10/17/24, 9:01 PM The OSATE Slicer: Fast Reachability Query Support for Architectural Models

Search the blog

Software Engineering
Institute

SEI Blog

Home > Publications > Blog > The OSATE Slicer: Fast Reachability Query S...

The OSATE Slicer: Fast
Reachability Query Support for
Architectural Models

SAM PROCTER
NOVEMBER 13, 2023

/]

PUBLISHED IN

Software Architecture

CITE
https://doi.org/10.58012/wfgg-5t38

Get Citation99

Systems whose failure is intolerable, often termed critical systems, must be
designed carefully, regardless of whether they are safety-, security-, mission-,

https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 113

https://www.sei.cmu.edu/
https://insights.sei.cmu.edu/blog/
https://www.sei.cmu.edu/
https://www.sei.cmu.edu/publications/
https://insights.sei.cmu.edu/blog/
https://insights.sei.cmu.edu/authors/sam-procter
https://insights.sei.cmu.edu/blog/topics/software-architecture/
https://doi.org/10.58012/wfgg-5t38
https://www.cmu.edu/

10/17/24, 9:01 PM The OSATE Slicer: Fast Reachability Query Support for Architectural Models
or life-critical—or some combination of the four. A range of development
methodologies and technologies exists to support this careful design, but
one of the more well-studied and promising is model-based engineering
(MBE) where models of a system, subsystem, or a collection of components
are built and analyzed. Due to the sophistication of these models and the
intricacies of their analyses, however, software tooling is virtually required
for all but the simplest tasks. In this post, | describe a new extension to the
Open Source AADL Tool Environment (often abbreviated as OSATE), SEl's
software toolset for MBE. This extension, called the OSATE Slicer, adapts a
concept called slicing to architectural models of embedded, critical systems. It
does this by calculating of various notions of reachability that can be used to
support both manual and automated analyses of system models.

Before diving into the details, let me take a step back and discuss the process
of model-based engineering in a bit more depth. Often, models are
constructed and analyzed prior to the final construction of the component or
system itself, leading to the early discovery of system integration issues.
While engineering models are useful by themselves (e.g., communicating
between stakeholders and identifying gaps in requirements) they can also be
analyzed for various functional or non-functional system properties. What's
more, if the model is built using a sufficiently rigorous language, these
analyses can be automated. Models are, by definition, abstractions of the
entities they represent, and those abstractions emphasize a particular
perspective. But one thing that analyses—both manual and automated—can
struggle with is interpreting a model built to showcase one perspective (e.g.,
a functional model of a system'’s architecture) from a different perspective
(e.g., the flow of data or control sequences through those functional
elements).

This particular shift in perspective is often necessary, though, and it underlies
many of the manual and automated analyses we have created here on the
MBE team at the SEI. Whether it's a safety analysis that needs to consider the
flow of erroneous sensor readings through a system, a security analysis that
must guarantee confidential data cannot leak out unencrypted ports, or a
performance analysis that calculates end-to-end latency, the need to extract
the paths that data or control messages take through a system is well
established.

The OSATE Slicer

https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 2/13

https://en.wikipedia.org/wiki/Model-based_systems_engineering
https://en.wikipedia.org/wiki/Model-based_systems_engineering
https://osate.org/about-osate.html
https://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/

10/17/24, 9:01 PM The OSATE Slicer: Fast Reachability Query Support for Architectural Models
Recent work done by the MBE team aims to help calculate these paths
through models of a system’s architecture. We have created a software
implementation that generates a graph-based representation of the paths
through a system, and then uses that graph to answer reachability queries.
This idea may sound familiar to some readers: it underlies the concept of
program or model slicing, which is very closely related to our work, hence the
software tool's name: The OSATE Slicer (or, where context makes it clear, just
the slicer). The basic idea of slicing is to take a program or model and some
input called a slicing criterion, and then discard everything that doesn’'t have
to do with the slicing criterion to produce a reduced version of the program
or model. While our work does not yet support this full vision of model
reduction, the reachability graph and query support we have implemented
are a necessary first step, and—as we discuss in this post—useful in their
own right.

Like a lot of the work done by the SEI MBE team, this project was enabled by
two key SEIl technologies. First, the Architectural Analysis and Design Language
(AADL) is an architecture modeling language for critical systems. It has well-
specified semantics that make it particularly amenable to automated
analyses, and has been used for decades by the U.S. Department of Defense
(DoD), industry, and researchers for a variety of purposes. The second key
technology is OSATE, which is an integrated development environment for
AADL. Many analyses that operate on AADL models are implemented as
plug-ins to OSATE, and the slicer is as well.

If you're not familiar with AADL, there are a number of resources available to
explain the ins and outs of the language (the AADL website in particular is a
great starting point). In this post, though, I'll use a simple model to illustrate
some of the details of the OSATE Slicer. This model, shown below, is called
the BasicErrorFlow example. It includes both core AADL, which specifies the
basic architecture of a system, and annotations from AADL's EMV2 Language
Annex, which extends the core language so that error behavior can also be
modeled.

The black boxes and lines in the model below are valid AADL (which has both
a graphical and a textual syntax) that show three communicating abstract
(i.e., undefined and intended for later refinement) elements. Those elements
communicate over features, named “i"” for input or “0” for output, and
numbered 1-3. Superimposed on top of this (in red) in a notional syntax is an
example error flow from element a, through element b, into element c. You
might imagine element a as some type of sensor that's prone to a particular

https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 3/13

https://www.jot.fm/contents/issue_2023_02/article3.html
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439,191439
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439,191439
https://osate.org/about-osate.html
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439&customel_datapageid_4050=191439

10/17/24, 9:01 PM

https://insights.sei.

The OSATE Slicer: Fast Reachability Query Support for Architectural Models
failure, b as an automated controller which interprets that sensor data and
issues commands based upon them, and c as some sort of actuator which
effectuates the commands.

(sys.impl*)
P Lo e LT . 1
i 2 o1*) i1+ ot} 11 ¢ ofl
' 1 1 1 1
:Source §>19—b> §>u9_P>
| Aeianee o i 5
12 021 112 021 2 024
Ii» 1 1 1 >:
| g i i
i3 03 1i3 ~,08 1 izt 031
= ‘®A>#>- Sink | &
e e e e | L T PPN
\ J

Figure 1: A snippet of graphical AADL, showing the BasicErrorFlow model

“Under the Hood"” of Architectural
Model Analysis

Let's dive a bit deeper into how those analysis plug-ins typically work. Like
many tools that process inputs specified in some sort of programming or
modelling language, OSATE provides plug-in developers access to AADL
model elements using a technique called the visitor pattern. Essentially, this
pattern guarantees that every element will be “visited” and when it is, the
developer of an analysis plug-in can specify some action to take (e.g.,
recording an associated property value or storing a reference to the element
for later use). Significantly, though, the order in which those elements are
visited has little to no bearing on the order in which they might create or
access data or control messages when the system is operational. Instead,
they are visited according to their position in the model's abstract syntax
tree.

Previous work done as part of the Awas project by Hariharan Thiagarajan
and colleagues at Kansas State University's SAnToS Lab in collaboration with

cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/

4/13

https://insights.sei.cmu.edu/media/images/11102023_figure1a.original.png
https://insights.sei.cmu.edu/media/images/11102023_figure1a.original.png
https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://doi.org/10.1007/s11334-021-00410-w
https://santoslab.org/

10/17/24, 9:01 PM The OSATE Slicer: Fast Reachability Query Support for Architectural Models
the SEI demonstrated the value of extracting and querying a reachability
graph from AADL models. That work was subsequently built on by projects
both here at the SEI and externally. See, for example, its use in DARPA's Cyber
Assured Systems Engineering (CASE) program. We were convinced of the value
of this approach, but wanted to see if we could create our own
implementation which—while simpler and less feature-rich than Awas—
could be more well aligned with OSATE’s implementation and design
principles, and in doing so, could be more maintainable and performant.

Maintainability and Performance via
Careful Design

Graph Definition and Implementation

Earlier in the post, | mentioned how the OSATE Slicer generates and queries
something called a reachability graph. The term graph is used here to mean
not a chart comparing different values of some variable, but rather a
mathematical or data structure where vertices are linked together by edges,
(i.e., “a collection of vertices and and edges that join pairs of vertices”). The
reachability part of the term refers to the meaning of the graph: vertices
represent particular elements of the system architecture, and if two vertices
are connected by an edge, that signifies that data or control messages can
flow from the model element associated with the source vertex to the
element associated with the destination vertex. The simplest graph definition
is just G=(V,—), and this is the definition we use: V is the set of architectural
elements, and — is a function connecting some of those elements to some
other elements. The devil is in the details, of course; in this case those details
are which elements are included in V and which relationships are included in
—. These details are specified and explained in a paper published earlier this
year on the work.

While our graph definition is simple, which should help achieve our goal of
making it fast and straightforward to generate and query, it's still only a
mathematical abstraction. We need to represent the graph in software, and
for that we turned to the excellent and well-established graph theory library
JGraphT. Encoding our graph in JGraphT was straightforward: we could
associate OSATE's representation of AADL elements with JGraphT vertex
objects, which lets analyses easily use both the graph and its associated
system model. Practically, this means that analyses can run operations on

https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 5/13

https://doi.org/10.1109/MSEC.2022.3151733
https://www.darpa.mil/program/cyber-assured-systems-engineering
https://www.darpa.mil/program/cyber-assured-systems-engineering
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://www.merriam-webster.com/dictionary/graph
http://dx.doi.org/10.5381/jot.2023.22.2.a1
https://jgrapht.org/

10/17/24, 9:01 PM

https://insights.sei

The OSATE Slicer: Fast Reachability Query Support for Architectural Models
the reachability graph, which will yield graph objects, such as subgraphs or
individual vertices, and then translate those objects to AADL model elements
that will be meaningful to users.

(a) Nominal Reachability (b) Off-Nominal Reachability

sys_impl_Instance.a.i2 sys_impl_Instance.a.il sys_impl_Instance.a.i3

< <
sys_impl_Instance.a.02 S ys_impl_Instance.a.03 sys_impl_Instance.a.ol

sys_impl_Instance.a.0l TimingSrc.ItemTimingError

sys_impl_Instance.a.0l ItemTimingError

V
sys_impl_Instance.b.il sys_impl_Instance.b.il ItemTimingError

sys_impl_Instance.b.ol sys_impl_Instance.b.o3 ItemTimingError

V

sys_impl_Instance c i3 ItemTimingError

sys_impl_Instance.c.i3TimingSink JtemTimingError

sys_impl_Instance.b.o2
sys_impl_Instance.c.i3

< <X >
sys_impl_Instance.c.02 sys_impl_Instance.c.03 sys_impl_Instance.c.ol

Figure 2: The reachability graph for the BasicErrorFlow model

sys_impl_Instance.b.03

The reachability graph for the BasicErrorFlow model introduced earlier is
shown in Figure 2. There are a couple notable things about the graph: First,
it's actually two graphs, the one on the left is the nominal graph, constructed
using only core AADL, which is the base language. The (far simpler) graph on
the right is the off-nominal graph, constructed using both core AADL and its
error-modeling extension known as EMV2. For the precise meanings of the
graphs, I'll again refer interested readers to the paper. For this post, I've
included them to give an intuitive feeling of the sort of data structures we're
working with. The basic idea, though, is that a more detailed model produces
a less ambiguous reachability graph; so the off-nominal graph (which can
utilize the error flow information present in the model) is much simpler and
more precise.

Querying the Reachability Graph

To get any value out of the reachability graph, we have to be able to query it,
pose questions about relationships between various vertices. There are four
foundational queries: reach forward, reach backward, reach from, and reach
through.

.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 6/13

https://insights.sei.cmu.edu/media/images/111012023_figure2a.original.png
https://insights.sei.cmu.edu/media/images/111012023_figure2a.original.png
https://www.jot.fm/contents/issue_2023_02/article3.html

10/17/24, 9:01 PM The OSATE Slicer: Fast Reachability Query Support for Architectural Models

(al) Forward (a2) Forward (b1) Backward (b2) Backward (1) From (c2) From (d1) Through (d2) Through

Y
)
_____ - S

~~~~~

...............

,,,,,,

Figure 3: Queries of the reachability graph for the BasicErrorFlow model

Reach Forward and Backward

The first two queries are fairly straightforward. Reach forward queries ask,
What model elements can this model element affect? That is, if we return to our
conceptualization of the BasicErrorFlow model as a sensor connected to a
controller connected to an actuator, we might ask, Where can data readings
produced by the sensor, or any commands derived from them, go? Reach
backward queries are similar, but they instead pose the question, What model
elements can affect this model element? Applied to a real-world system, these
queries might ask, What sensors and controllers produce information used to
govern this particular actuator?

Figure 3 shows graphically, in (a1) and (a2), example forward reachability
queries on the reachability graphs: nominal in (a1), off-nominal in (a2).
Similarly, (b1) and (b2) show example backward reachability queries. The
element used as the slicing criterion, i.e., the query origin, is shown in black
and labeled with an e. The results of the query are all shaded elements—
including the query origin. Notably, the result of executing this query is a
reduced portion of a system’s associated reachability graph (specifically an
induced subgraph). Unlike some of the other queries that return a simple
yes/no-style result, these subgraphs aren't likely to be very useful by
themselves in automated analyses, and they don't lend themselves to, for
example, DevOps-style automated evaluation. They are likely to be useful,
though, for either generating visual results that can then be interpreted by a
human, or as the first stage in more complex, multi-stage queries.

Reach From

https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 7113


https://insights.sei.cmu.edu/media/images/11102023_figure3a.original.png
https://insights.sei.cmu.edu/media/images/11102023_figure3a.original.png
https://en.wikipedia.org/wiki/Induced_subgraph

10/17/24, 9:01 PM The OSATE Slicer: Fast Reachability Query Support for Architectural Models
The third query type is one of those multi-stage queries, though it's not
terribly complex. In reach from queries, we simply ask, Can this model element
reach that one? We do this by first executing a forward reach query from the
first element (e7 in (c1) and (c2) in Figure 3) and then seeing if the second
element (e2) is contained in the resulting subgraph. Knowing whether
information from a sensor, or commands from a controller, can affect a
particular actuator is useful, but this query really shines when executed on
the off-nominal reachability graph. Recall that it is constructed using a
system’s architecture (specified in AADL) and information about what
happens when the system encounters errors (specified in the error-modeling
extension to AADL called EMV2). This design means that reach from queries
let modelers or automated analyses ask, Can an error from this device reach
that one, or is it somehow stopped?

Reach Through

The fourth and final foundational query type answers questions of the form,
Do all paths from this model element which reach that one go through some
particular intermediate element?

The utility of this query may not be immediately obvious, but consider two
scenarios. The first, from the safety domain, involves (a) a sensor that is
known to occasionally produce jittery values, (b) a “checker” model element
that can detect and discard those jittery readings, and (c) an actuator, which
actuates in response to the sensor readings. We may want to check that all
paths from the sensor (i.e., the origin, or e7 in (d1) and (d2) in Figure 3) to the
actuator (e3) go through the checker (e2)—hardly a simple task in a system
where there may be multiple uses of the sensor’s data by a number of
different intermediate controllersor other system elements.

In a second scenario from the domain of information security, some secret
information must be sent across an untrusted network. To maintain secrecy,
we should encrypt the data before broadcasting it. But how can we
determine that there are no “leaks,” i.e., that no system elements processing
or manipulating the secret information can send it directly or indirectly to the
broadcasting element without its first passing through the encryption
module? We can use the reach through query, with the source of the secret
information being the origin, the encryption module being the intermediate
element, and the broadcasting element the target.

Other Queries

https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 8/13



10/17/24, 9:01 PM The OSATE Slicer: Fast Reachability Query Support for Architectural Models
From these four foundational queries, developers building automated
analyses in OSATE can create more complex queries that ultimately can
answer deep questions about a system. The utility of this approach is
something we explored in our evaluation of the OSATE Slicer.

How Well Did We Do?

After creating the OSATE Slicer, we wanted to evaluate both how useful it is
and how well it performs. In general, we were pleased with the results of our
work, though as always, there’s more to be done.

How Useful is the OSATE Slicer?

The first place we used the slicer was in the Architecture Supported Audit
Processor (ASAP), an experimental automated safety analysis. ASAP had
originally been created using Awas, but maintaining that dependency proved
challenging. We were able to replace Awas with the Slicer in our
implementation of ASAP. Doing so was relatively straightforward; while most
of our existing implementation transferred seamlessly, we did have to write
one custom query (described further in the paper).

The second place we used the OSATE Slicer is in an as yet unpublished re-
implementation of OSATE's existing Fault Impact Analysis (described in, e.g.,
this paper by Larson et al.), which considers where a particular element’s
fault or error can go (i.e., be propagated to) in a fully-specified system. This
was trivial to reimplement using the forward slice query, and then—as part
of an ongoing research effort—we were able to take things a step further
with a handful of custom queries to validate foundational assumptions about
a system model that must be true for the analysis's results to be valid.

Looking forward, we've identified two potential security analyses that we are
interested in updating to use the OSATE Slicer: an attack-tree calculator and a
verifier that checks if a system meets the Bell-LaPadula security policy.
Beyond that, there are other analyses that, at their core, explore properties
of paths through a system. These can potentially benefit from the OSATE
Slicer, though some are quite complex and may require additional features
to be added to the Slicer.

How Fast is the OSATE Slicer?

https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 9/13


https://github.com/osate/osate2-asap
https://github.com/osate/osate2-asap
https://www.jot.fm/contents/issue_2023_02/article3.html
https://dx.doi.org/10.1145/2658982.2527271
https://insights.sei.cmu.edu/library/maturing-assurance-contracts-in-model-based-engineering/
https://insights.sei.cmu.edu/blog/security-modeling-tools/
https://insights.sei.cmu.edu/blog/automating-system-security-with-aadl-11-rules-for-ensuring-a-security-model/
https://en.wikipedia.org/wiki/Bell%E2%80%93LaPadula_model

10/17/24, 9:01 PM The OSATE Slicer: Fast Reachability Query Support for Architectural Models
In their publication on Awas, Thiagarajan et al. analyzed a corpus of 11
system models written in AADL. We set out to run the OSATE Slicer on this
same corpus so that we could compare the performance of the two tools.
Unfortunately, while many of the models were open-source, version
information and other key specifics necessary for reproducibility are not
present in their publication. We were able to work directly with them (we owe
them thanks for that) as part of this effort to get access to most of those
models and specifics, though, and have made an archive of the corpus
available publicly as part of this effort.

Slicer Performance vs Awas

1
Aircraft  Display  Flight Flight Isolette  Speed Simple AFRL UxASWheel WBS -
System Manager Guidance Guidance Regulation UAV Brake Large

System Two GPS System

0.1

===Generation
K/ =—Reach
w==From

/ Through

Slicer / Awas Runtime

0.01

0.001

Figure 4: The performance of the OSATE Slicer relative to Awas, not the Y Axis
is logarithmic

Overall, we found the performance of the Slicer to be quite satisfactory: we
observed a 10-100x speedup over Awas on the generation and querying of
nearly all the models in the corpus (see Figure 4). What's more, some reach
through queries would not execute under Awas on two of the larger models
(denoted with % symbols in the figure), but we were able to run them
without issue using our tool.

https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 10/13


https://insights.sei.cmu.edu/library/the-osate-slicer-graph-based-reachability-for-architectural-models/
https://insights.sei.cmu.edu/media/images/11102023_figure4a.original.png
https://insights.sei.cmu.edu/media/images/11102023_figure4a.original.png

10/17/24, 9:01 PM The OSATE Slicer: Fast Reachability Query Support for Architectural Models

Next Steps: We're Looking for
Collaborators!

We're excited about the applications of the OSATE Slicer, both the ones we've
identified in this post and those that we haven't even thought of yet. To help
us out with those, we're always looking for people to collaborate with—do
you have system models that you'd like to analyze more easily or quickly? If
so, please reach out. Since their inception, AADL and OSATE have been
informed by the needs of DoD and industrial users. The Slicer is no different
in this regard, and we welcome user thoughts, feedback, ideas, and
collaborations to improve the work.

ADDITIONAL RESOURCES

Read “The OSATE Slicer: Graph-Based Reachability for Architectural
Models” by Sam Procter.

Learn more about AADL.

Learn more about OSATE.

WRITTEN BY

Sam Procter

DIGITAL LIBRARY PUBLICATIONS »
SEND A MESSAGE »

MORE BY THE AUTHOR

A Model-Based Tool to Assist in the Design of Safety-Critical
Systems

MARCH 7, 2022 « BY SAM PROCTER

https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 11/13


https://insights.sei.cmu.edu/library/the-osate-slicer-graph-based-reachability-for-architectural-models/
https://insights.sei.cmu.edu/library/the-osate-slicer-graph-based-reachability-for-architectural-models/
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439&customel_datapageid_4050=191439
https://osate.org/about-osate.html
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/authors/sam-procter/
https://resources.sei.cmu.edu/library/author.cfm?authorid=506732
https://www.sei.cmu.edu/contact-us/index.cfm?f=Sam&l=Procter
https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/
https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/
https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/
https://insights.sei.cmu.edu/blog/a-model-based-tool-to-assist-in-the-design-of-safety-critical-systems/
https://insights.sei.cmu.edu/authors/sam-procter/

10/17/24, 9:01 PM The OSATE Slicer: Fast Reachability Query Support for Architectural Models
Integrating Safety and Security Engineering for Mission-
Critical Systems

MAY 10, 2021 « BY SAM PROCTER, SHOLOM G. COHEN

The AADL Error Library: 4 Families of System Errors

MAY 20, 2019 « BY SAM PROCTER

Simultaneous Analysis of Safety and Security of a Critical
System

SEPTEMBER 11, 2017 « BY SAM PROCTER

MORE IN SOFTWARE ARCHITECTURE

Building Quality Software: 4 Engineering-Centric Techniques

AUGUST 19, 2024 - BY ALEJANDRO GOMEZ

How to Use Docker and NS-3 to Create Realistic Network
Simulations

MARCH 27, 2023 + BY ALEJANDRO GOMEZ

Software Isolation: Why It Matters to Software Evolution and
Why Everybody Puts It Off

MARCH 20, 2023 < BY MARIO BENITEZ PRECIADO

Experiences Documenting and Remediating Enterprise
Technical Debt

DECEMBER 19, 2022 « BY STEPHANY BELLOMO

What Is Enterprise Technical Debt?

DECEMBER 5, 2022 « BY STEPHANY BELLOMO

https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 12/13


https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/blog/integrating-safety-and-security-engineering-for-mission-critical-systems/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/authors/sanford-cohen/
https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/
https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/
https://insights.sei.cmu.edu/blog/the-aadl-error-library-4-families-of-system-errors/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/blog/simultaneous-analysis-of-safety-and-security-of-a-critical-system/
https://insights.sei.cmu.edu/authors/sam-procter/
https://insights.sei.cmu.edu/blog/building-quality-software-4-engineering-centric-techniques/
https://insights.sei.cmu.edu/blog/building-quality-software-4-engineering-centric-techniques/
https://insights.sei.cmu.edu/blog/building-quality-software-4-engineering-centric-techniques/
https://insights.sei.cmu.edu/authors/alejandro-gomez/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/blog/how-to-use-docker-and-ns-3-to-create-realistic-network-simulations/
https://insights.sei.cmu.edu/authors/alejandro-gomez/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/blog/software-isolation-why-it-matters-to-software-evolution-and-why-everybody-puts-it-off/
https://insights.sei.cmu.edu/authors/mario-benitez-preciado/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/blog/experiences-documenting-and-remediating-enterprise-technical-debt/
https://insights.sei.cmu.edu/authors/stephany-bellomo/
https://insights.sei.cmu.edu/blog/what-is-enterprise-technical-debt/
https://insights.sei.cmu.edu/blog/what-is-enterprise-technical-debt/
https://insights.sei.cmu.edu/blog/what-is-enterprise-technical-debt/
https://insights.sei.cmu.edu/authors/stephany-bellomo/

10/17/24, 9:01 PM The OSATE Slicer: Fast Reachability Query Support for Architectural Models

(Get updates on our latest
WOrK.

N\ Get our RSS feed

https://insights.sei.cmu.edu/blog/the-osate-slicer-fast-reachability-query-support-for-architectural-models/ 13/13


https://insights.sei.cmu.edu/blog/subscribe
https://insights.sei.cmu.edu/blog/feeds/latest/rss/

