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Abstract— At the core of every modern airliner is a software-

reliant fly-by-wire system that translates pilot inputs into 

electronic signals to control aircraft movements. Given the safety-

critical nature of these systems they include architectural 

constructs and mechanisms to tolerate failures related to 

hardware (e.g., processor or sensor failures) and software (e.g., 

potential bug in the code). The goal is to reach the required levels 

of availability and integrity validated through a certification 

process that includes specific verification methods to discharge 

specific claims. Unfortunately, the different verification 

procedures and associated architectural constructs are typically 

developed independently and make independent assumptions that 

can contradict each other, thereby preventing the desired 

behavior or invalidating the assumptions and results of a given 

verification procedure. To help address these problems this paper 

presents how a new symbolic argumentation approach can be used 

to analyze a real flight incident (the flight CI202 incident in 2020) 

by automating the verification procedures and their assumptions. 

Our approach describes verification plans that start at the level of 

certification connected to automated verification analysis on 

architectural models. These plans are decomposed into analysis 

contracts that specify what claims they verify (e.g., availability of 

a fly-by-wire function > 99.99%), what analysis is used to verify 

the model (e.g., probabilistic Fault-Tree Analysis) and what 

assumptions it relies on (e.g., a function is replicated over 

processors that fail independently of each other). These plans are 

integrated into a symbolic argumentation implemented as a 

constraint satisfaction problem that is solved with a Satisfiability 

Modulo Theory (SMT) solver. The CI202 flight incident analysis 

is presented using an argumentation hierarchy on architectural 

models and the analysis of potential design issues that could 

explain a triple computer failure. We demonstrate how our 

approach can reason about early design decisions by pointing to 

unfulfilled assumptions, contradictions, and potential 

workarounds that have the potential to prevent these types of 

incidents. 

Keywords—component, formatting, style, styling, insert (key 

words) 

I. INTRODUCTION 

Safety-critical software-reliant systems like avionics 
systems must satisfy strict safety properties that are verified 

through certification. To meet these properties (e.g. availability), 
different architectural constructs (e.g., replication) and 
mechanisms (e.g., fail-over) are used in conjunction with 
verification procedures (e.g., probabilistic Fault-Tree Analysis). 
We call this triple combination an assurance architectural 
construct (AAC). Unfortunately, different assurance 
architectural constructs are develop independently making 
equally independent assumptions. As a result, when multiple 
AACs are used together within a system keeping track of the 
assumptions and their potential interactions become a risky 
manual activity.  

This paper discusses the flight incident of the flight CI202 
that occurred in Taiwan in 2020 where a triple computer failure 
left the pilots braking in semi-manual mode. We present how we 
used a new symbolic argumentation approach that allows us to 
model AACs and how the certification claims are decomposed 
into arguments composed of contracts that describe what 
different verification procedures (in the form of analysis) verify, 
what they assume and how we verify such assumptions and their 
interactions. With this approach we can model the problem 
described in the incident report [16], describe the assumptions 
that caused the problem and automatically analyze them, and 
explore potential solutions. 

A. Related Work 

This paper shares some objectives with [1]. In particular, 
they promote the concept of assurance-based development that 
is similar to the concepts we present here. However, their focus 
is on the final system; hence, they focus on the application of 
verification tools to the final system. In contrast, we focus on a 
more comprehensive approach that encompasses early designs 
and higher levels of abstractions where arguments can be 
developed and verified much earlier. These higher-level 
abstractions are closer to the higher-level requirements that 
document intended behavior at a higher-level granularity. 
Moreover, the low-level focus closer to the code forces 
abstractions that remove aspects from other analysis domains 
(e.g., timing, fault tolerance) thereby creating blind spots for 
conflicts in analysis assumptions from these domains. 

The techniques we use are presented in [2], which is based 
on analysis contracts that describe what an analysis tries to 
prove, what assumptions it makes, and how it connects to a full 
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argument developed to prove verification claims. Analysis 
contracts rely on assume/guarantee reasoning based on Hoare 
triples [3], which evolved into more abstract domains with the 
development of contract algebras [4]. Contracts have also been 
used in assume/guarantee reasoning over components in the 
Architecture Analysis and Design Language (AADL) [5][6]. 
However, component contracts reason about properties of the 
values that AADL components communicate through their ports 
to other components and the computation that occurs inside a 
component that transforms input values into output values. This 
approach is a more traditional way of thinking about contracts 
that is easier to map to a Hoare triple. In contrast, analysis 
contracts reason about properties of analysis algorithms applied 
to models (e.g., AADL models), not the computations inside the 
components of the model. Our goal is to reason about how 
multiple analyses work together to prove top-level assurance 
claims instead of how properties on values generated by model 
components discharge properties of top-level components. From 
this point of view, therefore, an analysis that uses component 
contracts to verify value transformation properties is just another 
analysis that we integrate and that would have its own analysis 
contract. 

Previous work in analyses contract started with [7], where 
contracts were defined for resource allocation models. These 
contracts were defined in Alloy [8], and the analyses algorithms 
were implemented in Mathematica and included in the AADL 
models. Analyses contracts were later extended [9] to remove 
the bounded verification limitations of Alloy, implementing the 
contracts specification with a mixture of satisfiability modulo 
theories (SMT) and linear-time temporal logic (LTL) [10] with 
a verification in Z3 and SPIN [11]. This work also extended the 
analyses beyond resource allocation to other domains, such as 
thermal dissipation and security. Later, the authors in [12] 
created an implementation of analysis contracts with a special 
emphasis on lower-level analysis assumptions within the same 
domain. 

In [13], the authors present a contract model close to analysis 
contracts with a synthesis approach to combine multiple 
contracts that restrict the design space out of pre-crafted parts. 
Their approach works at a more abstract level closer to [4]. It is 
applied at the assurance case level and reuse of assurance case 
patterns but provides no connection to domain-specific analysis 
algorithms. 

Given the focus on using tools for analysis, it is natural to 
ask whether to trust that the output of the analysis was computed 
correctly. The recently-coined term explainable verification 
focuses on addressing this issue [14][15]. This effort focuses on 
the approach that an analysis not only needs to compute an 
output but also an explanation of why it produced this output. 
This explanation must then be easy to consume by a person 
without requiring deep expertise in the analysis domain. 

II. A FLIGHT INCIDENT CASE 

The flight incident we analyze in this paper exemplifies the 
challenges we face when multiple certification claims, such as 
availability, integrity, and timeliness, need to be addressed by 
multiple assurance architectural constructs. This incident 

occurred in the Taipei airport in 2020. The core of the incident 
is described in [16] as follows:  

On June 14, 2020, China Airlines scheduled passenger 
flight CI202, an Airbus A330-302 aircraft, registration B-
18302, took off from Shanghai Pudong International Airport 
for Taipei Songshan Airport with 2 flight crew members, 9 
cabin crew members, and 87 passengers, for a total 98 
persons onboard. The aircraft landed on runway 10 of 
Songshan Airport at 17:46 Taipei local time. At touchdown, 
the aircraft experienced the quasi-simultaneous failure of 
the 3 flight control primary computers (FCPC or PRIM), 
thus ground spoilers, thrust reversers, and autobrake were 
lost. The flight crew was aware of the autobrake and 
reversers failure to activate, and applied full manual brake 
rapidly to safely stop the aircraft about 30 feet before the end 
of runway 10 without any damage to the aircraft nor injuries 
to the passengers onboard. 

The incident report identifies the lack of synchrony in 
redundant computations within the system as the main culprit. 
To understand the situation we will use Figure 1. which depicts 
a partial view of the flight control architecture of the Airbus 330. 

 

Figure 1 Airbus A330 Flight Control Architecture 

 
Figure 1 shows the decomposition of each PRIM computers 

into a main command processor (COM) (part of a sequence of 
processors or channels as known in aviation) and a monitor 
processor (MON). Both the COM and MON processors 
calculate the same actuation value according to the pilot input 
(depicted by a pedal in the figure). After both compute this 
value, COM receives the computed value from MON and 
compares it to its own value. If the difference is within a 
threshold, it uses its output. If the difference exceeds the 
threshold, however, it fails-over to the next PRIM computer 
(PRIM2) arranged in the same fashion. The PRIM2 computer 
performs the same comparison and has the same failover 
strategy. If PRIM3 also fails, the backup computers are 
activated. 

It is important to note that these computers execute different 
functions when the aircraft is in air mode versus when it is in 
ground mode. This is because in air mode the vertical tail is 
actuated whereas in ground mode, the front wheels are actuated. 

A. Key Sequence of Events 

In the incident report, the following sequence of events was 
identified as significant: 

1. Gear touchdown → Aircraft switch to ground mode 

2. Gear in the Air →Aircraft switch to air mode 
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3. Gear touchdown →Aircraft switch to ground mode 

4. PRIM1 Failed-over 

5. PRIM2 Failed-over 

6. PRIM3 Failed-over  

The report also identified that the cause of the failure 
stemmed from the disagreement between the COM and the 
MON over the actuation in [16] (p. 68). This disagreement was 
traced back to the computation of different functions (controls 
laws) by COM and MON due to the switching be-tween air 
mode and ground mode. In particular, one of the channels  used 
the “lateral flight control law” to calculate the rudder command 
(based on the pilot pedal input), while the other used the “lateral 
ground law,” exceeding the threshold that was designed to 
compare differences for the same law [16] (p. 6). This 
disagreement was called “channel asynchronism.” 

B. Channel Asynchronism Timeline 

Based on the information presented above we created a 
sample timeline that could explain the triple failure, which is 
shown in Figure 2. 

 

Figure 2 - Channel Asynchronism Timeline 

 

Figure 2 shows one specific time sequence that, according to 
the report, can occur in the system and would explain the triple 
failure. Specifically, the figure shows all COM processors (from 
the three PRIM computers) reading the landing gear (and pedal) 
position at the same time at time 𝑡1. This occurrence is then 
followed by the reading of the gear and pedal position by all 
MON processors at time 𝑡2. Given that the plane is in ground 
mode at time 𝑡1, all COM processors use the “lateral ground 
law” (identified as 𝑓𝐺(𝑃1) in the figure) to calculate the rudder 
command. On the other hand, all MON processors then use the 
“lateral flight law” (identified as 𝐹𝐴(𝑃1)  in the figure) to 
calculate the rudder command. The MON command is then 
communicated back to the COM processor, and it calculates the 

difference and compares it to the threshold ( |𝑓𝐺(𝑃1) −
𝑓𝐴(𝑃1)| > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐺) 

Clearly, while MON and COM use the same pedal input 
( 𝑃1)  they use different functions to calculate the output, 
violating the implicit assumption of the comparison (i.e., they 
compare results of the computation from the same control law). 
Interestingly, the two computations were performed in the same 
time frame. The difference exceeded the threshold and PRIM1 
fails-over to PRIM2. However, since PRIM2 and PRIM3 suffer 
from exactly the same flaw, they both fail as well. The end result 
is that all three MON processors from the three PRIM computers 
evaluated that they exceeded the tolerance threshold, and all 
three executed a failover that led to the switching to the 
secondary computers. 

Note that Figure 2 shows only one possible sequence of 
events that could lead to this incident. In reality, any sequence 
that leads COM and MON to execute different control laws will 
lead to the same incident. 

III. AUTOMATIC CERTIFICATION ARGUMENTATION 

At the core of this paper is the need to verify if we can use 
automatic argumentation methods that automate the verification 
procedures attached to certification arguments. This section 
presents the techniques from our current work that we use to 
implement this automation and identify possible design flaws 
connected to the CI202 incident report. 

A. Symbolic Assurance Refinement Framework 

To enable the automatic argumentation, we used the 
Symbolic Assurance Refinement (SAR) framework and tool [2]. 
This framework allowed us to integrate analyses defined for 
different properties, such as timing, fault tolerance, control, 
security, etc. into an argumentation structure that validates their 
assumptions and their interconnections with other analyses. 
More specifically, an analysis can make assumptions (e.g., tasks 
are scheduled with fixed-priority scheduling with rate-
monotonic priorities) that must be true for the result of an 
analysis (e.g., rate-monotonic schedulability bound) guarantee 
(all threads always meet their deadlines) to be valid. Checking 
these assumptions can involve more complex analysis that 
would also need to have its assumptions checked for the 
analysis’ guarantee to hold. This argumentation is depicted in 
Figure 3. 

 

Figure 3 - Contract Argumentation 
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SAR specifies the analysis contracts in a domain-specific 

language hosted as a language annex in the AADL tool 

(OSATE1). This template is presented in Listing 1. 

annex contract {** 

    contract <name> { 

    queries 

        <model var> = <query to obtain model data> 

    domains 

        <domain reference> 

    input assumptions 

        <Bool func to check data consistency>(<model 

vars>) 

    assumptions 

        <Bool func>(<model vars>)  

        -> <symbolic assertion> 

    analysis 

        <Bool func>(<model vars>)  

        -> <symbolic guarantee> 

    } 

**}; 

Listing 1:Analysis Contract Template 

 

Analysis contracts have three main parts: (1) a guarantee that 
is encoded symbolically (in SMT in the current 
implementation), (2) assumptions that are assertions also 
specified symbolically, and (3) an analysis that takes the form of 
a Boolean proposition that can be implemented as an imperative 
function that takes model data (model variables) and verifies 
specific conditions that would make the guarantee true. For 
instance, checking if a taskset is schedulable using the rate-
monotonic harmonic taskset bound implies only checking if the 
sum of the utilization of all the tasks running in a single 
processor is below 100 percent (i.e., a simple test like  

∑
𝑊𝐶𝐸𝑇𝑖

𝑃𝑒𝑟𝑖𝑜𝑑𝑖
≤ 1)𝑖∈𝑡𝑎𝑠𝑘𝑠𝑒𝑡 . However, here the main challenge is 

checking all the assumptions of the analysis, specifically 

1. All tasks are periodic. In the model (e.g., AADL model) 

this can be a flag but would need to be checked in the 

implementation. 

2. Periods of the tasks are harmonic (i.e., are multiples of each 

other). ∀ i , j ∈ taskset ∶ (Periodi > Periodj) →

Periodi mod Periodj = 0 

3. Priorities are rate monotonic. ∀ 𝑖, 𝑗 ∈ 𝑡𝑎𝑠𝑘𝑠𝑒𝑡 ∶
(𝑃𝑒𝑟𝑖𝑜𝑑𝑖 < 𝑃𝑒𝑟𝑖𝑜𝑑𝑗) → 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 > 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑗 (A 

larger priority number implies a higher priority.) 

4. Periods are equal to their deadlines. 

5. Tasks are scheduled with a fixed-priority scheduler. 

6. Tasks do not use mutually exclusive resources. This can be 

a more complex search in the model for shared resources 

and the protocols used to access them. This can be an 

independent contract whose implementation can have 

further assumptions. 

Contracts have three additional sections that complement the 
main ones: 

 
1  OSATE stands for Open source AADL Tool Environment. 

• queries (similar to SQL queries) that collect data from 

the architectural model for use by the analysis (Queries 

are, in fact, expressed in a domain-specific model query 

language [MQL].)  

• domains that are basically the names of a separate 

contract module that defines symbolic variables to be 

used in the assumptions and guarantee statements (Some 

of these variables can mirror model variables, but others 

will be used to encode a property even if they never 

appear in the model. For instance, the rate-monotonic 

harmonic bound test guarantees that the worst-case 

response time of no task will exceed its deadline under 

any circumstance. For this, we define a worst-case 

response time even if it is not in the model and is never 

calculated in the scheduling test but is in the proofs of 

the paper that demonstrated the correctness of this 

analysis.) 

• input assumptions that validate the data obtained in the 

queries to check if there is enough data to run the 

analysis (These are different from the other assumptions 

[we call analysis assumptions] in that if we do not have 

enough data [i.e., input], then we cannot run the analysis 

function. However, if the analysis assumptions are not 

met, then the result would be invalid even if we have 

enough data.) 

B. Proof Obligations and Refinement 

SAR enables two forms of analysis assumption verification. 
First, SAR verifies the existence of model data that will make 
the assumption false. For instance, if the model already has 
priorities and periods assigned to tasks, then we can check if the 
assumption can be violated with this data. If we do not have data 
that contradicts the assumption, then we can assume that it is 
correct. This assumption is implemented by the SMT engine that 
determines if there are symbolic variable values that can satisfy 
all our assumptions. This determination is useful for the 
verification of partial models when we do not have everything 
specified yet. However, assumptions verified this way are 
considered proof obligations, which are basically deferred 
obligations to verify assumptions. 

Second, SAR verifies that the data we have or do not have 
would not enable an assignment that would contradict the 
assumption. For instance, if the model has no information about 
priorities, we will verify if we can find values for the symbolic 
variable that would make some assumption false. This 
verification assumes that we now must have all the information 
to validate all the claims and assumptions. Hence, if this 
verification fails, it means that we still have proof obligations to 
fulfill, and we need to refine the model to verify the pending 
assumptions/claims. This type of verification is formally known 
as ensuring that a formula is valid (for all assignments). 

The first type of verification allows us to verify partial 
models. This, in turn, allows us to keep refining the model and 
verifying each refinement step. Finally, once we believe we have 



a complete model, we can then use the second type of 
verification to validate whether we are truly done. 

C. Assurance Argumentation 

The contract argumentation starts at the top from a 
verification plan to capture verification claims and the analysis 
contracts that can discharge them. These contracts follow the 
argumentation structure presented in Figure 3. The verification 
plan structure is presented in Listing 2 along with an example 
contract for end-to-end timing analysis. 

annex contract {** 

  verification plan verifyEndtoEndTiming { 

    component 

      s: EndToEndTimingExample::mysystem.i; 

    domains 

      schedulability; 

    claims 

      `And([E2EResponses[i] <= E2ELatencies[i] 

        for i in range(len(E2EResponses))` ; 

    contracts 

      EndToEndDelayedCommunicationContract; 

  }  

 

  contract EndToEndDelayedCommunicationContract { 

    domains 

      schedulability; 

    queries 

      input assumptions 

        '''areEndToEndLatenciesInputDataComplete( 

              ${periods$},  

              ${wcets$},  

              ${deadlines$},  

              ${names$})'''; 

    assumptions 

      contract areConnectionsDelayedContract; 

      argument schedulabilityArgument; 

    guarantee 

      <=> `And([E2EResponses[i] <= E2ELatencies[i]  

        for i in range(len(E2EResponses))])`; 

    analysis 

 '''meetEndToEndLatencies(${flowComponents$}, 

                         error0)'''; 

  } 

 

  argument schedulabilityArgument { 

    domains 

      schedulability; 

    guarantee 

      <=> `And([Deadlines[i] >= Responses[i]  

            for i in range(len(Deadlines))])`; 

    argument 

      or( 

        contract RMAHarmonicBoundContract 

        contract RMANonHarmonicBoundContract 

        contract fpResponseTimeContract 

   ); 

  } 

**}; 

Listing 2:Verification Plan 

Listing 2 shows the verifyEndToEndTiming verification 
plan that includes the contracts (only the 
EndToEndDelayedCommunicationContract in this case) that 
are used to verify all aspect of the claims presented in the 
verification plan. (This is an SMT encoding of the claims.) 

In the description of the 
EndToEndDelayedCommunicationContract in Listing 2, we see 
that its assumptions are verified with another contract 
(areConnectionsDelayedContract) and an argument 
(schedulabilityArgument). The schedulabilityArgument 
argument enables the selection of different forms of verification 
of assumptions (different scheduling analysis) that enables the 
selection of different forms of verification of this assumption 
(different scheduling analysis). 

The details of the schedulabilityArgument are also 

presented in the listing and show how it is possible to combine 
multiple contracts into a Boolean formula, or, in this case, to use 
any of the contracts that are possible to use. In this particular 
case, it will use the RMAHarmonicBoundContract if it can 

verify its assumptions, which includes both that the priority 
assignment is rate monotonic and that the periods of the task are 
harmonic to each other. If it cannot verify the period 
harmonicity, the OR encoding then allows us to try to use the 
RMANonHarmonicBoundContract contract that does not 

require period harmonicity. Finally, if neither of the two 
assumptions are met, it is then possible to use the 
fpResponseTimeContract contract that does not require 

either of the two but requires other assumptions (e.g., the 
deadline is shorter or equal to the period). 

IV. ASSURANCE ARGUMENTATION FOR THE A330 

While we lack the specific claims of the original certification 
of the A330 aircraft and the role of the replication patterns (with 
the PRIM computers and their COM/MON processors), we first 
explore a generic form of the replication to identify potential 
claims, verification procedures, and assumptions to develop an 
assurance argumentation. 

A. Replication Patterns 

The A330 architecture has two forms of replication that, to 
our understanding, address different properties. In particular, 
one type of replication addresses reducing the possibility of 
calculating the wrong value or preserving the value integrity (or 
just Integrity for short). The other goes after preserving the 
availability of the computation even if faults occur; this is known 
as Availability. 

1) Integrity Replication 

From the incident report, we believe the A330 is 
implementing integrity replication with the combination of the 
COMMAND module (COM) and the MONITOR module 
(MON) that calculate the same output from the input commands, 
and the COM uses the MON data to check its own computation. 

Assumptions 

The integrity replication has at least two assumptions: 

1. Development diversity requires that two different teams 

develop two (or more) modules independently. The 

rationale behind this approach is that if we develop two 

different implementations that can fail differently, we 

would be able to detect the failure of the pair based on the 

difference in the output values. This diversity assumption 

can be checked with the proper execution of a development 

process that enforces it, but the incident report does not 

point to a failure related to this assumption. 

2. Module pair should use the same input, which means that 

both COM and MON should receive the same input to 

create the proper comparison between the two. More 

importantly, in the specific case covered by this paper, 

while it is possible to get some small variation in the input 

from the pedal sensor, a difference in the air/ground mode 



is catastrophic given that it selects different control laws for 

the same module. This behavior is exactly what the incident 

report describes as a key violation. 

 

2) Availability Replication 
Availability replication is used to tolerate hardware failures 

and preserve a module to continue running. Availability claims 
aim to satisfy measures of tolerance to failures in the form of 
either some informal argument on failure independence or a 
more formal probability of the absence of service due to the 
failure of all the replicas. 

Assumptions 

Key to the availability replication is the assumption that the 
modules must fail independently. More specifically, this 
assumption means that the hardware where  the modules run 
must fail independently. For this paper, we focus only on this 
assumption given that we believe it informs the design of the 
avionics system and interacts with the integrity replication 
scheme. 

B. Replication Modeling 

We first formalize the availability claim (probability of absence 

of service) connected to a specific verification procedure: 

probabilistic fault-tree analysis (FTA). In this case, we create the 

replicated end-to-end flow architecture (that captures the 

channel construct) that reads from the sensors, computes the 

actuation in the PRIM (COM/MON) computers, and sends it to 

the actuator as shown in Figure 4. This figure depicts with each 

box an independent thread (including the sensors and actuator 

boxes), representing the last thread that interacts with the 

appropriate device (i.e., reads from the sensor registers or writes 

to the actuator registers) that runs in its own processor. For 

simplicity, we assume that all processors fail independently.2 

 

Figure 4: All Independent Channel Threads 

 

1) Fault-Tree Analysis (FTA) 
FTA is a top-down approach that defines the faults of interest 

under which a tree of events is created that lead to such a fault 
[17]. The tree is constructed by first connecting abstract events 
to the top-level failure by either an AND or an OR connector to 
represent that for the fault to occur, either all the next level 
abstract events need to occur or only one of such events needs 
to occur respectively. The decomposition of the next level 
events continues in the same fashion until basic events are 
identified. This construct can also be translated into what is 

 
2 Further verification is required for the final implementation e.g., power 

supplies, cooling systems, etc. 

known as a reliability block diagram, where OR compositions 
are represented as blocks connected in series while AND are 
those connected in parallel. These patterns are shown in Figure 
5. 

 

Figure 5: Fault-Tree and Reliability Block Diagrams 

 
Fault trees allow two types of analysis: a qualitative analysis 

and a quantitative analysis. The qualitative analysis allows us to 
evaluate the set of basic events that, if they occur 
simultaneously, makes the top fault occur. These are known as 
the cut set. A cut set is minimal if it cannot be reduced without 
losing its status as a cut set.  

In addition, a fault tree also allows us to identify common 
causes that break a failure-independence expectation. For 
instance, the minimal cut sets of the systems in Figure 5 are 
{1},{2},{3} for system A, {1,2,3} for system B and {1}, {2,3} 
for system C. These sets allow us, for instance, to identify single 
points of failures as cut sets with a single element. In our 
example, both system A and C have them, but system B does 
not. 

The quantitative analysis, on the other hand, allows us to 
calculate the probability of failure by assigning probabilities of 
occurrence to each basic event and deriving the probability of 
occurrence of the top event from them. This probability is 
calculated with 

𝑄𝑜(𝑡) = 1 − ∏ (1 − 𝑄̌𝑗(𝑡))

1≤𝑗≤𝑘

 

Equation 1 

with 𝑄̌𝑗(𝑡) as the failure probability of cut set 𝐶𝑗 calculated 

as 

𝑄̌𝑗 =∏𝑞𝑖(𝑡)

𝑖∈𝐶𝑗

 

Equation 2 

where 𝑞𝑖(𝑡) can be calculated as a single event occurring at 
time 𝑡 (after some time of service) that is not repairable or is 
repairable and needs to be calculated over time. For the objective 
of this analysis, we assume that it is not repairable and that 𝑞𝑖(𝑡) 
is given; we apply it in the A330 architecture to evaluate 
potential claims and their assumptions. 

2) AADL Model 
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To capture the replication characteristics to perform the 
FTA, we created an AADL model [5] following the architecture 
in Figure 43  where each component is a thread. We next created 
a hardware architecture where each thread has its own processor 
assigned to it. We then identify the internal control/data flows 
(identified as f<number>) that cross each component from input 
to output ports, the connections from output to input ports 
(identified as c<number>), and the flow source (identified as 
s<number>) and flow sinks (identified as k<number>). This 
architecture is shown in Figure 6. 

 

Figure 6: Channel Composition 

  

We now discuss two more details added to the AADL model 
that we could not include in the figure:  

1. All ports in this model are Data ports, which means that 

when the thread activates, it reads whatever is in the port 

buffer and continues its execution. 

2. All connections are Delayed connections, which means 

that whatever the thread in the output port of the 

connection sends, it arrives at the next periodic 

activation of the receiving thread.  

This combination allows us to (1) abstract away the network 
communication delays and assume that the communication will 
happen within the execution of the previous periodic activation 
and (2) assume that when the receiving thread activates, it 
already has the most recent data in its input ports.4 Given all this 
information, we can define two end-to-end flows, as presented 
in Listing 3. 

pedalToActuationCOMPRIM1: end to end flow 

Sensor1.s1-> Sensor1.f1->c2->COM.f5->c6-> 

Actuator1.k1; 

pedalToActuationMONPRIM1: end to end flow 

Sensor2.s3-> Sensor2.f3->c4->MON.f6->c5-> 

COM.f5->c6->Actuator1.k1; 

Listing 3: End-to-End Flows Replica 1 

 
Listing 3 only lists one flow in each component because all 

the flows are equivalent given that their data is available at the 
time of the thread activation. Moreover, the end-to-end flow 
pedalToActuationMONPRIM1 captures the dependency 
between COM and MON that is not present in the end-to-end 
flow pedalToActuationCOMPRIM1. These characteristics of 
Listing 3 allow us to focus only on the MON end-to-end flows 
when describing the replication pattern. 

 
3  Not shown for brevity. 

To describe the replication pattern, we define that the main 
flows within each of the PRIM computers must be replicas of 
each other. In Listing 4, we capture only the 
pedalToActuationMONPRIMx given that it captures the 
internal dependencies between the MON and COM processors. 

ReplicationProperties::Replicating =>(reference 

(pedalToActuationMONPRIM2), reference 

(pedalToActuationMONPRIM3)) applies to 

pedalToActuatorMONPRIM1; 

Listing 4: Replication Specification 

 
In addition, we specify the probability of failure of each 

processor and the target reliability (or availability) of the 
replicated flow as presented in Listing 5. (Note that this 
probability is notional and does not represent the typical 
requirement of a commercial aircraft.) 

ReplicationProperties::ReliabilityTarget => 0.85 

applies to pedalToActuationMONPRIM1; 

ReplicationProperties::FailureProbability => 0.01 

applies to Sensor1.processor; 

Listing 5: Reliability Specs 

 
We developed a probabilistic FTA analysis that uses 

Equation 1 and Equation 2. In this analysis, we transform the 
graph created with the end-to-end flows into a reliability block 
diagram based on the processor each thread runs in and their 
dependencies. Two observations are in order. First, COM 
depends on MON given that it uses its output to evaluate output 
value differences; therefore, there is no advantage to running 
them in separate processors since if one stops working (e.g., is 
not available), the other will not be able to verify its output and 
will fail as well. Second, for the COM comparison with MON, 
it needs to read the pedal and landing gear at exactly the same 
time since it is not possible to know exactly when the mode 
switch will happen. This new requirement is captured in Listing 
6, which shows only the PRIM1 part. 

ReplicationProperties:: 

  IntegrityReplicas =>(reference     

    pedalToActuationCOMPRIM1) applies to    

    pedalToActuationMONPRIM1; 

ReplicationProperties:: 

  ReplicasStartJitterTolerance => 0 ms applies to   

     pedalToActuationCOMPRIM1; 

 

Period 100 ms applies to Sensor1.thread; 

Period 100 ms applies to Sensor2.thread; 

Listing 6: Simultaneous Activation 

 
Listing 6 captures a new type of replica that we call 

IntegrityReplica; it identifies the replicas used to evaluate if two 
functions implemented to compute the same value really do so. 
As discussed above, to work properly, these replicas require the 
same input values (within a tight tolerance). We also added the 

4  Clearly, both assumptions need and can be verified with a more 

detailed model, but this discussion is not included in this paper. 
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periods for the sensor threads so that we can calculate the worst-
case jitter of their respective threads (i.e., the worst-case possible 
difference between the starting of the execution and, hence, 
sensor reading) of the thread that starts the flow. (We left this 
equal to zero.)  

We were able to satisfy the Reliability target with our FTA 
analysis, but we also discovered that the COM and MON threads 
do not benefit from running on independent processors given 
that if either COM or MON fails to produce the correct value, 
both fail together. For the jitter analysis, however, we realized 
that we cannot have two different sensing threads for COM and 
MON if our jitter target is zero. Hence, we modified the 
architecture as presented in Figure 7 with both MON and COM 
using a single thread to read the sensor values at the same time. 

 

Figure 7: Channel 1 With Single Sensing Thread 

 
Finally, we evaluated the end-to-end latency of the flows to 

verify that they meet the proper requirement by adding all the 
schedulability parameters for each of the threads, specifically 

• periods 

• deadlines 

• priorities 

• worst-case execution time 

• assignment of threads to processors (where they will run 

and already used for the reliability replication) 

• scheduling policy 

In Listing 7, we introduce the properties for only one thread 
given that the assignment to the other threads follows the same 
pattern. 

Period 100 ms applies to Sensor1.thread; 

Deadline 100 ms applies to Sensor1.thread; 

Priority 1 applies to Sensor1.thread; 

Compute_Execution_Time 10 ms applies to 

Sensor1.thread; 

Actual_Processor_Binding =>(reference 

(rep1.com.proc))  

   applies to Sensor1.thread; 

Preemptive_Scheduler => True applies to 

rep1.com.proc; 

Listing 7: Scheduling Properties 

C. Automatic Certification Argumentation 

By applying the Symbolic Assurance Refinement (SAR) 
framework described in Section III.A, we developed the 
verification plan for the CI202 incident presented in Listing 8. 
This listing starts with the verification plan specification module 
at the top. It then presents three contracts used in the plan to 
verify the claims and assumptions for integrity 

(SamplingSynchronizationContract), availability 
(ReliabilityContract), and end-to-end timing 
(EndToEndDelayedCommunicationContract). In the claims 
section of the verification plan, we also have three SMT claims 
about the three claims that we verify.  

annex contract {** 

  verification plan verifySynchronization { 

    component 

      s: EndToEndTimingExample::mysystem.i; 

    domains 

      synchronization; 

      reliability; 

    claims 

      `And([E2ESamplingJitter[i] <=       

         E2ESamplingJitterTolerance[i]  

         for i in     

            range(len(E2ESamplingJitter))])`; 

       `And([Reliability[i]>=ReliabilityTarget[i]  

          for i in range(len(Reliability))])`; 

        `And([E2EResponses[i] <= E2ELatencies[i] 

          for i in range(len(E2EResponses))` ; 

    contracts 

       SamplingSynchronizationContract; 

       EndToEndDelayedCommunicationContract; 

       ReliabilityContract; 

 }  

  contract SamplingSynchronizationContract { 

    domains 

      synchronization; 

    guarantee 

      <=> `And([E2ESamplingJitter[i] <=  

             E2ESamplingJitterTolerance[i]  

             for i in 

range(len(E2ESamplingJitter))])`; 

    analysis 

  

 '''areFlowsInSync1(${flowComponents$}, 

     error0)'''; 

 } 

  contract ReliabilityContract { 

    domains 

      reliability ; 

    assumptions 

    '''areReplicasOnIndependentProcessors( 

         ${flowComponents$}, 

         error0)'''; 

    guarantee 

       `And([Reliability[i] >=  

          ReliabilityTarget[i] 

          for i in range(len(Reliability))` ; 

    analysis 

      ’’’isE2EFlowProbFail Met( 

            ${replicatede2es$},error0)` ; 

  } 

  contract EndToEndDelayedCommunicationContract { 

    domains 

      schedulability; 

   queries 

   input assumptions 

      '''areEndToEndLatenciesInputDataComplete( 

       ${periods$}, ${wcets$},  

       ${deadlines$}, ${names$})'''; 

    assumptions 

      contract areConnectionsDelayedContract; 

     '''areAllThreadsPeriodic(${threads$},  

         ${protocols$},  

         ${names$},error0)'''=>  

        `And([Periodics[i]  

          for i in range(len(Periodics))])`; 

      '''areAllDeadlinesConstrained(${threads$}, 
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             ${periods$},${deadlines$},  

             ${names$},error0)''' =>  

            `And([Deadlines[i] <= Periods[i]  

            for i in range(len(Deadlines))])`; 

     argument schedulabilityArgument; 

    guarantee 

      <=> `And([E2EResponses[i]  

                <= E2ELatencies[i]  

          for i in range(len(E2EResponses))])`; 

   analysis       

      '''meetEndToEndLatencies( 

         ${flowComponents$}, 

         error0)'''; 

 } 

 

 argument schedulabilityArgument { 

    domains 

      schedulability; 

    guarantee 

      <=> `And([Deadlines[i] >= Responses[i]  

             for i in range(len(Deadlines))])`; 

   argument 

      or( 

        contract RMAHarmonicBoundContract 

        contract RMANonHarmonicBoundContract 

        contract fpResponseTimeContract 

     ); 

 } 

**}; 

Listing 8: Verification Plan 

The SamplingSynchronizationContract contract details are 
also included in Listing 8. The guarantee is expressed in SMT 
and is checked with the Python function areFlowsInSync1() in 
the analysis section to verify the ReplicaStartJitterTolerance 
presented in Listing 6. 

Similar to the SamplingSynchronizationContract, the 
ReliabilityContract presented in Listing 8 includes the 
verification of the independence assumption that is verified with 
the Python function areReplicasOnIndependentProcessors(). 
This function returns True if it is able to evaluate that the 
functions in the end-to-end flows that model the different PRIM 
computers run on independent processors and False otherwise. 
(This end-to-end flows data is obtained from queries in MQL 
that obtain the data from the AADL model; they are not shown 
for brevity.) Then, in section analysis, an invocation to the 
Python function isE2EFlowProbabilityOfFailureMet verifies 
whether or not the reliability requirement presented in Listing 5 
is met.  

The last contract presented in Listing 8 is the 
EndToEndDelayedCommunicationContract. The details 
presented in the listing follow a similar pattern to the other two 
contracts with the following exceptions. First, it adds an input 
assumptions section with a Python call to evaluate whether we 
have enough data to run this contract. Second, it adds the 
contract areConnectionsDelayedContract as one of the 
assumptions to verify, which is one of the complex assumptions 
that uses another contract to verify it. Finally, it adds the 
argument schedulabilityArgument that enables the selection of 
different forms of verification of this assumption (different 
scheduling analysis), as discussed in the Assurance 
Argumentation in Section III.C.  

V. LIMITATIONS 

Our experiment was limited to validate the capabilities of the 
current techniques to investigate design errors in systems 
already deployed. To take full advantage of these techniques it 
is necessary to validate them in early design to prevent these 
errors from occurring. Similarly, it is also important to validate 
these techniques in systems modifications as the systems evolve. 
As more analyses techniques of different level of formalization 
are incorporated in the proposed argumentation we expect the 
automatic argumentation to evolve. More specifically, the 
symbolic constraints specified in the SAR approach are 
expressed in SMT first order logic, this means that this must be 
evaluated to a Boolean. However, on the one hand, engineering 
analyses at times use engineering judgement to evaluate whether 
some non-exhaustive analysis or probabilistic analysis yields a 
result that is acceptable. On the other hand the use of simulators, 
e.g., like in digital twins have proven to be useful even if they 
do not explore all possible behaviors of the system and no 
absolute Boolean value can be derived from it. In this exercise 
we translated probabilistic measurements (e.g., probability of 
failure) into a Boolean by ensuring that such probability reaches 
a threshold. Perhaps in the future a deeper integration of 
probabilistic analysis and non-exhaustive analysis can be 
explored.  

VI. CONCLUDING REMARKS 

The objective of this paper was to validate if the automation 
of certification arguments can indeed identify problems that 
occur in real systems. Key to this validation exercise was the 
following: 

1. The connection of the arguments to certifiers and designer 

rationale is typical of certification reasoning. 

2. The arguments can be expressed at a high enough level of 

abstraction to enable humans to evaluate whether the 

arguments are properly captured or not. 

3. The verification of the arguments and the verification 

procedures of the claims in such arguments can be 

automatically processed by a computer. 

4. The lower-level assumptions of the verification procedures 

(i.e., analysis) can be captured and verified at lower levels 

of detail, incrementally increasing the details getting all the 

way down to implementation but in a way that each level 

can be reasoned incrementally.  

This work allowed us to validate all these aspects. However, 
limits to the incremental validation did not enable us to produce 
a full implementation given the lack of information in our 
example. At the same time, we understand that more work is 
required to validate if this approach can be extended to the scale 
of full certification claims and incremental recertification. 
Subsequent experiments will explore this issue in more detail. 

We learned the following lessons from conducting the 

research presented in this paper: 

• From a methodological point of view, this work allowed 

us to demonstrate how multiple abstractions used by 

different verification domains (real-time scheduling, 



availability, and integrity) can be assembled and cross 

validated in an automatic, formal way. Importantly, these 

abstractions are connected to architectural models that 

are reasonably easy to understand by engineers and 

certifiers. These abstractions can also be connected to the 

results from the specific analysis (even if all of the 

details are not fully understood).  

• This work allowed us to exercise the reuse of arguments 

(e.g., for end-to-end timing verification) that 

encapsulated multiple checks at lower levels of 

abstractions to which the modeler reusing the argument 

was not exposed. At the same time, new analyses were 

added (availability and integrity) along with their 

assumptions and assumption checking analyses; this 

allowed us to automatically identify failures to meet 

these assumptions in the fictitious design variations that 

we explored.  

In summary, this modeling and automatic verification 
experiment showed a robust process that allowed us to encode 
lessons learned in an executable format. This encoding can then 
be reused as we develop new arguments and verification 
procedures that can be used in new system developments. More 
importantly, the encoding enables the automatic integration of 
development activities to the production of certification 
evidence. These types of automatic certification techniques are 
crucial to software-reliant systems, such as defense and 
aerospace systems, that continuously evolve [18]. To highlight 
this importance and encourage interest from industry and 
research communities, we have formed the Assurance Evidence 
for Continuously-Evolving Real-Time Systems workgroup 
(ASERTW). Please visit https://www.asertw.org/ to learn about 
our activities and follow-up research. 
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