeed, this
approach has been taken by some researchers in this area. We share the
recognition of others, though, that since many of a system'’s quality attributes
are not easily quantifiable, it is better to use automation to augment
engineers' efforts rather than partially replace them.

Far more common than optimization, however, is the standard guess-and-
check style of system design, where engineers first select system components
and configuration options based on intuition or familiarity and subsequently
check their designs using various analyses. This project was designed to
explore a newer paradigm, though, called design by shopping, where
engineers first specify component and configuration options, and then valid
system designs are automatically generated and analyzed for performance
and cost characteristics. Designers can then “shop for” the system design
they want by exploring the space of possible system configurations; since
these configurations necessarily entail various tradeoffs between their
quality attributes (e.g., a more expensive system might have better
performance), this gives rise to the term trade space.

Project Tasks

GATSE relies on three modifications to existing technologies to improve the
way critical systems are designed.

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/ 2/14

https://en.wikipedia.org/wiki/Model-based_systems_engineering
https://dx.doi.org/10.1007/s10270-021-00889-8
https://dx.doi.org/10.1007/s10270-021-00889-8
https://en.wikipedia.org/wiki/Optimization_problem
http://ceur-ws.org/Vol-1835/paper08.pdf
https://doi.org/10.1109/AERO.2013.6496936
https://en.wikipedia.org/w/index.php?title=Quality_attributes
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2015/lecture-notes/MIT16_842F15_Ses_5_Design.pdf

10/17/24, 9:00 PM

A Model-Based Tool to Assist in the Design of Safety-Critical Systems

1. Modeling Language Extensions—First, we extended a modeling

language that designers use to describe their systems so that their models
can be partially specified. In the status quo, system designers must specify
each part of their system before analyzing it. In this effort, we modified a
system specification language—the Architecture Analysis and Design
Language, or AADL—so that designers can fully specify some design
options, but only specify the sets of options they're considering for other
design options. The system elements that are not completely specified—
referred to as choicepoints—would instead be specified as a set of valid
options, or choices. For example, a system may need a processing unit
(the choicepoint), but there might be several different options, each with a
different price, computation speed, and required amount of power. Each
option is a valid candidate for the processing unit choicepoint.

. Connecting to a Trade space Visualizer—Second, we connected the SEl's

model-based engineering workbench, called the Open Source AADL Tool
Environment (OSATE), to design-by-shopping software called the ARL
Trade Space Visualizer (ATSV). ATSV was developed by researchers at Penn
State University (in projects unaffiliated with the SEI) to explore the trade
space of physical systems that can be described by mathematical models,
such as different options for wing-shapes. We modified OSATE to both be
able to receive input from ATSV, and to send analysis results back to the
program, instead of directly to the user for manual analysis. This way,
ATSV will be able to update its internal (genetic/evolutionary) algorithms
with the performance and cost characteristics of the system it chose the
design options for. This information can then be displayed graphically, and
ATSV allows users to specify their preferences to guide which system
configurations are selected and analyzed next. ATSV is designed to run in
batches—it takes about a second (on my laptop) to select an option for
each choicepoint, build the finalized model, analyze it, and then store the
results for display. After the batch is complete, the characteristics of each
candidate architecture are displayed graphically so a user can see trends
emerge in the system'’s trade space.

. Automating System Configuration and Analysis—Finally, we modified

OSATE so that after it receives input from ATSV, it can use that input to
create a valid system model and run the analyses specified by the user.
Given a partial system specification (from the user) and a set of
component and configuration choices (from ATSV), OSATE will be able to
fill in the gaps to create a complete system specification. It then
automatically runs the specified performance, cost, and other analyses
and reports its output back to ATSV.

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/

3/14

http://www.aadl.info/aadl/currentsite/
http://www.aadl.info/aadl/currentsite/
http://osate.org/
http://osate.org/
http://www.atsv.psu.edu/index.html
http://www.atsv.psu.edu/index.html

10/17/24, 9:00 PM

A Model-Based Tool to Assist in the Design of Safety-Critical Systems

Trade Space Specification .

[OUserBegins |

.
0.(a) Create or lpad | 0.(b) Create or identify | 0.(c) Install OSATE,
system "Skeleton" model analyses ATSV, and GATSE

h &

b
1.(a) What elements .
ch - :
SR SR 1.(c) Configuration 1.(d} Output 1.[e) Analyses to
constraints constraints run

1.ib) Possible values for
changeable elements

2. User triggers GATSE
initialization

Marrow & Deepen: 3.(a) OSATE verifies
[Restrict design constraints
space and
[or add new 3.(b) OSATE Creates
analyses) OSATE-ATSV connector
Trade SPEEE 4. User Triggers
E xp[n ration Exploration
5.[a) ATSV Selects
initial inputs
5.(b) OSATE
Instantiates model
5.[c) OSATE Runs
analyses
Rl o) ATsy Updaes
not yet
Reached] 5.(d).i Adds new 5.(d).ii Selects

values to graph new input values

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/

4/14

https://insights.sei.cmu.edu/media/images/figure1_1_GATSE_03072022.original.png
https://insights.sei.cmu.edu/media/images/figure1_1_GATSE_03072022.original.png

10/17/24, 9:00 PM A Model-Based Tool to Assist in the Design of Safety-Critical Systems

Figure 1 - GATSE Workflow, from “Guided architecture trade space
exploration: fusing model-based engineering and design by shopping” by
Sam Procter and Lutz Wrage.

Guided trade space exploration using OSATE and ATSV takes place in two
main phases: specification and exploration. See Figure 1 for a graphical
workflow.

Trade Space Specification—The preliminary task (0, in Figure 1) consists of
installing ATSV, OSATE, and the GATSE plugin; specifying an AADL model; and
identifying one or more analyses to run. The user must then specify the
system'’s trade space (1, in Figure 1). This specification is done by indicating
what elements in the system can change and the possible values for those
changes (e.g., the possible transmission rates for a bus or different models of
a sensor), any constraints on those changes (e.g., a particular component
might require or forbid the use of another component due to
incompatibilities), any output constraints (e.g., maximum allowable power
consumption), and which analyses to run. The user can then trigger the
GATSE-Initialization (2, in Figure 1) and OSATE will perform several tasks
(collectively step 3 in Figure 1):

1. Ensure that the user’s choicepoint constraints are feasible.

2. Create an ATSV engine configuration file. Users should never have to
open/modify the engine configuration, but if you're curious you can see
the javadoc/comments in the classes in that package for a deeper
explanation of the specific elements of the configuration.

3. Create initial ATSV input/output files. These are very small, simple comma-
delimited files named input.txt and output.txt that contain an entry for
each input/output variable mapped to the variable’s default value, which is
derived from its type. These files (and those discussed in items 4 and 5
below) are also placed in the user-specified directory, and should never
need user-interaction.

4. Generate request.properties. This file encodes the user’s choicepoint
specifications in a format that is easily used by connector. jar.

5. Copy connector.jar, parser.jar, and run.sh to the user-specified
directory. These files do not depend on the user’'s model, though
connector.jar may be updated between GTSE-plugin releases.

1. connector.jar opens a socket and uses it to connect the running
version of OSATE to the running instance of ATSV. Its processes are

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/ 5/14

https://insights.sei.cmu.edu/media/images/figure1_1_GATSE_03072022.original.png
https://insights.sei.cmu.edu/media/images/figure1_1_GATSE_03072022.original.png
https://github.com/osate/osate2-gtse/tree/master/org.osate.atsv.integration/src/main/java/org/osate/atsv/integration/EngineConfigModel

10/17/24, 9:00 PM A Model-Based Tool to Assist in the Design of Safety-Critical Systems
shown in the middle column of the diagram.
2. parser.jar reads the input file and formats it for ATSV.
3. run.sh (or run.bat on windows systems) is what is executed by ATSV. It
calls connector. jar with the user-specified port number.

Trade Space Exploration The second phase begins when the user triggers
the exploration (4 in Figure 1). This phase is almost entirely automated -
ATSV and OSATE (with the GATSE plugin) do most of the work. When the user
selects the generated engine configuration and starts the analysis, the
following substeps (collectively step 5 in Figure 1) occur repeatedly:

1. ATSV generates possible input values, either randomly or according to an
optimization function, depending on if one has been specified. The input
values are also consistent with regards to the constraints set previously.

2. The connector. jar creates a Request object based on the ATSV input
values (both specific choices for choicepoints and analyses to run),
serializes it, and sends it to OSATE over its open port.

3. OSATE decodes the request object and uses it to instantiate the specified
model using the specified choices.

4. OSATE runs the specified analyses on the newly-created instance model.

5. OSATE creates a Response object with the resulting values (or, if present,
the exception that was thrown).

6. The connector. jar writes the output to the output. txt file and
terminates.

7. ATSV reads the output file, uses the new data to pick new input values and
—if it's the end of the batch run—updates the display.

At the end of the run, there will be a potentially large number of candidate
architectures. Using ATSV, these can be represented in multiple ways, Figure
2 shows a simple two-dimensional graph with a third system aspect
represented using color. In it, the user has chosen to use the system
candidates’ Price as the X axis, Weight as the Y axis, and “Braking Power” - a
hypothetical measure - to determine the color of the point. Any quantifiable
system aspect could be used for any of these axes, however, and they can be
easily changed as the system’s trade space is explored.

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/ 6/14

10/17/24, 9:00 PM A Model-Based Tool to Assist in the Design of Safety-Critical Systems

Weight vs. Price vs. Braking Power

35.6

20.8

24.0

Weight

5345.0 6593.1 7%41_2 9089.4 103375
Price

125

Figure 2: ATSV displaying candidate architectures from GATSE. Each point
represents the architecture of a hypothetical aircraft braking subsystem.
From “Guided architecture trade space exploration: fusing model-based
engineering and design by shopping” by Sam Procter and Lutz Wrage.

If the user is not satisfied with the output values, i.e., none of the
architectures generated by the tool will suffice, he or she can further modify
the model or input parameters (by returning to step 1 from Figure 1). If one
or more of the candidate architectures is satisfactory, though, the user can
select them to view additional details, as shown in Figure 3.

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/ 7114

https://insights.sei.cmu.edu/media/images/figure2_GATSE_03072022.original.png
https://insights.sei.cmu.edu/media/images/figure2_GATSE_03072022.original.png

10/17/24, 9:00 PM A Model-Based Tool to Assist in the Design of Safety-Critical Systems

Weight vs. Price vs. Failure Probability

216—®® g . @ Details for Point 286

‘ @ functional.decelerate=1.0 N
. functional.alert=functional::Alert::Alert.lo_quality
. functional.steering=functional::Steering::Steering.i2
212 | . functional.status=functional::Status::Status.lo_quality
) @ wbs_impl.power.line1=1.0
o @ @ wbs_impl.power.line2=1.0
‘ wbs_impl.power.powerbus1=0.0
‘ wbs_impl.power.powerbusl.socket=impl::common::power.heavygauge
20.9 i . wbs_impl.power.powerbus2=0.0
’ O wbs_impl.power.powerbus2.socket=impl::common::power.heavygauge
. wbs_impl.blue_pump=impl::pump::pump.large
@ wbs_impl.green_pump=impl::pump::pump.large
’ wbs_impl.accumulator=impl::pump::pump.large
20.5 | ’ wbs_impl.wheel=impl::wheel::wheel_merged_inputs.i
. wbs_impl.wheel.tire=impl::wheel::tire.hi_quality
@ wbs_impl.wheel.brake=impl::wheel::brake.lo_quality
. wbs_impl.bscu.subl.mon=impl::bscu::monitor.il
@ wbs_impl.bscu.subl.cmd=0.0
201 ’ wbs_impl.bscu.sub2.mon=impl::bscu::monitor.il
5457.5 ’ wbs_impl.bscu.sub2.cmd=impl::bscu::command.il

Weight

Figure 3: ATSV displaying the details of a candidate architecture from GATSE,
including the precise results of system analyses and the specific
configuration options necessary to build this particular system architecture.
From “Guided architecture trade space exploration: fusing model-based
engineering and design by shopping” by Sam Procter and Lutz Wrage.

The Need for Architectural Modeling

All of this modeling and analysis may seem like a lot of extra work for
relatively little payoff. If we've been designing aircraft and medical devices for
years using standard techniques, why should we change something that'’s
working? It all comes down to the increased complexity of modern, critical
systems.

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/

8/14

https://insights.sei.cmu.edu/media/images/figure3_GATSE_03072022.original.png
https://insights.sei.cmu.edu/media/images/figure3_GATSE_03072022.original.png

10/17/24, 9:00 PM A Model-Based Tool to Assist in the Design of Safety-Critical Systems

Interdependency: Architecture Models Provide
Single Source of Truth Across Quality Dimensions

Intrusion
Integrity
Confidentiality

RESOURCE
CONSUMPTION
Bandwidth

CPU Time
Power Consumption

SAFETY &
RELIABILITY

Hazard Analysis

ARCHITECTURAL
MODEL

REAL-TIME
PERFORMANCE DATA
Deadlock/ Starvation QUAUTY

Latency
Execution Time/ Deadline

Temporal Correctness
Data Precision/ Accuracy
Confidence

Figure 4: The cascading effects of a system change on different quality
dimensions.

Much of this increase stems from the interconnectedness of system
attributes. Consider the example shown in Figure 4. If system designers
change the key size of the encryption used in a system from 128 to 256 bit,
they may only be thinking of the security implications of the change—a larger
key size means that decryption of messages will be harder. A larger key size,
however, may require more processing power from the CPU, which means
that it may take longer and potentially impact system latency. That latency
may in turn cause the system to miss its timing requirements, which could
potentially lead to a safety hazard. It is this interconnectedness that AADL
and OSATE are designed to help with: by using an architectural model as a
single source of truth, many aspects of a system can be considered
simultaneously.

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/ 9/14

10/17/24, 9:00 PM A Model-Based Tool to Assist in the Design of Safety-Critical Systems

A Growing Reliance on Software

Operational & Support
Software

25,000 [~ | 24000
|
|
20,000 [~ L Growing
Affordability
2 and Assurance
=
Challenges
g 15,000 [~ e
= Operational Software
=
o
2 10000 -/
5000 [~
1,700
3 135 236 Graphic: Hagen/Sorensen,
F-16ABlock1 F-16DBlock60 F-22Raptor F-35Lightning Il F-35 Lightning Il “Delivering Military Software
as71ay (984 997) (2006) (2012) Affordably,” Defense AT&L,

Mar-Apr 2013

Software as % of total system cost
1997: 45% =—=p 2010: 66% —» 2024: 88%

Figure 5: The growth of software size and cost.

Software poses a particular challenge to system design. That's because
software’s greatest strength—its tremendous flexibility—also poses the
biggest risk when it comes time to analyze a system'’s performance and
safety characteristics. Though the design-by-shopping paradigm has been
used before, on things such as vehicle design and radios for satellites as well
as the previously mentioned wing design, it hasn’t been used for software-
based system configuration. As Figure 5 shows, software size and costs are
growing at an incredible rate—anything we can do in this area should be
beneficial to keeping system development costs down.

Challenges Encountered

¢ Interacting with ATSV—While ATSV is feature rich, it was not designed
for the use cases we've envisioned in this project. Interfacing it with a
significant, standalone system design workbench like OSATE required
some careful engineering. A good example of this problem is in how ATSV
treats what it calls configurators, which are essentially restrictions on the
relationships between selected choices. For example, many times

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/ 10/14

https://insights.sei.cmu.edu/media/images/figure5_GATSE_03072022_zbXQl1P.original.png
https://insights.sei.cmu.edu/media/images/figure5_GATSE_03072022_zbXQl1P.original.png
https://doi.org/10.1115/1.3243633
https://doi.org/10.1109/AERO.2013.6497173
https://doi.org/10.2514/6.2008-2139

10/17/24, 9:00 PM

A Model-Based Tool to Assist in the Design of Safety-Critical Systems
selecting a choice for one part of the system (e.g., the processor
architecture) invalidates some options for another part of the system (e.g.,
software that requires a specific processor architecture to function); it
must be possible to specify this relationship between the choicepoints.
ATSV assumes that the specified configurators are fairly simple, so it does
not validate their consistency. Thus, it's possible to over-constrain a
system design so that no viable candidates can be constructed. We
addressed this by checking the configurators using some novel theoretical
work and a boolean satisfiability checker before passing them to ATSV.
Shifting Paradigms—As we discussed earlier, design by shopping is a new
paradigm for critical system design. Finding partially-specified example
systems has proven to be nearly impossible, so we've created our own or
adapt existing system models. Even if we had a robust, industrial-grade
software tool, the gap between the state of the art and practice could be a
significant barrier to adoption.

Scoping Challenges—We are fortunate to have high-quality theoretical
work in this area to guide development of our tooling and process. That
said, the gap between the ideal feature set and what can be built given the
time and funding constraints, and understood easily by end-users is
significant. We have tried to scope our project carefully, including enough
in the initial prototype to demonstrate value, but not tackling the complete
set of desired capabilities. We also paid close attention to those features
that are hard to intuitively understand or use—their cost-to-benefit ratio
will likely be particularly poor in light of the aforementioned paradigm
shift.

On to Commercial Use

In a later post, we'll detail how the open and extensible nature of OSATE and
AADL dovetail to make GATSE highly adaptable to domain- or product-
specific needs. We are interested in evaluating this tool's applicability to
commercial or industrial system design. If you know of an opportunity to do
this type of evaluation, or you'd like to see how GATSE can help in your
system design tests, please reach out!

ADDITIONAL RESOURCES

e This work is described in greater detail in the paper “Guided
architecture trade space exploration: fusing model-based engineering

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/ 11/14

https://doi.org/10.1016/S1571-0661(04)80661-3
https://doi.org/10.1016/S1571-0661(04)80661-3
http://www.sat4j.org/
http://nbn-resolving.org/urn:nbn:de:swb:90-249552
http://nbn-resolving.org/urn:nbn:de:swb:90-249552
mailto:info@sei.cmu.edu

10/17/24, 9:00 PM

https://insights.sei.

A Model-Based Tool to Assist in the Design of Safety-Critical Systems
and design by shopping,” which | coauthored with Lutz Wrage -
https://dx.doi.org/10.1007/s10270-021-00889-8

o That paper is itself an expansion of Lutz and my initial paper on the
topic, which shares its title but went to the MODELS conference in
2019: https://doi.org/10.1109/MODELS.2019.000-9.

e |earn more about AADL or OSATE.

e Here is a short video recording of me presenting on this project at the
SEl Research Review: https://www.youtube.com/watch?
v=_Kkkj8P310M Note that the project was not complete when this
was filmed, so the data and papers from this post contain additional
details.

e The best source for understanding ATSV are the papers published by
the PSU developers, in particular see Stump et. al's Visual Steering
Commands for Trade Space Exploration: User-Guided Sampling with
Example.

WRITTEN BY

Sam Procter

DIGITAL LIBRARY PUBLICATIONS »
SEND A MESSAGE »

MORE BY THE AUTHOR

The OSATE Slicer: Fast Reachability Query Support for
Architectural Models

NOVEMBER 13, 2023 « BY SAM PROCTER

Integrating Safety and Security Engineering for Mission-
Critical Systems
MAY 10, 2021 « BY SAM PROCTER, SHOLOM G. COHEN

cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/

12114

https://dx.doi.org/10.1007/s10270-021-00889-8
https://doi.org/10.1109/MODELS.2019.000-9
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439,191439
https://osate.org/
https://www.youtube.com/watch?v=_Kkkj8P31OM
https://www.youtube.com/watch?v=_Kkkj8P31OM
http://dx.doi.org/10.1115/1.3243633
http://dx.doi.org/10.1115/1.3243633
http://dx.doi.org/10.1115/1.3243633
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/authors/sam-procter/
https://resources.sei.cmu.edu/library/author.cfm?authorid=506732
https://www.sei.cmu.edu/contact-us/index.cfm?f=Sam&l=Procter
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/authors/sanford-cohen/

10/17/24, 9:00 PM A Model-Based Tool to Assist in the Design of Safety-Critical Systems

The AADL Error Library: 4 Families of System Errors

MAY 20, 2019 « BY SAM PROCTER

Simultaneous Analysis of Safety and Security of a Critical
System

SEPTEMBER 11, 2017 = BY SAM PROCTER

MORE IN SOFTWARE ARCHITECTURE

Building Quality Software: 4 Engineering-Centric Techniques

AUGUST 19, 2024 - BY ALEJANDRO GOMEZ

The OSATE Slicer: Fast Reachability Query Support for
Architectural Models

NOVEMBER 13, 2023 « BY SAM PROCTER

How to Use Docker and NS-3 to Create Realistic Network
Simulations

MARCH 27, 2023 + BY ALEJANDRO GOMEZ

Software Isolation: Why It Matters to Software Evolution and
Why Everybody Puts It Off

MARCH 20, 2023 < BY MARIO BENITEZ PRECIADO

Experiences Documenting and Remediating Enterprise
Technical Debt

DECEMBER 19, 2022 « BY STEPHANY BELLOMO

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/ 13/14

https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/
https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/
https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/blog/building-quality-software-4-engineering-centric-techniques/
https://insights.sei.cmu.edu/blog/building-quality-software-4-engineering-centric-techniques/
https://insights.sei.cmu.edu/blog/building-quality-software-4-engineering-centric-techniques/
https://insights.sei.cmu.edu/authors/alejandro-gomez/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/authors/alejandro-gomez/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/authors/mario-benitez-preciado/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/authors/stephany-bellomo/

10/17/24, 9:00 PM A Model-Based Tool to Assist in the Design of Safety-Critical Systems

(Get updates on our latest
WOrk.

N\ Get our RSS feed

https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/ 14/14

https://insights.sei.cmu.edu/blog/subscribe
https://insights.sei.cmu.edu/blog/feeds/latest/rss/

