Carnegie
Mellon
University

Software
Engineering
INstitute

\ ’ Py, w « —
44 //\; 7 \/ \ 7 / y /';/ \
|

Fdfﬁmallzlng a?ﬁd Kutomatlng STPA -
with Robustness (FASR) & S

@

*

SOFTWARE ::
~
Q-

NOVEMBER 14-16, 2025 Isll\:lsc_;rl#liﬁzma
Sam Procter, Keaton Hanna, Lutz Wrage g
Eunsuk Kang, lan Dardik, Yining She ?'IONAL Sﬁc’

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

©2025 Carnegie Mellon University Innovation in Action

RESEARCH REVIEW 2025

Document Markings

Copyright 2025 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of War under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

DM25-1396

Formalizing and Automating STPA with Robustness Innovation in Action [DISTRIBUTION STATEMENT A] Approved for public release and
©2025 Carnegie Mellon University unlimited distribution.

RESEARCH REVIEW 2025

Background: Safety Analysis Is Slow, Hard, and You Don’t
Know When You're Done

. Control Not Providing Too Early, Stopped Too
Most critical systems are evaluated for Action Providing | Causes Toolate, | Soon,
Causes Hazard Out of Order | Applied Too
safety before use, often using hazard Hazard Long
Brake UCA-1: Brake | UCA-2:Brake | UCA-3:Brake U;A—4: Brake
analysis techniques. e | e | e | Do
Takeoff Touchdown Taxi Speed is
Attained
Define Model the Identify Identify
Purpose of the Control Unsafe Control Loss
Analysis Structure Scenarios
: ﬁ ‘ ‘ Research question: Can we use
ystem
- L ATy formal methods to improve
-y

~

analysis speed and accuracy
while providing a measure of
completeness?

.
|
1
—_— [’
1
1
1
Semao |

|
i]
Environment ‘i-f& \i_f, <

-—--

Formalizing and Automating STPA with Robustness Innovation in Action [DISTRIBUTION STATEMENT A] Approved for public release and
©2025 Carnegie Mellon University unlimited distribution.

RESEARCH REVIEW 2025

Goal: Automatically Calculate Unsafe Control Actions from

System Models

SysML

RAAML/STPA

Q TurnPumpOn

Wait

v

Wait

Filling

TurnPumpOff

TurnPumpOn

Formalizing and Automating STPA with Robustness

©2025 Carnegie Mellon University

Innovation in Action

Providing Causes Hazard

1. TurnPumpOn
2. Wait

3. Wait

4. TurnPumpOff

Not Providing Causes Hazard

1. TurnPumpOn
2. Wait
3. Wait

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2025

Robustness: Safety in the Presence of Environmental

Deviations

Define Model the
Purpose of the Control
Analysis Structure
System
Boundary p; ‘1‘ '1“
| <
| &=
- 1
4 1 1 f
|} 1 1 P
— 1 i |
1 1 1
) S i i
Environment b i- 1’

Identify

Unsafe Control

Actions

¢

-
1
—

\

<

A

-- - - ---

$
-.1::_

v
M || EEP

Formalizing and Automating STPA with Robustness
©2025 Carnegie Mellon University

4
M| E ¥EP

-y,

Identify
Loss
Scenarios

4

!

41

_1,

-

Innovation in Action

“...a system is robust with
respect to a property and a
particular set of environmental
deviations if the system
continues to satisfy the
property even if the
environment exhibits those
deviations.”

Zhang, Changjian, David Garlan, and Eunsuk Kang. 2020. “A
Behavioral Notion of Robustness for Software Systems.”
ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (New York, NY,
USA), November 8, 111-22.
https://doi.org/10.1145/3368089.3409753.

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

https://doi.org/10.1145/3368089.3409753

RESEARCH REVIEW 2025

Method: Translate SysML into Precise Specification

SysML RAAML/STPA

Q TurnPumpOn Providing Causes Hazard Not Providing Causes Hazard

1. TurnPumpOn

Wait TurnPumpOff 2. Wait
v 3. Wait
Wait 1. TurnPumpOn

TurnPumpOn 2. Wait
Filling 3. Wait
4. TurnPumpOff

TLA+

Module Tank

Extends Integers

Variables WaterLevel, PumpOn
vars = <<waterlLevel,
pumpOn>>

Init==
AwaterlLevel =0
ApumpOn = False
TurnPumpOn ==...

Formalizing and Automating STPA with Robustness Innovation in Action [DISTRIBUTION STATEMENT A] Approved for public release and
©2025 Carnegie Mellon University unlimited distribution.

RESEARCH REVIEW 2025

Method: Use CMU Fortis to Find Unsafe Behaviors

SysML

Wait

v

Wait

Q—} TurnPumpOn

Draining

Filling

TLA+

Module Tank

Extends Integers

vars = <<waterLevel,
pumpOn>>

Init==
AwaterlLevel =0
ApumpOn = False
TurnPumpOn ==...

Variables WaterLevel, PumpOn

JSON

[
{
"goodTrace":
"badTrace":
"vioComp":
"violnv":

["TurnPumpOn
["TurnPumpOn
["WaterTank"]

["NoOverflow"]

", "wait", "wait", "TurnPumpOff"]
" "wait”, "wait", "wait"]

["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
["TurnPumpOn", "wait", "wait", "TurnPumpOff", "TurnPumpOn", "wait"]

"good Trace":

"badTrace":

"vioComp": ["WaterTank"]
"violnv": ["NoOverflow"]

Formalizing and Automating STPA with Robustness

©2025 Carnegie Mellon University

Innovation in Action

RAAML/STPA

Providing Causes Hazard

TurnPumpOff

1. TurnPumpOn
TurnPumpOn 2. Wait

3. Wait

4. TurnPumpOff

Not Providing Causes Hazard

1. TurnPumpOn
2. Wait
3. Wait

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2025

Method: Categorize Behaviors with STPA Guidewords

SysML

Wait

v

Wait

TLA+ JSON

p N [
Module Tank { . .
"goodTrace": ["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
Brands Integers "badTrace": ["TurnPumpOn", "wait", "wait", "wait"]
"vioComp": ["WaterTank"]
"violnv": ["NoOverflow"]
Variables WaterLevel, PumpOn
vars = <<waterLevel,
pumpOn>>
Init == "good Trace": ["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
AwaterLevel = 0 "badTrace": ["TurnPumpOn”, "wait", "wait", "TurnPumpOff", "TurnPumpOn", "wait"]
ApumpOn = False "vioComp": ["WaterTank"]
TurnPumpOn ==... "violnv": ["NoOverflow"]
}
\ J]

Formalizing and Automating STPA with Robustness
©2025 Carnegie Mellon University

Innovation in Action

RAAML/STPA

Providing Causes Hazard

TurnPumpOff

1. TurnPumpOn
TurnPumpOn 2. Wait

3. Wait

4. TurnPumpOff

Not Providing Causes Hazard

1. TurnPumpOn
2. Wait
3. Wait

JSON

[
{

"source": "WaterTank"

"guideword": "NOT_PROVIDING"
"controlAction": "TurnPumpOff"

"context": ["TurnPumpOn

, "wait", "wait"]

"violatedConstraint": "NoOverflow"

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2025

Method: Display STPA Output Using RAAML

SysML

Wait

v

Wait

TLA+ JSON

- N [
Module Tank { . .
"goodTrace": ["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
Brands Integers "badTrace": ["TurnPumpOn", "wait", "wait", "wait"]
"vioComp": ["WaterTank"]
"violnv": ["NoOverflow"]
Variables WaterLevel, PumpOn
vars = <<waterLevel,
pumpOn>>
Init == "good Trace": ["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
AwaterLevel = 0 "badTrace": ["TurnPumpOn”, "wait", "wait", "TurnPumpOff", "TurnPumpOn", "wait"]
ApumpOn = False "vioComp": ["WaterTank"]
TurnPumpOn ==... "violnv": ["NoOverflow"]
}
\ J]

Formalizing and Automating STPA with Robustness
©2025 Carnegie Mellon University

Innovation in Action

RAAML/STPA

Providing Causes Hazard

TurnPumpOff

1. TurnPumpOn

TurnPumpOn 2. Wait
PO 3. Wait

4. TurnPumpOff

Not Providing Causes Hazard

1. TurnPumpOn
2. Wait
3. Wait

JSON

[
{

"source": "WaterTank"

"guideword": "NOT_PROVIDING"
"controlAction": "TurnPumpOff"

"context": ["TurnPumpOn

, "wait", "wait"]

"violatedConstraint": "NoOverflow"

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

RESEARCH REVIEW 2025

Team Contact

Email:
info@sei.cmu.edu

Sam Keaton Lutz Eunsuk lan Yining
Procter Hanna Wrage Kang Dardik She

PI, Sr. Architecture Associate Software Senior Member of Associate Professor Ph.D. Student Ph.D. Student
Researcher Engineer the Technical Staff

For more information, follow this QR code to
https://cmu-soda.github.io/projects/project fasr.html

Formalizing and Automating STPA with Robustness Innovation in Action [DISTRIBUTION STATEMENT A] Approved for public release and 10
©2025 Carnegie Mellon University unlimited distribution.

https://cmu-soda.github.io/projects/project_fasr.html
https://cmu-soda.github.io/projects/project_fasr.html
https://cmu-soda.github.io/projects/project_fasr.html
mailto:jcohen@sei.cmu.edu

