
RESEARCH REVIEW 2025 • INNOVATION IN ACTION

We are automating the
System-Theoretic Process
Analysis (STPA). Users
model critical elements
of their system in SysML
and our tool identifies
unsafe control actions.

Formalizing and Automating STPA with Robustness
Automating Hazard Analysis with Formal Methods

Copyright 2025 Carnegie Mellon University.

This material is based upon work funded and
supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally
funded research and development center.

The view, opinions, and/or findings contained
in this material are those of the author(s)
and should not be construed as an official
Government position, policy, or decision, unless
designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON
UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited
distribution. Please see Copyright notice for
non-US Government use and distribution.

This work is licensed under a
Creative Commons Attribution-NonCommercial
4.0 International License. Requests for
permission for non-licensed uses should be
directed to the Software Engineering Institute
at permission@sei.cmu.edu.

DM25-1328

Unsafe System Trace Generation​
Unsafe traces are generated
using formal methods (which are
precise techniques for evaluating
software behavior) that evaluate
robustness. Robustness calculations
involve relaxing the environment
specification—essentially, evaluating
what happens if things outside the
system don’t go as planned—and
determining if the system is able to
consistently ensure the specified
safety property.​

Generating Unsafe Control Actions
from Unsafe System Traces​
Our software compares safe and
unsafe traces using an algorithm
similar to those used in spell checkers.
We classify the changes needed to
convert the safe trace to the unsafe
one according to the STPA guideword
with which that change corresponds.
For example, adding a letter to a
word is like providing an inappropriate
action and deleting a letter is like not
providing a necessary action. That
classification, combined with other
data from the model, lets us build the
UCA table from STPA’s third step. ​

Results​
•	 We’ll have a small user

study to evaluate the
approach later this year.​

•	 Do you use STPA or Cameo
Enterprise Architecture? You can try
the tool now. For more information
and to access the source code,
follow the QR code on the right or
go to https://cmu-soda.github.io/
projects/project_fasr.html ​​

Introduction​
System-Theoretic Process Analysis
(STPA) is a socio-technical hazard
analysis that the DoD uses to examine
systems for safety. We are using a
new property of software-intensive
systems, called robustness, to
automate the identification of unsafe
control actions (UCAs), which is a
step of STPA.​

Provided as a plugin to Eclipse, our tool
uses exports from Cameo Enterprise
Architecture (CEA) and allows users to
model critical aspects of their system
in SysML (e.g., state machine and
activity diagrams). The tool produces
UCAs in RAAML, a standardized
format. RAAML includes support for
STPA, allowing analysis output to be
rendered in a familiar format. ​

Methods​
1.	The user models: a critical

portion of the system they’re
building, the expected behavior
of its operator/environment, and
one or more safety properties
that must be upheld.​

2.	Our tool then translates those
models to a precise specification in
a language called TLA+ and checks
the behavior of the machine when
the operator or environment
doesn’t behave as expected. If
unsafe behaviors are found, the
tool generates a pair of behavior
traces (one that violates the safety
property and one that doesn’t) and
classifies the unsafe behavior using
STPA’s guidewords.​

3.	The resulting classification is
shown to the user in CEA
using RAAML.​

​

USER SPECIFIED

AUTOMATED

SysML RAAML/STPA

[
{

"goodTrace": ["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
"badTrace": ["TurnPumpOn", "wait", "wait", "wait"]
"vioComp": ["WaterTank"]
"vioInv": ["NoOverflow"]…

"good Trace": ["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
"badTrace": ["TurnPumpOn", "wait", "wait", "TurnPumpOff", "TurnPumpOn", "wait"]
"vioComp": ["WaterTank"]
"vioInv": ["NoOverflow"]

}
]

[
{

"source": "WaterTank"
"guideword": "NOT_PROVIDING"
"controlAction": "TurnPumpOff"
"context": ["TurnPumpOn", "wait", "wait"]
"violatedConstraint": "NoOverflow"…

}
]

1. TurnPumpOn
2. Wait
3. Wait
4. TurnPumpO�

Providing Causes Hazard Not Providing Causes Hazard

1. TurnPumpOn
2. Wait
3. Wait

TurnPumpO�

TurnPumpOn

Module Tank

Extends Integers

Variables WaterLevel, PumpOn
vars = <<waterLevel,
pumpOn>>

Init ==
⋀ waterLevel = 0
⋀ pumpOn = False

TurnPumpOn ==…

---- Module Tank ----

EXTENDS Integers

VARIABLES WaterLevel, PumpOn
vars = <<waterLevel, pumpOn>>

Init ==
⋀ waterLevel = 0
⋀ pumpOn = False

TurnPumpOn ==…
JSON

JSON JSONTLA+

Tu
rn

Pu
m

pO
n

TurnPum
pO

ff

Filling

DrainingTurnPumpOn

Wait

Wait

TurnPumpOff

Sam Procter
Senior Architecture Researcher

Keaton Hanna
Associate Software Engineer

Lutz Wrage
Senior Member of
the Technical Staff

Collaborators

Eunsuk Kang, CMU

Ian Dardik, CMU

Yining She, CMU

