
Modern systems are so heavily 
interconnected that the impacts 
of component and configuration 
choices can be difficult to know at 
design time. In this work, we 
partially automate the exploration 
of a system’s architectural trade 
space to enable system designers 
to rapidly evaluate system design 
options. The result is a graphical, 
user-guided suite of tools that 
enables a ‘design-by-shopping’ 
style of system design.

We build on SEI’s existing work in high-
fidelity system architecture modeling. Over 
the past several years, SEI has developed the 
Architecture Analysis and Design Language 
(AADL), which enables the creation of very 
detailed models of a system’s architecture. 
The SEI has also developed the Open Source 
Architecture Tool Environment (OSATE), which 
contains a number of analyses for AADL 
models, ranging from weight and latency 
calculations to more sophisticated error-
behavior modeling.

A system’s architectural trade space is the 
set of all possible candidate designs 
plotted in n-dimensional space where each 
dimension is a different quality attribute. 
Penn State’s ARL Trade Space Visualizer 
(ATSV) enables designers to visually explore 
multidimensional and potentially infinite data 
sets, and to focus in on particular subsets. It 
uses an evolutionary algorithm to learn which 
input characteristics correspond to which 
output characteristics; this lets designers 
refine their searches and generate additional 
candidate architectures that meet particular 
criteria.

This work has three primary tasks:
1. Extend existing architecture modeling 

language (SEI’s AADL) to encode 
component choices and their interactions.

2. Extend existing architecture modeling 
tooling (SEI’s OSATE) to automatically 
analyze the resulting system for cost, 
weight, performance, etc.

3. Enable trade space visualizer (Penn 
State’s ATSV) to automatically select valid 
components and configurations, and 
visually display analysis results.

Why do we need something new? System 
development costs are rising at an 
unsustainable rate. Much of this rise is driven 
by software, which presents a number of 
unique challenges in terms of massive 
customizability/configurability and subtle 
interactions with other components. SEI’s work 
in system architecture modeling addresses 
this need head-on by modeling software, 
hardware, and the bindings between the two.

3. Once a satisfactory 
architecture has been 
identified, the designer can 
click the point to reveal the 
component and configuration 
options chosen, as well as 
exact quality attribute values 
for each dimension.

How does ‘design-by-shopping’ work? 
Much like traditional shopping, design-by-
shopping begins with a broad search of 
candidates that potentially meet some need. 
Individual candidates are evaluated according 
to attributes like cost, performance, weight, 
power, etc. If none of the candidates are 
satisfactory, more can be generated – or the 
trade space can be refined to focus the 
search. If one of the candidates is satisfactory, 
though, then the designer can view its exact 
configuration and proceed to more detailed 
modeling and analysis.

This work is an enabling technology for 
future architecture modeling research at 
the SEI. Any quantitative analysis can be used 
as a dimension of the trade space 
visualization. Sophisticated new analyses for 
AADL are being created in OSATE to analyze 
complex system properties like safety and 
security. Once built, it’s relatively 
straightforward to automate these analyses 
and connect them to ATSV.

This project combines a number 
of technologies to enable a new 
paradigm of system design. As it 
relies heavily on quantitative 
analyses of system architectures, 
in the future we will look into 
novel quantification strategies for 
traditionally qualitative attributes 
like safety and security.

Guided Architecture Trade Space Exploration of Safety 
Critical Software Systems

Research Review 2017

Contact: Sam Procter    sprocter@sei.cmu.edu

La
te

nc
y

Cost

2. Designers can refine their searches, and ATSV will 
generate more candidate architectures in the 
reduced search area. This is done automatically, 
using an evolutionary algorithm to learn which input 
values correspond to which outputs.

1. Initially, a system’s trade space 
may not have much shape. In this 
(mock) example, there is a rough 
correlation between higher costs 
and lower latency.

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 



Copyright 2017 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie 
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.  

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government 
position, policy, or decision, unless designated by other documentation.  

References herein to any specific entity, product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute nor of 
Carnegie Mellon University - Software Engineering Institute by any such named or represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. 
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT 
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE 
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, 
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Requests for permission for non-licensed 
uses should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM24-1383


