
Flight Incident Analysis Through Symbolic

Argumentation
Dionisio de Niz1, Bjorn Andersson1, Mark H. Klein1, John Lehoczky1, Hyoseung Kim2, George Romanski3, Jonathan Preston4,

Floyd Fazi4, Daniel Shapiro5, Douglas C. Schmidt6, Ronald Koontz7, and Sam Procter1
1Carnegie Mellon University, dionisio@sei.cmu.edu, baanderson@sei.cmu.edu, mk@sei.cmu.edu, jl16@andrew.cmu.edu,

sprocter@sei.cmu.edu;
2University of California Riverside, hyoseung@ucr.edu;

3Federal Aviation Administration, george.romanski@faa.gov;
4Lockheed Martin Corporation, jonathan.d.preston@lmco.com, floyd.a.fazi@lmco.com;

5Institute of Defense Analysis and University of California Santa Cruz, daniel.g.shapiro@gmail.com;
6Vanderbilt University, d.schmidt@vanderbilt.edu;
7The Boeing Company, ron.j.koontz@boeing.com.

Abstract— At the core of every modern airliner is a software-

reliant fly-by-wire system that translates pilot inputs into

electronic signals to control aircraft movements. Given the safety-

critical nature of these systems they include architectural

constructs and mechanisms to tolerate failures related to

hardware (e.g., processor or sensor failures) and software (e.g.,

potential bug in the code). The goal is to reach the required levels

of availability and integrity validated through a certification

process that includes specific verification methods to discharge

specific claims. Unfortunately, the different verification

procedures and associated architectural constructs are typically

developed independently and make independent assumptions that

can contradict each other, thereby preventing the desired

behavior or invalidating the assumptions and results of a given

verification procedure. To help address these problems this paper

presents how a new symbolic argumentation approach can be used

to analyze a real flight incident (the flight CI202 incident in 2020)

by automating the verification procedures and their assumptions.

Our approach describes verification plans that start at the level of

certification connected to automated verification analysis on

architectural models. These plans are decomposed into analysis

contracts that specify what claims they verify (e.g., availability of

a fly-by-wire function > 99.99%), what analysis is used to verify

the model (e.g., probabilistic Fault-Tree Analysis) and what

assumptions it relies on (e.g., a function is replicated over

processors that fail independently of each other). These plans are

integrated into a symbolic argumentation implemented as a

constraint satisfaction problem that is solved with a Satisfiability

Modulo Theory (SMT) solver. The CI202 flight incident analysis

is presented using an argumentation hierarchy on architectural

models and the analysis of potential design issues that could

explain a triple computer failure. We demonstrate how our

approach can reason about early design decisions by pointing to

unfulfilled assumptions, contradictions, and potential

workarounds that have the potential to prevent these types of

incidents.

Keywords—component, formatting, style, styling, insert (key

words)

I. INTRODUCTION

Safety-critical software-reliant systems like avionics
systems must satisfy strict safety properties that are verified

through certification. To meet these properties (e.g. availability),
different architectural constructs (e.g., replication) and
mechanisms (e.g., fail-over) are used in conjunction with
verification procedures (e.g., probabilistic Fault-Tree Analysis).
We call this triple combination an assurance architectural
construct (AAC). Unfortunately, different assurance
architectural constructs are develop independently making
equally independent assumptions. As a result, when multiple
AACs are used together within a system keeping track of the
assumptions and their potential interactions become a risky
manual activity.

This paper discusses the flight incident of the flight CI202
that occurred in Taiwan in 2020 where a triple computer failure
left the pilots braking in semi-manual mode. We present how we
used a new symbolic argumentation approach that allows us to
model AACs and how the certification claims are decomposed
into arguments composed of contracts that describe what
different verification procedures (in the form of analysis) verify,
what they assume and how we verify such assumptions and their
interactions. With this approach we can model the problem
described in the incident report [16], describe the assumptions
that caused the problem and automatically analyze them, and
explore potential solutions.

A. Related Work

This paper shares some objectives with [1]. In particular,
they promote the concept of assurance-based development that
is similar to the concepts we present here. However, their focus
is on the final system; hence, they focus on the application of
verification tools to the final system. In contrast, we focus on a
more comprehensive approach that encompasses early designs
and higher levels of abstractions where arguments can be
developed and verified much earlier. These higher-level
abstractions are closer to the higher-level requirements that
document intended behavior at a higher-level granularity.
Moreover, the low-level focus closer to the code forces
abstractions that remove aspects from other analysis domains
(e.g., timing, fault tolerance) thereby creating blind spots for
conflicts in analysis assumptions from these domains.

The techniques we use are presented in [2], which is based
on analysis contracts that describe what an analysis tries to
prove, what assumptions it makes, and how it connects to a full

mailto:dionisio@sei.cmu.edu
mailto:baanderson@sei.cmu.edu
mailto:jl16@andrew.cmu.edu
mailto:hyoseung@ucr.edu
mailto:jonathan.d.preston@lmco.com,%20floyd.a.fazi@lmco.com

argument developed to prove verification claims. Analysis
contracts rely on assume/guarantee reasoning based on Hoare
triples [3], which evolved into more abstract domains with the
development of contract algebras [4]. Contracts have also been
used in assume/guarantee reasoning over components in the
Architecture Analysis and Design Language (AADL) [5][6].
However, component contracts reason about properties of the
values that AADL components communicate through their ports
to other components and the computation that occurs inside a
component that transforms input values into output values. This
approach is a more traditional way of thinking about contracts
that is easier to map to a Hoare triple. In contrast, analysis
contracts reason about properties of analysis algorithms applied
to models (e.g., AADL models), not the computations inside the
components of the model. Our goal is to reason about how
multiple analyses work together to prove top-level assurance
claims instead of how properties on values generated by model
components discharge properties of top-level components. From
this point of view, therefore, an analysis that uses component
contracts to verify value transformation properties is just another
analysis that we integrate and that would have its own analysis
contract.

Previous work in analyses contract started with [7], where
contracts were defined for resource allocation models. These
contracts were defined in Alloy [8], and the analyses algorithms
were implemented in Mathematica and included in the AADL
models. Analyses contracts were later extended [9] to remove
the bounded verification limitations of Alloy, implementing the
contracts specification with a mixture of satisfiability modulo
theories (SMT) and linear-time temporal logic (LTL) [10] with
a verification in Z3 and SPIN [11]. This work also extended the
analyses beyond resource allocation to other domains, such as
thermal dissipation and security. Later, the authors in [12]
created an implementation of analysis contracts with a special
emphasis on lower-level analysis assumptions within the same
domain.

In [13], the authors present a contract model close to analysis
contracts with a synthesis approach to combine multiple
contracts that restrict the design space out of pre-crafted parts.
Their approach works at a more abstract level closer to [4]. It is
applied at the assurance case level and reuse of assurance case
patterns but provides no connection to domain-specific analysis
algorithms.

Given the focus on using tools for analysis, it is natural to
ask whether to trust that the output of the analysis was computed
correctly. The recently-coined term explainable verification
focuses on addressing this issue [14][15]. This effort focuses on
the approach that an analysis not only needs to compute an
output but also an explanation of why it produced this output.
This explanation must then be easy to consume by a person
without requiring deep expertise in the analysis domain.

II. A FLIGHT INCIDENT CASE

The flight incident we analyze in this paper exemplifies the
challenges we face when multiple certification claims, such as
availability, integrity, and timeliness, need to be addressed by
multiple assurance architectural constructs. This incident

occurred in the Taipei airport in 2020. The core of the incident
is described in [16] as follows:

On June 14, 2020, China Airlines scheduled passenger
flight CI202, an Airbus A330-302 aircraft, registration B-
18302, took off from Shanghai Pudong International Airport
for Taipei Songshan Airport with 2 flight crew members, 9
cabin crew members, and 87 passengers, for a total 98
persons onboard. The aircraft landed on runway 10 of
Songshan Airport at 17:46 Taipei local time. At touchdown,
the aircraft experienced the quasi-simultaneous failure of
the 3 flight control primary computers (FCPC or PRIM),
thus ground spoilers, thrust reversers, and autobrake were
lost. The flight crew was aware of the autobrake and
reversers failure to activate, and applied full manual brake
rapidly to safely stop the aircraft about 30 feet before the end
of runway 10 without any damage to the aircraft nor injuries
to the passengers onboard.

The incident report identifies the lack of synchrony in
redundant computations within the system as the main culprit.
To understand the situation we will use Figure 1. which depicts
a partial view of the flight control architecture of the Airbus 330.

Figure 1 Airbus A330 Flight Control Architecture

Figure 1 shows the decomposition of each PRIM computers

into a main command processor (COM) (part of a sequence of
processors or channels as known in aviation) and a monitor
processor (MON). Both the COM and MON processors
calculate the same actuation value according to the pilot input
(depicted by a pedal in the figure). After both compute this
value, COM receives the computed value from MON and
compares it to its own value. If the difference is within a
threshold, it uses its output. If the difference exceeds the
threshold, however, it fails-over to the next PRIM computer
(PRIM2) arranged in the same fashion. The PRIM2 computer
performs the same comparison and has the same failover
strategy. If PRIM3 also fails, the backup computers are
activated.

It is important to note that these computers execute different
functions when the aircraft is in air mode versus when it is in
ground mode. This is because in air mode the vertical tail is
actuated whereas in ground mode, the front wheels are actuated.

A. Key Sequence of Events

In the incident report, the following sequence of events was
identified as significant:

1. Gear touchdown → Aircraft switch to ground mode

2. Gear in the Air →Aircraft switch to air mode

COM

MON

COM

MON

COM

MON
PRIM1

PRIM2

PRIM3

Fail-over

o
u

t
fa

il

Fail-over

Drawing from public domain: https://commons.wikimedia.org/wiki/File:Landing_gear_schematic_colored.svg

Identify applicable funding agency here. If none, delete this text box.

3. Gear touchdown →Aircraft switch to ground mode

4. PRIM1 Failed-over

5. PRIM2 Failed-over

6. PRIM3 Failed-over

The report also identified that the cause of the failure
stemmed from the disagreement between the COM and the
MON over the actuation in [16] (p. 68). This disagreement was
traced back to the computation of different functions (controls
laws) by COM and MON due to the switching be-tween air
mode and ground mode. In particular, one of the channels used
the “lateral flight control law” to calculate the rudder command
(based on the pilot pedal input), while the other used the “lateral
ground law,” exceeding the threshold that was designed to
compare differences for the same law [16] (p. 6). This
disagreement was called “channel asynchronism.”

B. Channel Asynchronism Timeline

Based on the information presented above we created a
sample timeline that could explain the triple failure, which is
shown in Figure 2.

Figure 2 - Channel Asynchronism Timeline

Figure 2 shows one specific time sequence that, according to
the report, can occur in the system and would explain the triple
failure. Specifically, the figure shows all COM processors (from
the three PRIM computers) reading the landing gear (and pedal)
position at the same time at time 𝑡1. This occurrence is then
followed by the reading of the gear and pedal position by all
MON processors at time 𝑡2. Given that the plane is in ground
mode at time 𝑡1, all COM processors use the “lateral ground
law” (identified as 𝑓𝐺(𝑃1) in the figure) to calculate the rudder
command. On the other hand, all MON processors then use the
“lateral flight law” (identified as 𝐹𝐴(𝑃1) in the figure) to
calculate the rudder command. The MON command is then
communicated back to the COM processor, and it calculates the

difference and compares it to the threshold (|𝑓𝐺(𝑃1) −
𝑓𝐴(𝑃1)| > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐺)

Clearly, while MON and COM use the same pedal input
(𝑃1) they use different functions to calculate the output,
violating the implicit assumption of the comparison (i.e., they
compare results of the computation from the same control law).
Interestingly, the two computations were performed in the same
time frame. The difference exceeded the threshold and PRIM1
fails-over to PRIM2. However, since PRIM2 and PRIM3 suffer
from exactly the same flaw, they both fail as well. The end result
is that all three MON processors from the three PRIM computers
evaluated that they exceeded the tolerance threshold, and all
three executed a failover that led to the switching to the
secondary computers.

Note that Figure 2 shows only one possible sequence of
events that could lead to this incident. In reality, any sequence
that leads COM and MON to execute different control laws will
lead to the same incident.

III. AUTOMATIC CERTIFICATION ARGUMENTATION

At the core of this paper is the need to verify if we can use
automatic argumentation methods that automate the verification
procedures attached to certification arguments. This section
presents the techniques from our current work that we use to
implement this automation and identify possible design flaws
connected to the CI202 incident report.

A. Symbolic Assurance Refinement Framework

To enable the automatic argumentation, we used the
Symbolic Assurance Refinement (SAR) framework and tool [2].
This framework allowed us to integrate analyses defined for
different properties, such as timing, fault tolerance, control,
security, etc. into an argumentation structure that validates their
assumptions and their interconnections with other analyses.
More specifically, an analysis can make assumptions (e.g., tasks
are scheduled with fixed-priority scheduling with rate-
monotonic priorities) that must be true for the result of an
analysis (e.g., rate-monotonic schedulability bound) guarantee
(all threads always meet their deadlines) to be valid. Checking
these assumptions can involve more complex analysis that
would also need to have its assumptions checked for the
analysis’ guarantee to hold. This argumentation is depicted in
Figure 3.

Figure 3 - Contract Argumentation

Gear

Pedal

COM

MON

COM

MON

COM

MON

Time

Ground

Air

P1

 ()

 ()

| − | >

 ()

 ()

 ()

 ()

t1 t2

P2

P
R

IM
1

P
R

IM
2

P
R

IM
3

Contract
Verification
Plan

Claim 1

Claim 2

Claim 3

Contract 1

gu
ar

an
te

e Assumption 3

Assumption 2

Contract 2

gu
ar

an
te

e

Static Verification
AADL
Evidence
(Data)Assumption 1

AADL
Evidence
(Data)

Behavioral
model

Assumption
Assumption

Assumption

Analysis

Proof Oblg

Analysis

AADL
Evidence
(Data)

Behavioral
model

SAR specifies the analysis contracts in a domain-specific

language hosted as a language annex in the AADL tool

(OSATE1). This template is presented in Listing 1.

annex contract {**

 contract <name> {

 queries

 <model var> = <query to obtain model data>

 domains

 <domain reference>

 input assumptions

 <Bool func to check data consistency>(<model

vars>)

 assumptions

 <Bool func>(<model vars>)

 -> <symbolic assertion>

 analysis

 <Bool func>(<model vars>)

 -> <symbolic guarantee>

 }

**};

Listing 1:Analysis Contract Template

Analysis contracts have three main parts: (1) a guarantee that
is encoded symbolically (in SMT in the current
implementation), (2) assumptions that are assertions also
specified symbolically, and (3) an analysis that takes the form of
a Boolean proposition that can be implemented as an imperative
function that takes model data (model variables) and verifies
specific conditions that would make the guarantee true. For
instance, checking if a taskset is schedulable using the rate-
monotonic harmonic taskset bound implies only checking if the
sum of the utilization of all the tasks running in a single
processor is below 100 percent (i.e., a simple test like

∑
𝑊𝐶𝐸𝑇𝑖

𝑃𝑒𝑟𝑖𝑜𝑑𝑖
≤ 1)𝑖∈𝑡𝑎𝑠𝑘𝑠𝑒𝑡 . However, here the main challenge is

checking all the assumptions of the analysis, specifically

1. All tasks are periodic. In the model (e.g., AADL model)

this can be a flag but would need to be checked in the

implementation.

2. Periods of the tasks are harmonic (i.e., are multiples of each

other). ∀ i , j ∈ taskset ∶ (Periodi > Periodj) →

Periodi mod Periodj = 0

3. Priorities are rate monotonic. ∀ 𝑖, 𝑗 ∈ 𝑡𝑎𝑠𝑘𝑠𝑒𝑡 ∶
(𝑃𝑒𝑟𝑖𝑜𝑑𝑖 < 𝑃𝑒𝑟𝑖𝑜𝑑𝑗) → 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 > 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑗 (A

larger priority number implies a higher priority.)

4. Periods are equal to their deadlines.

5. Tasks are scheduled with a fixed-priority scheduler.

6. Tasks do not use mutually exclusive resources. This can be

a more complex search in the model for shared resources

and the protocols used to access them. This can be an

independent contract whose implementation can have

further assumptions.

Contracts have three additional sections that complement the
main ones:

1 OSATE stands for Open source AADL Tool Environment.

• queries (similar to SQL queries) that collect data from

the architectural model for use by the analysis (Queries

are, in fact, expressed in a domain-specific model query

language [MQL].)

• domains that are basically the names of a separate

contract module that defines symbolic variables to be

used in the assumptions and guarantee statements (Some

of these variables can mirror model variables, but others

will be used to encode a property even if they never

appear in the model. For instance, the rate-monotonic

harmonic bound test guarantees that the worst-case

response time of no task will exceed its deadline under

any circumstance. For this, we define a worst-case

response time even if it is not in the model and is never

calculated in the scheduling test but is in the proofs of

the paper that demonstrated the correctness of this

analysis.)

• input assumptions that validate the data obtained in the

queries to check if there is enough data to run the

analysis (These are different from the other assumptions

[we call analysis assumptions] in that if we do not have

enough data [i.e., input], then we cannot run the analysis

function. However, if the analysis assumptions are not

met, then the result would be invalid even if we have

enough data.)

B. Proof Obligations and Refinement

SAR enables two forms of analysis assumption verification.
First, SAR verifies the existence of model data that will make
the assumption false. For instance, if the model already has
priorities and periods assigned to tasks, then we can check if the
assumption can be violated with this data. If we do not have data
that contradicts the assumption, then we can assume that it is
correct. This assumption is implemented by the SMT engine that
determines if there are symbolic variable values that can satisfy
all our assumptions. This determination is useful for the
verification of partial models when we do not have everything
specified yet. However, assumptions verified this way are
considered proof obligations, which are basically deferred
obligations to verify assumptions.

Second, SAR verifies that the data we have or do not have
would not enable an assignment that would contradict the
assumption. For instance, if the model has no information about
priorities, we will verify if we can find values for the symbolic
variable that would make some assumption false. This
verification assumes that we now must have all the information
to validate all the claims and assumptions. Hence, if this
verification fails, it means that we still have proof obligations to
fulfill, and we need to refine the model to verify the pending
assumptions/claims. This type of verification is formally known
as ensuring that a formula is valid (for all assignments).

The first type of verification allows us to verify partial
models. This, in turn, allows us to keep refining the model and
verifying each refinement step. Finally, once we believe we have

a complete model, we can then use the second type of
verification to validate whether we are truly done.

C. Assurance Argumentation

The contract argumentation starts at the top from a
verification plan to capture verification claims and the analysis
contracts that can discharge them. These contracts follow the
argumentation structure presented in Figure 3. The verification
plan structure is presented in Listing 2 along with an example
contract for end-to-end timing analysis.

annex contract {**

 verification plan verifyEndtoEndTiming {

 component

 s: EndToEndTimingExample::mysystem.i;

 domains

 schedulability;

 claims

 `And([E2EResponses[i] <= E2ELatencies[i]

 for i in range(len(E2EResponses))` ;

 contracts

 EndToEndDelayedCommunicationContract;

 }

 contract EndToEndDelayedCommunicationContract {

 domains

 schedulability;

 queries

 input assumptions

 '''areEndToEndLatenciesInputDataComplete(

 ${periods$},

 ${wcets$},

 ${deadlines$},

 ${names$})''';

 assumptions

 contract areConnectionsDelayedContract;

 argument schedulabilityArgument;

 guarantee

 <=> `And([E2EResponses[i] <= E2ELatencies[i]

 for i in range(len(E2EResponses))])`;

 analysis

 '''meetEndToEndLatencies(${flowComponents$},

 error0)''';

 }

 argument schedulabilityArgument {

 domains

 schedulability;

 guarantee

 <=> `And([Deadlines[i] >= Responses[i]

 for i in range(len(Deadlines))])`;

 argument

 or(

 contract RMAHarmonicBoundContract

 contract RMANonHarmonicBoundContract

 contract fpResponseTimeContract

);

 }

**};

Listing 2:Verification Plan

Listing 2 shows the verifyEndToEndTiming verification
plan that includes the contracts (only the
EndToEndDelayedCommunicationContract in this case) that
are used to verify all aspect of the claims presented in the
verification plan. (This is an SMT encoding of the claims.)

In the description of the
EndToEndDelayedCommunicationContract in Listing 2, we see
that its assumptions are verified with another contract
(areConnectionsDelayedContract) and an argument
(schedulabilityArgument). The schedulabilityArgument
argument enables the selection of different forms of verification
of assumptions (different scheduling analysis) that enables the
selection of different forms of verification of this assumption
(different scheduling analysis).

The details of the schedulabilityArgument are also

presented in the listing and show how it is possible to combine
multiple contracts into a Boolean formula, or, in this case, to use
any of the contracts that are possible to use. In this particular
case, it will use the RMAHarmonicBoundContract if it can

verify its assumptions, which includes both that the priority
assignment is rate monotonic and that the periods of the task are
harmonic to each other. If it cannot verify the period
harmonicity, the OR encoding then allows us to try to use the
RMANonHarmonicBoundContract contract that does not

require period harmonicity. Finally, if neither of the two
assumptions are met, it is then possible to use the
fpResponseTimeContract contract that does not require

either of the two but requires other assumptions (e.g., the
deadline is shorter or equal to the period).

IV. ASSURANCE ARGUMENTATION FOR THE A330

While we lack the specific claims of the original certification
of the A330 aircraft and the role of the replication patterns (with
the PRIM computers and their COM/MON processors), we first
explore a generic form of the replication to identify potential
claims, verification procedures, and assumptions to develop an
assurance argumentation.

A. Replication Patterns

The A330 architecture has two forms of replication that, to
our understanding, address different properties. In particular,
one type of replication addresses reducing the possibility of
calculating the wrong value or preserving the value integrity (or
just Integrity for short). The other goes after preserving the
availability of the computation even if faults occur; this is known
as Availability.

1) Integrity Replication

From the incident report, we believe the A330 is
implementing integrity replication with the combination of the
COMMAND module (COM) and the MONITOR module
(MON) that calculate the same output from the input commands,
and the COM uses the MON data to check its own computation.

Assumptions

The integrity replication has at least two assumptions:

1. Development diversity requires that two different teams

develop two (or more) modules independently. The

rationale behind this approach is that if we develop two

different implementations that can fail differently, we

would be able to detect the failure of the pair based on the

difference in the output values. This diversity assumption

can be checked with the proper execution of a development

process that enforces it, but the incident report does not

point to a failure related to this assumption.

2. Module pair should use the same input, which means that

both COM and MON should receive the same input to

create the proper comparison between the two. More

importantly, in the specific case covered by this paper,

while it is possible to get some small variation in the input

from the pedal sensor, a difference in the air/ground mode

is catastrophic given that it selects different control laws for

the same module. This behavior is exactly what the incident

report describes as a key violation.

2) Availability Replication
Availability replication is used to tolerate hardware failures

and preserve a module to continue running. Availability claims
aim to satisfy measures of tolerance to failures in the form of
either some informal argument on failure independence or a
more formal probability of the absence of service due to the
failure of all the replicas.

Assumptions

Key to the availability replication is the assumption that the
modules must fail independently. More specifically, this
assumption means that the hardware where the modules run
must fail independently. For this paper, we focus only on this
assumption given that we believe it informs the design of the
avionics system and interacts with the integrity replication
scheme.

B. Replication Modeling

We first formalize the availability claim (probability of absence

of service) connected to a specific verification procedure:

probabilistic fault-tree analysis (FTA). In this case, we create the

replicated end-to-end flow architecture (that captures the

channel construct) that reads from the sensors, computes the

actuation in the PRIM (COM/MON) computers, and sends it to

the actuator as shown in Figure 4. This figure depicts with each

box an independent thread (including the sensors and actuator

boxes), representing the last thread that interacts with the

appropriate device (i.e., reads from the sensor registers or writes

to the actuator registers) that runs in its own processor. For

simplicity, we assume that all processors fail independently.2

Figure 4: All Independent Channel Threads

1) Fault-Tree Analysis (FTA)
FTA is a top-down approach that defines the faults of interest

under which a tree of events is created that lead to such a fault
[17]. The tree is constructed by first connecting abstract events
to the top-level failure by either an AND or an OR connector to
represent that for the fault to occur, either all the next level
abstract events need to occur or only one of such events needs
to occur respectively. The decomposition of the next level
events continues in the same fashion until basic events are
identified. This construct can also be translated into what is

2 Further verification is required for the final implementation e.g., power

supplies, cooling systems, etc.

known as a reliability block diagram, where OR compositions
are represented as blocks connected in series while AND are
those connected in parallel. These patterns are shown in Figure
5.

Figure 5: Fault-Tree and Reliability Block Diagrams

Fault trees allow two types of analysis: a qualitative analysis

and a quantitative analysis. The qualitative analysis allows us to
evaluate the set of basic events that, if they occur
simultaneously, makes the top fault occur. These are known as
the cut set. A cut set is minimal if it cannot be reduced without
losing its status as a cut set.

In addition, a fault tree also allows us to identify common
causes that break a failure-independence expectation. For
instance, the minimal cut sets of the systems in Figure 5 are
{1},{2},{3} for system A, {1,2,3} for system B and {1}, {2,3}
for system C. These sets allow us, for instance, to identify single
points of failures as cut sets with a single element. In our
example, both system A and C have them, but system B does
not.

The quantitative analysis, on the other hand, allows us to
calculate the probability of failure by assigning probabilities of
occurrence to each basic event and deriving the probability of
occurrence of the top event from them. This probability is
calculated with

𝑄𝑜(𝑡) = 1 − ∏ (1 − 𝑄̌𝑗(𝑡))

1≤𝑗≤𝑘

Equation 1

with 𝑄̌𝑗(𝑡) as the failure probability of cut set 𝐶𝑗 calculated

as

𝑄̌𝑗 =∏𝑞𝑖(𝑡)

𝑖∈𝐶𝑗

Equation 2

where 𝑞𝑖(𝑡) can be calculated as a single event occurring at
time 𝑡 (after some time of service) that is not repairable or is
repairable and needs to be calculated over time. For the objective
of this analysis, we assume that it is not repairable and that 𝑞𝑖(𝑡)
is given; we apply it in the A330 architecture to evaluate
potential claims and their assumptions.

2) AADL Model

COM

MON

COM

MON

COM

MON
PRIM1

PRIM2

PRIM3

Fail-over
Fail-over

Sensor1

Sensor2

Sensor3

Sensor4

Sensor5

Sensor6

Actuator1

Actuator2

Actuator3

TOP

1 2 3

TOP

1 2 3

TOP

1

2 3

1 2 3

1

2

3

1
2

3

Fault Tree Reliability BlockFault Tree Reliability BlockFault Tree Reliability Block

(A) (B) (C)

To capture the replication characteristics to perform the
FTA, we created an AADL model [5] following the architecture
in Figure 43 where each component is a thread. We next created
a hardware architecture where each thread has its own processor
assigned to it. We then identify the internal control/data flows
(identified as f<number>) that cross each component from input
to output ports, the connections from output to input ports
(identified as c<number>), and the flow source (identified as
s<number>) and flow sinks (identified as k<number>). This
architecture is shown in Figure 6.

Figure 6: Channel Composition

We now discuss two more details added to the AADL model
that we could not include in the figure:

1. All ports in this model are Data ports, which means that

when the thread activates, it reads whatever is in the port

buffer and continues its execution.

2. All connections are Delayed connections, which means

that whatever the thread in the output port of the

connection sends, it arrives at the next periodic

activation of the receiving thread.

This combination allows us to (1) abstract away the network
communication delays and assume that the communication will
happen within the execution of the previous periodic activation
and (2) assume that when the receiving thread activates, it
already has the most recent data in its input ports.4 Given all this
information, we can define two end-to-end flows, as presented
in Listing 3.

pedalToActuationCOMPRIM1: end to end flow

Sensor1.s1-> Sensor1.f1->c2->COM.f5->c6->

Actuator1.k1;

pedalToActuationMONPRIM1: end to end flow

Sensor2.s3-> Sensor2.f3->c4->MON.f6->c5->

COM.f5->c6->Actuator1.k1;

Listing 3: End-to-End Flows Replica 1

Listing 3 only lists one flow in each component because all

the flows are equivalent given that their data is available at the
time of the thread activation. Moreover, the end-to-end flow
pedalToActuationMONPRIM1 captures the dependency
between COM and MON that is not present in the end-to-end
flow pedalToActuationCOMPRIM1. These characteristics of
Listing 3 allow us to focus only on the MON end-to-end flows
when describing the replication pattern.

3 Not shown for brevity.

To describe the replication pattern, we define that the main
flows within each of the PRIM computers must be replicas of
each other. In Listing 4, we capture only the
pedalToActuationMONPRIMx given that it captures the
internal dependencies between the MON and COM processors.

ReplicationProperties::Replicating =>(reference

(pedalToActuationMONPRIM2), reference

(pedalToActuationMONPRIM3)) applies to

pedalToActuatorMONPRIM1;

Listing 4: Replication Specification

In addition, we specify the probability of failure of each

processor and the target reliability (or availability) of the
replicated flow as presented in Listing 5. (Note that this
probability is notional and does not represent the typical
requirement of a commercial aircraft.)

ReplicationProperties::ReliabilityTarget => 0.85

applies to pedalToActuationMONPRIM1;

ReplicationProperties::FailureProbability => 0.01

applies to Sensor1.processor;

Listing 5: Reliability Specs

We developed a probabilistic FTA analysis that uses

Equation 1 and Equation 2. In this analysis, we transform the
graph created with the end-to-end flows into a reliability block
diagram based on the processor each thread runs in and their
dependencies. Two observations are in order. First, COM
depends on MON given that it uses its output to evaluate output
value differences; therefore, there is no advantage to running
them in separate processors since if one stops working (e.g., is
not available), the other will not be able to verify its output and
will fail as well. Second, for the COM comparison with MON,
it needs to read the pedal and landing gear at exactly the same
time since it is not possible to know exactly when the mode
switch will happen. This new requirement is captured in Listing
6, which shows only the PRIM1 part.

ReplicationProperties::

 IntegrityReplicas =>(reference

 pedalToActuationCOMPRIM1) applies to

 pedalToActuationMONPRIM1;

ReplicationProperties::

 ReplicasStartJitterTolerance => 0 ms applies to

 pedalToActuationCOMPRIM1;

Period 100 ms applies to Sensor1.thread;

Period 100 ms applies to Sensor2.thread;

Listing 6: Simultaneous Activation

Listing 6 captures a new type of replica that we call

IntegrityReplica; it identifies the replicas used to evaluate if two
functions implemented to compute the same value really do so.
As discussed above, to work properly, these replicas require the
same input values (within a tight tolerance). We also added the

4 Clearly, both assumptions need and can be verified with a more

detailed model, but this discussion is not included in this paper.

COM

MON

PRIM1

Sensor1

Sensor2
Actuator1

CHANNEL 1

Fail-over

c1

c2

c3

c4

c5

c6f1
f2

f3
f4

f5

f6

s1
s2

s3
s4

k1

periods for the sensor threads so that we can calculate the worst-
case jitter of their respective threads (i.e., the worst-case possible
difference between the starting of the execution and, hence,
sensor reading) of the thread that starts the flow. (We left this
equal to zero.)

We were able to satisfy the Reliability target with our FTA
analysis, but we also discovered that the COM and MON threads
do not benefit from running on independent processors given
that if either COM or MON fails to produce the correct value,
both fail together. For the jitter analysis, however, we realized
that we cannot have two different sensing threads for COM and
MON if our jitter target is zero. Hence, we modified the
architecture as presented in Figure 7 with both MON and COM
using a single thread to read the sensor values at the same time.

Figure 7: Channel 1 With Single Sensing Thread

Finally, we evaluated the end-to-end latency of the flows to

verify that they meet the proper requirement by adding all the
schedulability parameters for each of the threads, specifically

• periods

• deadlines

• priorities

• worst-case execution time

• assignment of threads to processors (where they will run

and already used for the reliability replication)

• scheduling policy

In Listing 7, we introduce the properties for only one thread
given that the assignment to the other threads follows the same
pattern.

Period 100 ms applies to Sensor1.thread;

Deadline 100 ms applies to Sensor1.thread;

Priority 1 applies to Sensor1.thread;

Compute_Execution_Time 10 ms applies to

Sensor1.thread;

Actual_Processor_Binding =>(reference

(rep1.com.proc))

 applies to Sensor1.thread;

Preemptive_Scheduler => True applies to

rep1.com.proc;

Listing 7: Scheduling Properties

C. Automatic Certification Argumentation

By applying the Symbolic Assurance Refinement (SAR)
framework described in Section III.A, we developed the
verification plan for the CI202 incident presented in Listing 8.
This listing starts with the verification plan specification module
at the top. It then presents three contracts used in the plan to
verify the claims and assumptions for integrity

(SamplingSynchronizationContract), availability
(ReliabilityContract), and end-to-end timing
(EndToEndDelayedCommunicationContract). In the claims
section of the verification plan, we also have three SMT claims
about the three claims that we verify.

annex contract {**

 verification plan verifySynchronization {

 component

 s: EndToEndTimingExample::mysystem.i;

 domains

 synchronization;

 reliability;

 claims

 `And([E2ESamplingJitter[i] <=

 E2ESamplingJitterTolerance[i]

 for i in

 range(len(E2ESamplingJitter))])`;

 `And([Reliability[i]>=ReliabilityTarget[i]

 for i in range(len(Reliability))])`;

 `And([E2EResponses[i] <= E2ELatencies[i]

 for i in range(len(E2EResponses))` ;

 contracts

 SamplingSynchronizationContract;

 EndToEndDelayedCommunicationContract;

 ReliabilityContract;

 }

 contract SamplingSynchronizationContract {

 domains

 synchronization;

 guarantee

 <=> `And([E2ESamplingJitter[i] <=

 E2ESamplingJitterTolerance[i]

 for i in

range(len(E2ESamplingJitter))])`;

 analysis

 '''areFlowsInSync1(${flowComponents$},

 error0)''';

 }

 contract ReliabilityContract {

 domains

 reliability ;

 assumptions

 '''areReplicasOnIndependentProcessors(

 ${flowComponents$},

 error0)''';

 guarantee

  `And([Reliability[i] >=

 ReliabilityTarget[i]

 for i in range(len(Reliability))` ;

 analysis

 ’’’isE2EFlowProbFail Met(

 ${replicatede2es$},error0)` ;

 }

 contract EndToEndDelayedCommunicationContract {

 domains

 schedulability;

 queries

 input assumptions

 '''areEndToEndLatenciesInputDataComplete(

 ${periods$}, ${wcets$},

 ${deadlines$}, ${names$})''';

 assumptions

 contract areConnectionsDelayedContract;

 '''areAllThreadsPeriodic(${threads$},

 ${protocols$},

 ${names$},error0)'''=>

 `And([Periodics[i]

 for i in range(len(Periodics))])`;

 '''areAllDeadlinesConstrained(${threads$},

COM

MON

PRIM1

Sensor1

Actuator1

CHANNEL 1

Fail-over

c1

c2

c3

c4

c5

c6f1
f2

f5

f6

s1
s2

k1

 ${periods$},${deadlines$},

 ${names$},error0)''' =>

 `And([Deadlines[i] <= Periods[i]

 for i in range(len(Deadlines))])`;

 argument schedulabilityArgument;

 guarantee

 <=> `And([E2EResponses[i]

 <= E2ELatencies[i]

 for i in range(len(E2EResponses))])`;

 analysis

 '''meetEndToEndLatencies(

 ${flowComponents$},

 error0)''';

 }

 argument schedulabilityArgument {

 domains

 schedulability;

 guarantee

 <=> `And([Deadlines[i] >= Responses[i]

 for i in range(len(Deadlines))])`;

 argument

 or(

 contract RMAHarmonicBoundContract

 contract RMANonHarmonicBoundContract

 contract fpResponseTimeContract

);

 }

**};

Listing 8: Verification Plan

The SamplingSynchronizationContract contract details are
also included in Listing 8. The guarantee is expressed in SMT
and is checked with the Python function areFlowsInSync1() in
the analysis section to verify the ReplicaStartJitterTolerance
presented in Listing 6.

Similar to the SamplingSynchronizationContract, the
ReliabilityContract presented in Listing 8 includes the
verification of the independence assumption that is verified with
the Python function areReplicasOnIndependentProcessors().
This function returns True if it is able to evaluate that the
functions in the end-to-end flows that model the different PRIM
computers run on independent processors and False otherwise.
(This end-to-end flows data is obtained from queries in MQL
that obtain the data from the AADL model; they are not shown
for brevity.) Then, in section analysis, an invocation to the
Python function isE2EFlowProbabilityOfFailureMet verifies
whether or not the reliability requirement presented in Listing 5
is met.

The last contract presented in Listing 8 is the
EndToEndDelayedCommunicationContract. The details
presented in the listing follow a similar pattern to the other two
contracts with the following exceptions. First, it adds an input
assumptions section with a Python call to evaluate whether we
have enough data to run this contract. Second, it adds the
contract areConnectionsDelayedContract as one of the
assumptions to verify, which is one of the complex assumptions
that uses another contract to verify it. Finally, it adds the
argument schedulabilityArgument that enables the selection of
different forms of verification of this assumption (different
scheduling analysis), as discussed in the Assurance
Argumentation in Section III.C.

V. LIMITATIONS

Our experiment was limited to validate the capabilities of the
current techniques to investigate design errors in systems
already deployed. To take full advantage of these techniques it
is necessary to validate them in early design to prevent these
errors from occurring. Similarly, it is also important to validate
these techniques in systems modifications as the systems evolve.
As more analyses techniques of different level of formalization
are incorporated in the proposed argumentation we expect the
automatic argumentation to evolve. More specifically, the
symbolic constraints specified in the SAR approach are
expressed in SMT first order logic, this means that this must be
evaluated to a Boolean. However, on the one hand, engineering
analyses at times use engineering judgement to evaluate whether
some non-exhaustive analysis or probabilistic analysis yields a
result that is acceptable. On the other hand the use of simulators,
e.g., like in digital twins have proven to be useful even if they
do not explore all possible behaviors of the system and no
absolute Boolean value can be derived from it. In this exercise
we translated probabilistic measurements (e.g., probability of
failure) into a Boolean by ensuring that such probability reaches
a threshold. Perhaps in the future a deeper integration of
probabilistic analysis and non-exhaustive analysis can be
explored.

VI. CONCLUDING REMARKS

The objective of this paper was to validate if the automation
of certification arguments can indeed identify problems that
occur in real systems. Key to this validation exercise was the
following:

1. The connection of the arguments to certifiers and designer

rationale is typical of certification reasoning.

2. The arguments can be expressed at a high enough level of

abstraction to enable humans to evaluate whether the

arguments are properly captured or not.

3. The verification of the arguments and the verification

procedures of the claims in such arguments can be

automatically processed by a computer.

4. The lower-level assumptions of the verification procedures

(i.e., analysis) can be captured and verified at lower levels

of detail, incrementally increasing the details getting all the

way down to implementation but in a way that each level

can be reasoned incrementally.

This work allowed us to validate all these aspects. However,
limits to the incremental validation did not enable us to produce
a full implementation given the lack of information in our
example. At the same time, we understand that more work is
required to validate if this approach can be extended to the scale
of full certification claims and incremental recertification.
Subsequent experiments will explore this issue in more detail.

We learned the following lessons from conducting the

research presented in this paper:

• From a methodological point of view, this work allowed

us to demonstrate how multiple abstractions used by

different verification domains (real-time scheduling,

availability, and integrity) can be assembled and cross

validated in an automatic, formal way. Importantly, these

abstractions are connected to architectural models that

are reasonably easy to understand by engineers and

certifiers. These abstractions can also be connected to the

results from the specific analysis (even if all of the

details are not fully understood).

• This work allowed us to exercise the reuse of arguments

(e.g., for end-to-end timing verification) that

encapsulated multiple checks at lower levels of

abstractions to which the modeler reusing the argument

was not exposed. At the same time, new analyses were

added (availability and integrity) along with their

assumptions and assumption checking analyses; this

allowed us to automatically identify failures to meet

these assumptions in the fictitious design variations that

we explored.

In summary, this modeling and automatic verification
experiment showed a robust process that allowed us to encode
lessons learned in an executable format. This encoding can then
be reused as we develop new arguments and verification
procedures that can be used in new system developments. More
importantly, the encoding enables the automatic integration of
development activities to the production of certification
evidence. These types of automatic certification techniques are
crucial to software-reliant systems, such as defense and
aerospace systems, that continuously evolve [18]. To highlight
this importance and encourage interest from industry and
research communities, we have formed the Assurance Evidence
for Continuously-Evolving Real-Time Systems workgroup
(ASERTW). Please visit https://www.asertw.org/ to learn about
our activities and follow-up research.

ACKNOWLEDGMENT

The following markings MUST be included in work product when attached to this form and when it is

published.
For purposes of double anonymous peer review, markings may be temporarily omitted to ensure

anonymity of the author(s).
Copyright 2024 Carnegie Mellon University, Daniel Shapiro, Douglas C. Schmidt, Floyd Fazi, George

Romanski, Hyoseung Kim, John Lehoczky, Jonathan Preston and Ron Koontz

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering

Institute, a federally funded research and development center.
References herein to any specific entity, product, process, or service by trade name, trade mark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,

or favoring by Carnegie Mellon University or its Software Engineering Institute nor of Carnegie Mellon
University - Software Engineering Institute by any such named or represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF

THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Requests for permission for non-licensed uses should be directed to the Software Engineering Institute

at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

DM24-0780

REFERENCES

[1] Shankar, Natarajan; et al.. DesCert: Design for Certification. March 2022.
https://arxiv.org/abs/2203.15178

[2] de Niz, Dionisio & Wrage, Lutz. Symbolic Refinement for CPS. ACM
SIGAda Ada Letters. Volume 43. Issue 1. Pages 88–93. 2023.
https://doi.org/10.1145/3631483.3631498.

[3] Hoare, C. A. R. An Axiomatic Basis for Computer Programming.
Communications of the ACM. Vol-ume 12. Number 10. Pages 576–580.
October 1969. https://dl.acm.org/doi/10.1145/363235.363259.

[4] Benveniste, Albert, et al.. Contracts for System Design. Foundations and
Trends in Electronic Design Automa-tion. Volume 12. Issue 2-3. 2018.
https://www.nowpublishers.com/article/Details/EDA-053.

[5] Architecture Analysis and Design Language (AADL). SAE International.
Standard AS5506. March 2009.
https://www.sae.org/standards/content/as5506/.

[6] Cofer, Darren; Gacek, Andrew; Miller, Steven P.; Whalen, Michael W.;
LaValley, Brian; & Sha, Lui. Compositional Verification of Architectural
Models. In NASA Formal Methods. Pages 126–140. 2012.

[7] Nam, Min-Young; de Niz, Dionisio; Wrage, Lutz; & Sha, Lui. Resource
Allocation Contracts for Open Analytic Runtime Models. In 2011
Proceedings of the Ninth ACM International Conference on Embedded
Software (EMSOFT). Pages 13–22. October 2011.
https://doi.org/10.1145/2038642.2038647.

[8] Jackson, Daniel. Alloy: A Language and Tool for Exploring Software
Designs. Communications of the ACM. Volume 62. Issue 9. Pages 66–
76. August 2019. https://doi.org/10.1145/3338843.

[9] Ruchkin, Ivan; de Niz, Dionisio; Garlan, David, & Chaki, Sagar.
Contract-Based Integration of Cyber-Physical Analyses. In EMSOFT ’14:
Proceedings of the 14th International Conference on Embedded Software.
Pages 1-10. October 2014. https://doi.org/10.1145/2656045.2656052.

[10] Kesten, Yonit; Pnueli, Amir; & Raviv, Li-on. Algorithmic Verification of
Linear Temporal Logic Specifications. In Automata, Languages and
Programming. Larsen, K. G.; Skyum, S.; & Winskel, G. [editors].
Springer Berlin Heidelberg. 1998.

[11] Holzmann, Gerard J. The Model Checker SPIN. IEEE Transactions on
Software Engineering. Volume 23. Number 5. Pages 279–295. 1997.
https://doi.org/10.1109/32.588521.

[12] Brau, G.; Hugues, J.; & Navet, N. Towards the Systematic Analysis of
Non-Functional Properties in Model-Based Engineering for Real-Time
Embedded Systems. Science of Computer Programming. Volume 156.
Issue 1. 2018. http://dx.doi.org/10.1016/j.scico.2017.12.007.

[13] Wang, Timothy E.; Daw, Zamira; Nuzzo, Pierluigi; & Pinto, Alessandro.
Hierarchical Contract-Based Synthesis for Assurance Cases. In NASA
Formal Methods: 14th International Symposium, NFM 2022. May 2022.
http://dx.doi.org/10.1007/978-3-031-06773-0_9.

[14] 1st International Workshop on Explainability of Real-Time Systems and
their Analysis (ERSA). IEEE Real-Time Systems Symposium (RTSS
2022). Houston, Texas. December 2022.
https://sites.google.com/view/ersa22.

[15] 2nd International Workshop on Explainability of Real-Time Systems and
their Analysis (ERSA). IEEE Real-Time Systems Symposium (RTSS
2023). Taipei, Taiwan. December 2023.
https://sites.google.com/view/ersa23.

[16] Taiwan Transportation Safety Board (TTSB). China Airlines Flight
CI202 Occurrence. TTSB-AOR-21-09-001. September 2021.
https://www.ttsb.gov.tw/media/4936/ci-202-final-report_english.pdf.

[17] Rausand, Marvin. Reliability of Safety‐Critical Systems: Theory and
Applications. John Wiley & Sons, Inc. 2014.
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118776353.

[18] de Niz, Dionisio, et al. Assurance Evidence of Continuous Evolving Real-
Time Systems. Technical Report, Software Engineering Institute |
Vanderbilt University | Federal Aviation Administration, 2022.
https://www.andrew.cmu.edu/user/dionisio/pubdocs/ASERT-Report-
Final.pdf.

[19] Bjorn Andersson et al., "Explainable Verification: Survey, Situations, and
New Ideas," Technical Note, Software Engineering Institute at Carnegie
Mellon University,https://insights.sei.cmu.edu/documents/5866/survey-
explain_CGrLAVz.pdf

https://arxiv.org/abs/2203.15178
https://doi.org/10.1145/2038642.2038647
https://doi.org/10.1145/3338843
https://doi.org/10.1145/2656045.2656052
https://doi.org/10.1109/32.588521
http://dx.doi.org/10.1016/j.scico.2017.12.007
http://dx.doi.org/10.1007/978-3-031-06773-0_9
https://sites.google.com/view/ersa22
https://sites.google.com/view/ersa23
https://www.ttsb.gov.tw/media/4936/ci-202-final-report_english.pdf
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118776353

	I. Introduction
	A. Related Work

	II. A Flight Incident Case
	A. Key Sequence of Events
	B. Channel Asynchronism Timeline

	III. Automatic Certification Argumentation
	A. Symbolic Assurance Refinement Framework
	B. Proof Obligations and Refinement
	C. Assurance Argumentation

	IV. Assurance Argumentation for the A330
	A. Replication Patterns
	1) Integrity Replication
	2) Availability Replication

	B. Replication Modeling
	1) Fault-Tree Analysis (FTA)
	2) AADL Model

	C. Automatic Certification Argumentation

	V. Limitations
	VI. Concluding Remarks
	Acknowledgment
	References

