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Background: Safety Analysis Is Slow, Hard, and You Don’t
Know When You're Done

. Control Not Providing Too Early, Stopped Too
Most critical systems are evaluated for Action Providing | Causes Toolate, | Soon,
Causes Hazard Out of Order | Applied Too
safety before use, often using hazard Hazard Long
Brake UCA-1: Brake | UCA-2:Brake | UCA-3:Brake U;A—4: Brake
analysis techniques. e | e | e | Do
Takeoff Touchdown Taxi Speed is
Attained
Define Model the Identify Identify
Purpose of the Control Unsafe Control Loss
Analysis Structure Scenarios
: ﬁ ‘ ‘ Research question: Can we use
ystem
- L ATy formal methods to improve
-y

~

analysis speed and accuracy
while providing a measure of
completeness?

.
|
1
—_— [’
1
1
1
Semao |

|
i ]
Environment ‘i-f& \i_f, <

---
-—--

Formalizing and Automating STPA with Robustness Innovation in Action [DISTRIBUTION STATEMENT A] Approved for public release and
©2025 Carnegie Mellon University unlimited distribution.



RESEARCH REVIEW 2025

Goal: Automatically Calculate Unsafe Control Actions from

System Models

SysML

RAAML/STPA
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Providing Causes Hazard

1. TurnPumpOn
2. Wait

3. Wait

4. TurnPumpOff
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Robustness: Safety in the Presence of Environmental

Deviations
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“...a system is robust with
respect to a property and a
particular set of environmental
deviations if the system
continues to satisfy the
property even if the
environment exhibits those
deviations.”

Zhang, Changjian, David Garlan, and Eunsuk Kang. 2020. “A
Behavioral Notion of Robustness for Software Systems.”
ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (New York, NY,
USA), November 8, 111-22.
https://doi.org/10.1145/3368089.3409753.
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Method: Translate SysML into Precise Specification

SysML RAAML/STPA

Q TurnPumpOn Providing Causes Hazard Not Providing Causes Hazard

1. TurnPumpOn

Wait TurnPumpOff 2. Wait
v 3. Wait
Wait 1. TurnPumpOn

TurnPumpOn 2. Wait
Filling 3. Wait
4. TurnPumpOff

TLA+

Module Tank

Extends Integers

Variables WaterLevel, PumpOn
vars = <<waterlLevel,
pumpOn>>

Init==
AwaterlLevel =0
ApumpOn = False
TurnPumpOn ==...
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Method: Use CMU Fortis to Find Unsafe Behaviors

SysML

Wait

v

Wait

Q—} TurnPumpOn

Draining

Filling

TLA+

Module Tank

Extends Integers

vars = <<waterLevel,
pumpOn>>

Init==
AwaterlLevel =0
ApumpOn = False
TurnPumpOn ==...

Variables WaterLevel, PumpOn

JSON

[
{
"goodTrace":
"badTrace":
"vioComp":
"violnv":

["TurnPumpOn
["TurnPumpOn
["WaterTank"]

["NoOverflow"]

", "wait", "wait", "TurnPumpOff"]
" "wait”, "wait", "wait"]

["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
["TurnPumpOn", "wait", "wait", "TurnPumpOff", "TurnPumpOn", "wait"]

"good Trace":

"badTrace":

"vioComp": ["WaterTank"]
"violnv": ["NoOverflow"]
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RAAML/STPA
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Method: Categorize Behaviors with STPA Guidewords

SysML

Wait

v

Wait

TLA+ JSON

p N [
Module Tank { . .
"goodTrace": ["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
Brands Integers "badTrace": ["TurnPumpOn", "wait", "wait", "wait"]
"vioComp": ["WaterTank"]
"violnv": ["NoOverflow"]
Variables WaterLevel, PumpOn
vars = <<waterLevel,
pumpOn>>
Init == "good Trace": ["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
AwaterLevel = 0 "badTrace": ["TurnPumpOn”, "wait", "wait", "TurnPumpOff", "TurnPumpOn", "wait"]
ApumpOn = False "vioComp": ["WaterTank"]
TurnPumpOn ==... "violnv": ["NoOverflow"]
}
\ J ]
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RAAML/STPA

Providing Causes Hazard

TurnPumpOff

1. TurnPumpOn
TurnPumpOn 2. Wait

3. Wait

4. TurnPumpOff

Not Providing Causes Hazard

1. TurnPumpOn
2. Wait
3. Wait

JSON

[
{

"source": "WaterTank"

"guideword": "NOT_PROVIDING"
"controlAction": "TurnPumpOff"

"context": ["TurnPumpOn

, "wait", "wait"]

"violatedConstraint": "NoOverflow"
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Method: Display STPA Output Using RAAML

SysML

Wait

v

Wait

TLA+ JSON

- N [
Module Tank { . .
"goodTrace": ["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
Brands Integers "badTrace": ["TurnPumpOn", "wait", "wait", "wait"]
"vioComp": ["WaterTank"]
"violnv": ["NoOverflow"]
Variables WaterLevel, PumpOn
vars = <<waterLevel,
pumpOn>>
Init == "good Trace": ["TurnPumpOn", "wait", "wait", "TurnPumpOff"]
AwaterLevel = 0 "badTrace": ["TurnPumpOn”, "wait", "wait", "TurnPumpOff", "TurnPumpOn", "wait"]
ApumpOn = False "vioComp": ["WaterTank"]
TurnPumpOn ==... "violnv": ["NoOverflow"]
}
\ J ]
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RAAML/STPA

Providing Causes Hazard

TurnPumpOff
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PO 3. Wait
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Not Providing Causes Hazard

1. TurnPumpOn
2. Wait
3. Wait

JSON

[
{

"source": "WaterTank"

"guideword": "NOT_PROVIDING"
"controlAction": "TurnPumpOff"

"context": ["TurnPumpOn

, "wait", "wait"]

"violatedConstraint": "NoOverflow"
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For more information, follow this QR code to
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